ON RELATIONSHIPS BETWEEN OSTROWSKI, TRAPEZOIDAL
AND CHEBYCHEYV IDENTITIES AND INEQUALITIES

P. CERONE

ABSTRACT. This article investigates the relationship between the Ostrowski,
Trapezoidal and Chebychev functional identities. It demonstrates how one
may be obtained from the other through transformations. The relationships
between bounds on the functionals is also examined. The three point functional
is analysed as is its relationship to a generalised Chebyshev functional.

1. INTRODUCTION

In the paper we investigate the relationships between the three functionals, for
fila,b] = R,

(1.1) S(fia,z,b) := f (x) = M(f;a,b),

- h—
12 Tann=(5o0) f@+ (j=2) 10 - Mfiab),
and
(1.3) T(f,950,b) := M (fg;a,b) = M (f;a,b) M(g;a,b),
where

1 :
(14) M (f;a,b) = — /a f(u) du, the integral mean.

The above functionals will be termed as the Ostrowski, Trapezoidal and Cheby-
chev functionals respectively for reasons that will be fairly evident subsequently.

We note firstly that
b
50) - [ s

(1.5) (b—a)S(f;a,aT—H),b>:(b—a)f<
and
o) o-a7 (£ ) =25 r@ 01~ [ F@,

recapturing the midpoint and trapezoidal rules for the evaluation of the integrals.
With this in mind, the most common task is to obtain bounds on the functionals
(1.1) - (1.3). This task is perhaps best accomplished from identities involving the
functionals.
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2 P. CERONE

The approach will be demonstrated on the functional S (f;a,x,b). It may easily
be demonstrated through an integration by parts argument of the Riemann-Stieltjes
integral on the intervals [a,z] and (z, b] that the identity [10]

t—a

b = e,
(L.7) SUM%w:/p@ﬂW@aP@ﬂ:
‘ ;:Z t € (2,0]

holds. For f absolutely continuous then df (¢t) = f'(t)dt and (1.7) becomes the
Montgomery identity. The following theorem may be proved using the Montgomery
identity (see Dragomir and Wang [14] — [16]).

Theorem 1. Let f : [a,b] = R be absolutely continuous on [a,b]. Then for all
x € [a,b], we have:

(1.8) 1S (f;a,2,b)
(1.9)
o (=)o -
p+1 p+1
< T—a b—=x e ' /
- (p+11)% [<b_a> +<b—a> ](b a)r [|f'll, if f'€Lgla,b],
Lil=1p>1
1 _ atb
§+ b—; le,Hl,

where S (f;a,x,b) is as given by (1.1), |||, (r € [1,00]) are the usual Lebesque
norms on L, [a,b], namely,

lgllo := €ess sup |g(t)]
te(a,b]

b z
gl = (/ Ig(t)lrdt> , 1 €[l,00).

The constants %, —L  and % respectively are sharp in the sense that they cannot

(p+1)?
be replaced by a smaller constant.

and

Ostrowski [19] proved the first inequality in (1.8) in 1938, using a different ar-
gument and hence the justification for the naming of S (f;a,x,b). Fink [17] also
obtained generalisations of the above results.

If one drops the condition of absolute continuity and assumes that f is Holder
continuous, then one may state the result (see [13]):

Theorem 2. Let f : [a,b] = R be of r — H—Holder type, that is,

[f (@) —fWI<Hlz—yl",  foralzy€ab],
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where r € (0,1] and H > 0 are fized. Then, for all x € [a,b], we have the inequality:

(l;:_z>’"+1 + (2:Z>r+1] (b—a)",

where S (f;a,x,b) is as given by (1.1).

The constant ri_l is also sharp in the above sense.

Note that if » = 1, that is f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)
(see [12])

H
. ; < ——
(110)  IS(fiamb) < s

a+b

(1.11) 1S (f;a,2,b)| < i+<xb__?> (b—a)L.

Here the constant i is also best.
Moreover, if one drops the condition of continuity of the function, and assumes
that it is of bounded variation, then the following result may be stated (see [10]).

Theorem 3. Assume that f : [a,b] = R is of bounded variation and denote by
\/° (f) its total variation. Then

a

1
S+

(112) S (f0,2,0)] < |5

for all z € [a,b].
The constant % is the best possible.

If we assume more about f, that is, f is monotonically increasing, then the
inequality (1.12) may be improved in the following manner [11].

Theorem 4. Let f : [a,b] = R be monotonic nondecreasing. Then for all z € [a, b],
we have the inequalities:

(1.13) 1S (f;a,2,0)]

b
sbfa%n—m+Mfm+Aswa—mfwm}
< L A{@-a)lf @)~ f @)+ b))~ @)

1 a:—“T'H’
< b+ 2 bﬂw—ﬂm,

where S (f;a,x,b) is as given by (1.1).
All the inequalities in (1.18) are sharp and the constant % is the best possible.

The interested reader is encouraged to see [6] for an extensive treatment of the
Ostrowski (interior point) rule and its applications to numerical quadrature. Also,
for other recent results including Ostrowski type inequalities for n—time differen-
tiable functions, visit the RGMIA website at http://rgmia.vu.edu.au/database.html.

It may further be demonstrated by integration by parts of the Riemann-Stieltjes
integral that the identity [7]

b

(1.14) Tmmawz/qmw#w,qmwziﬁ,mWMM,

a b—a
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holds. Cerone, Dragomir and Pearce [7] used the identity (1.14) and showed its
applicability to numerical integration, special means and probability. They showed
that for f : [a,b] — R of bounded variation

(1.15) T (f;a,2,b)] < |z +

2

for all z € [a,b] and 1 is best possible where \/Z (f) is the total variation of f.
More recently the author [2] showed that

1
(b—a)*

b
(1.16) T(f,g;a,b) = /¢m#w,

where

b
(1.17) P (t)=(t—a)G(tb) — (b—t)G(a,t), G(a,b) = / g (u) du.
a

For many other identities for the Chebychev functional ¥ (f, g; a, b) the interested
reader is referred to [18] Chapters IX and I, 239 — 310.

In the paper [2] bounds were obtained on ¥ (f, g;a,b). Specifically, bounds for
the moments and moment generating function were explicitly determined.

To elaborate, in the current paper, relationships between the functionals (1.1),
(1.2) and (1.3) will be investigated through their respective identities (1.7), (1.14)
and (1.16). It will be shown that one identity may be obtained from the other
through some transformation. An investigation of the effect on their respective
bounds is also undertaken.

In Section 3 a three point rule which was introduced in Cerone and Dragomir [5]
will be examined and a generalised Chebychev functional is obtained following the
techniques developed in Section 2. The bounds for a generalised Ostrowski type
identity for n—time differentiable functions is shown to be the same as bounds for a
generalised trapezoidal rule in Section 4. Some sufficient characteristics for kernels
to have the same Lebesgue norms is also investigated in Section 4.

2. RELATIONSHIPS BETWEEN THE FUNCTIONALS
We start with the identity (1.7). Allowing z — a and x — b gives

b

SU%mMZ/pwﬂﬂw

a

and
b

Sqm@wz/p@wﬂw

a

respectively. Thus,
(21) (m_a’)s(f7aaa’7b)+(b_m)s(f7a7b7b)
b
= [ le-ap@n+e-npbold
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but
(:L‘ - a)p(avt) + (b - 1‘)p(b,t)

- @—awggg>+@—w)@:z>
_ b@—a:zu—w_w<pﬁjs—ﬁ
= t—z=(b-a)q(ab

and dividing (2.1) by b — a gives the Trapezoidal identity (1.14).
In a similar way, if we commence with the Trapezoidal identity (1.14) and allow
z — a and © — b gives

T(f;a,a,b)z/abq(a,t)df(t)z/ab <£:Z>df(t)

rigann= [ aooaro=[ (F2)aw

respectively, so that

and

T

b
(t—a)df(t)+/ (t— b df (1)

and upon division by (b — a) gives the identity (1.7).
It may be noticed that if H (u) is the Heaviside unit function defined by

(w—a)T(f;a,a,:n)+(b—w)T(f;a:,b,b):/

a

1, w>0

(2.2) H (u) := {

0, u<0

then p (z,t) from (1.7) may be written in the following form

(2.3) m@w:(“ﬂ>Hu—ﬂ+<“”>Hu—m,x¢emm

b—a b—a

and let from (1.15)
20 G0 =i@an = (1=

The following lemma holds.
Lemma 1. For p(z,t) defined by (2.3) and q(x,t) by (1.15), then the following
relationships are valid for x,t € [a,b]

(m—a)p(a,t)+(b—m)p(b,t)

— T

>H(t—a)H(b—t), x € [a,b].

2. t) =
(25) (1) )+
and

x—a)q(a,t;a,x)+ (b—x)q (b t;x,b
26 oty = £ D000+ 6= D)i05mD)

—a
Proof. From (2.3), using (2.2), gives
pat)=1=" and pbt) =2

b—a b—a
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and so
(z-a)p(a,t) +(b=2)p(b,t) _ (r—-a){t=b+(b-2)(—a)
b—a (b—a)?
= Z:Z:q(mat)

producing identity (2.5).
Now to prove (2.6) use the more explicit representation of ¢ (z,t) as given by
(2.4), then

>H(m—t) and G (b,t;2,b) = <z;b>H(t—a:)

t—a

Q(a,t;a,w)=<

T—a
and so

(m—a)@(a,t;a,m)+(b—a:)(j(b,t;a:,b)
b—a

- <Z:Z>H(x—t)+ (;:Z)H(t—m)

= p(l’,t).

Hence the lemma is completely proved. i

Remark 1. It should be emphasized that there is a strong relationship between
the Ostrowski and trapezoidal functionals. This is highlighted by the symmetric
transformations amongst their kernels that provide the identities (1.7) and (1.15).
In particular, we note that the bound in (1.15) in the same as the bound in (1.12).

Theorem 5. The Lebesgue norms for the generalised trapezoidal rule and those for
the Ostrowski functional are equal. That is,

(2.7) llp (2, ), = lla (@, )l , v €l,00],

where p (z,t) and q (z,t) are as given in (1.7) and (1.15) or (2.3) and (2.4) respec-
tively.

Proof. Let A = =2 and 1 — A\ = g:—z, then |p(z,t)| = &=% varies linearly from 0
to A, for a <t <z and |g(z,t)| = ﬁ, varies linearly from A to 0 for a <t < z.

Further, |p(z,t)| and |g(z,t)| are symmetric about ¢ = %52 within the interval

t € [a,x]. Similarly, over the interval ¢t € (z,b], |p(z,t)| = g_;fl which varies linearly

from 0 to 1 — X for z < t < b and |q (z,t)| = £== varies linearly from 0 to 1 — X for
t € (z,b]. Again |p (z,t)| and |g (z,t)| is symmetric about ¢ = ZE2, the midpoint of
the interval t € (z,b]. We thus conclude that (2.7) is true. I

Remark 2. All the bounds obtained for the Ostrowski functional as given by (1.8)
- (1.13) are valid for the Trapezoidal functional.

We now illustrate the process for acquiring the identity (1.16) for the Chebychev
functional from the identity (1.7) for the Ostrowski functional.
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We start with (1.7) and multiplying by 9%) and then integrating over [a,b] to

b—a
give, on assuming that the interchange of order is permissible,

b b
Tt = 5o [ [a@peod@de
b

= bia/a [/jg(:@(éi—i)+/:g(x)<%>]df(t)dm
::nilwgiﬁlz@M+G§943@wPW)

b
= ﬁ/ Y (t)df (1),

which is identity (1.16) where ¢ (t) is as given by (1.17).

Thus, we have noticed how multiplication and integration transforms the Os-
trowski functional identity to the Chebychev functional identity.

Can we go the other way? The answer is in the affirmative.

From (1.16) and (1.17) let

(28) g =H(t-a)HE 1), a<a<f<b
where H (-) is the Heaviside unit function defined by (2.2), to give

@9)<b_a>fﬁﬂmﬁ)==1Nﬂmaﬁmkzﬂﬂﬁaﬂ)—wﬂﬁmw

b -«
b
:Zﬁa%fa/im#m

where 9 (t) = 4 (t) with g (¢) as given by (2.8) and so from (1.17)
(B—a)(t-a), a<t<a;

(2100  $(t)=1¢ alb-a)-a@-a)=[b-a) - (F-a)]t, a<t<p

(6 —a)(t-0b), B<t<D.
Now, if we take & = = and § = = + h then from the left hand side of (2.9)
D(f;a,a:,a:+h,b) = M(f,l‘,l‘+h) _M(f;a>b)
giving
S(f;a,z,b) =lim D (f;a,z,x + h,b).
h—0
The right hand side of (2.9) and using (2.10) produces, for f continuous,

h—0

b
+Awﬁ—wwaﬂ}

b
- /pmn#@

and so (1.7) is obtained.

x xz+h
lim{bia l/a (t—a)df(t)%—%/x [x(b—a)—ah— (b—a—h)t]df (t)
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For further work on various bounds for D (f;a,«, 3,b) the difference between
two means the reader is referred to Barnett et al. [1] and Cerone and Dragomir [3].

If in (2.9) and (2.10) we take o = a and 8 = a + h and allow h — 0, then we
get after some simplification

rw-misan=[ (=) ao.

Further, taking a = b — h and 8 = b gives

1o -mMisan=[ (2w

from (2.9) and (2.10) after allowing h — 0. Combining the above results gives

(=2) s+ (1=2) s
1

b
B W/[(""”‘“W—b)+<b—x><t—a>1df<t>

b
- o [ t-oaw

and the identity for the Trapezoidal functional (1.14) is recaptured.

3. A THREE PoOINT IDENTITY

Define the functional ¥ (f;a, «, z, 8, b) which involves the difference between the
integral mean, a weighted combination of a function evaluated at the end points
and an interior point. Namely, for a < a <z < <b,

B Saassy = (o) @+ (52) @

a

. <b_ﬂ>f(b)—/\/l(f;a>b)-

b—a

Cerone and Dragomir [5] showed that the identity

L2 € [a,]
b b—a
(32)  T(fia,az,8,b) = / r(a,t)df (1), 7 (1) =
’ Z:i, t € (z,b]

is valid. They effectively demonstrated that the Ostrowski functional and the trape-
zoid functional could be recaptured as particular instances. Specifically, from (3.1)
and (3.2),

S(f;a,z,b) =% (f;a,a,2,b,b)
and

T(f;a,z,b) =% (f;a,z,2,2,b),
where S (f;a,z,b) and T (f;a,z,b) are defined by (1.1) and (1.2) and satisfy iden-
tities (1.7) and (1.14) respectively.

To maintain the spirit of the current article, demonstrating that correspondences

or transformations are bidirectional, it will now be shown that (3.2) may be obtained
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from (1.7) and (1.14). To accomplish this we extend the notation of the previous
section and write (1.7) and (1.14) as

t—c, t € [e,x]
d d—-c
(33) S(fic,z,d) = / plated)df (t), plated =
‘ ;:i, te (a,d

and

d T
(34) T(facamad):/c q(m,t,c,d)df(t), q(x,t,c,d):ﬂ,m,te[c,d].

Now, from (3.3)

63 (5o2)sUiaaa+ (522 strams) + (=2 ) s

- (Z‘:Z) /aap(a,t,a,a)df(t)+<ﬂb::> /jp(a:,t,a,ﬁ)df(t)
+<‘;%ﬁ) /;p(b,t,ﬂ,wdf(t)

but
a—a t—a
<b_a>p(a7t7a7a) - b—a’ te[a’7a]7
122 e (a,4]
B—a b—a
(b )p(x7t7a7/8) =
—a t— 8 .
b—a’ E(maﬁ]a
and

h— _
(F2) st = =2, 1e @

which combined give r (z,t). Hence the identity (3.2) is recovered since the left
hand side is ¥ (f; a, o, x, 3,D).
Further, from (3.4)
- h—
(5” “) T (f5a,0,0) + ( ”“’) T (f52,8,b)

b—a b—a

_ (z:;) /jq<a,t,a,x)df(t)+<’;:—z) /:q(b’,t,w,b)df(t)

(““) d(atia,r) = %t ela,a]

b—a b—a’

but

and

b—=z _t—-p
(b—a)q(ﬁ’t’x’b) - ma te (CC,b]

giving the identity (3.2).
It has thus been demonstrated above that a combination of scaled Ostrowski and
Trapezoidal identities produce the three point identity (3.4).
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Remark 3. We shall investigate Ostrowski’s inequality for absolutely continuous

functions as given by the first inequality in (1.8). This may be derived from the
Montgomery identity

b

(3.6) S(fiaeb) = [ pltab) £ O
where

t—a

p—_t t€la,xl],
(3.7) p(z,t,a,b) =

f=b t € (z,b]

b_a7 )
Now,

3.8)  S(fiax,b) = S(f;a,2,2)+5(f;2,2,b)
b

_ /Ip(a:,t,a,a:)f’(t)dt+/p(:v,t,a:,b)f’(t)dt

/; <Z:Z> f! (t)dt+/:z<%> f'(t) dt.

Thus, by properties of the modulus and integral and the triangle inequality, we have

Tt a , brb—t ,
[ (=)o [ (=)o
1 e '
< <m/0 Udu) I “oo,[a,m]
I /
+ (m/o ’U,dU) ||f ||oo,[m,b]

_ (x_a)z ! (b_x)z i
- 2 (b — a) ||f ||oo,[a,:t] + m ||f ||oo,[z,b]

o+ (-2,
< (= ;)(bt(a) =) 15 0. a,0]

2
1 r — atb
_ [Z+< b—; > ] (0 = a) [1f'l o s -

We now investigate how the Ostrowski bounds may be used to obtain bounds
for the three point rule.

3.9)  |S(f;a,2,0)

IN
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From (3.4) the three point rule is given in terms of the Ostrowski rule and so

T (a0, 0.1)
= |(528) stsaear+ (F=2) stiami+ (725 ) srs6.0)

< (& >|fﬂaaH<€ s e s+ (72 ) 1 138,00
(52 )[il uﬂ|a4

o [ (o 5o
+( a)[w oo + 507 ))WH[WJ

h— 2
n Ql;b%ﬂﬂng

Hence,

(3.10)

~a) [T (f;a,0,7,8,b)]
(0= @) 1F o fora] + (@ = 0" 1F g g
B =2 1F o+ 0= B 1 oo s

{

(

{la=ay +@=a)+ B -2+ 08I logus
1 2

_ {2l<b;a> +<x_a—2|rb>2 +<a_a—;—w>2 <B_w+b>}

The last 1nequahty in (3.10) was obtained in Cerone and Dragomir [13] directly
from the three point identity (3.2) for f (-) absolutely continuous. Of course, taking
a =a and B8 = z in (3.10) recaptures the Ostrowski inequality as given by the last
inequality in (3.9).

Following the procedure established in Section 2 it is possible to obtain a gen-
eralised Chebychev identity. From (3.1) and (3.2) we have on multiplying by £= (= )
and integrating

(3.11) (ﬂ —°

IN
T I e

IN

%) M(fg50.0) - M (Fi0,0) M(gia.
Kj‘j 0+ (1=2) 10 M)
= /b/bg r(z,t)df (t)dz
- bia{/:g(m/a (5=2) ar@as +/abg(m)/:<z:§>df(t)dm}
::bimfl@:j)lZ(Mm+Qjﬂ)L um4#ux
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where we have assumed that an interchange of the order of integration is allowed.
Thus, if we define the generalised Chebychev functional as

(3.12) 2 (f,g:a,, 2, 8,b)
- (522) MUgiad) - Mfia.d) Mgia)

+ [(Z:Z) f(a)+ <%> f(b)} M (g;a,b)

then from (3.11),

R 1 b
(313) Shgaenh) = o [ xOF @),
where
(3.14) x(@t)=(t—a)G (b +(t—8)G(a,t).

It should be emphasised that the earlier functionals may be recaptured by par-
ticular instances of the identity (3.13) with (3.12) and (3.14). Specifically,

T (f,9;a,1,b) S (f,9;a,a,2,b,b)
M (g;a,b) T (f;a,2,0) = % (f,9;a,7,2,2,b)
T(fiaw,B,0) = lmS(f,H(t—2)H (z+h—1);0,0,2,5,0)
) )H

S(f;a,z,b

lim‘:T,(f,H(t—a: (z+h—1t);a,a,z,b,b).
h—0

It should be remarked that (3.11) and (3.12) may be rewritten in a different form.
If we let

b-—a)d=a—-a, b—a)p=F—-a and (b-a)vr=>0-3,
so that A+ p+ v =1, then,
(3.15) T(fra,2,0) = Af (a) + pf (x) + v (b) = M(f;a,b)
and
T(f,950,2,0) = pM (fg;0,0) + [Mf (@) + vf (b) = M (f50,)] M (g;0,b)-
Thus (3.15) is the difference between a weighted combination of a function evaluated

at the end points and an interior point z and, the mean of the function over the
entire inerval. As a matter of fact,

b
(b—a)T(f;a,2,b) = (b—a) [/\f(a)+pf(ﬂf)+1/f(b)]—/ f(w) du

and taking z = aT*'b, A=v = % and p = % recaptures the Simpson rule under a
less restrictive assumption than requiring f(**) (-) to exist.
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4. OSTROWSKI AND TRAPEZOIDAL TYPE RESULTS FOR f(, n > 1

The following Ostrowski and Trapezoidal type identities were obtained, involving
™ (-), by Cerone et al. [8] and [9]. Namely,

(4.1) (1" /an (,t) f™ (t) dt
b n (k=1) (p
- / f(t)dt—kz;[(b—a:)k+(—1)kl (z—a) fT,()
where
(t;,a)n, t € [a,q]
(4.2) P, (z,t) = '
(t;!b) e (a,b]
and

b
= /b £ () di — Xn: (z — a)k fl=1) (a) + (_1)1671 (b— x)k =) ()
a Pt

k! ’

where

(4.9 =" e,

Theorem 6. The Lebesgue norms for the Ostrowski functional and the generalised
functional as given by the right hand sides of (4.1) and (4.2) respectively are equal.
That is,

(4.5) 1P (2, )|, = 1@n (2, -)[l,, v €[1,00],
where P, (z,t) and Qy (x,t) are as given by (4.2) and (4.4).

Proof. The proof is straightforward. It may be noticed that over each of the inter-
vals [a, z] and (z,b] the modulus of the two kernels are equivalent. That is,

|Qn (x,a—+—1‘—t)|, te [(I,:L‘]

(4.6) |P (2, )| =
|Qn (z,z +b—1t)], te€ (]
Hence,
|Pn (2,7)] = sup [P (x,1)]
t€la,b]

= max{ sup |Qn(:r,a+a:—t)|, sup |Qn(m7m+b_t)|}

t€la,x) te(z,b]

= max{ sup |Qn (:L’,t)|, sup |Qn (:L’,t)|} :”Qn (mv)”oo

tela,z] te(z,b]
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and

b T b
1P () [IF /|Pn(a:,t)|pdt:/ |Pn(a:,t)|pdt+/ | Py, (x,t)|P dt

T b
[ 1@ua+a—opa+ [1Quws+b- o

x b
- / @ (2, D)7 dt + / 1Qu (2, 0)|P dit
= Qu (@I

and thus the theorem is proved.

Remark 4. Cerone et al. [8] and [9] demonstrated (4.5) by direct calculation. If
n = 1 then the bounds involve V) () and the results of the earlier sections are
recaptured for when f (-) is absolutely continuous and division by — (b — a).

Theorem 7. Leta, 3 : [c,d] — R be continuous on [c,d] and |« (t)] = |8 (¢ + d — t)|,
then the Lebesgue morms

(4.7) lledl, = 11811, v € [1, 00].

Proof. Firstly,

lall = =ess sup [a(t)] = ess sup |8 (c+d—1)
t€e,d] t€le,d)
= ess sup |B(u)] =|f|ly -
u€[d,c]

Further for 1 < p < oo,

d d d
lall?, = / o (8)[7 dt =/ 1B (c+d— 1) dt = / 18 (u) P du = ||5]]”.
Thus, the theorem is proved. i

Corollary 1. Let «;, 3; : [ci,d;] = R be continuous on [c;,d;], where I; = [¢;,d;] C

(3

[a,b] and U;_, I; = [a,b]. Then if

i ()] = 185 (ci + di = )],
the Lebesgue norms on [a, b

lledl, = 11811, v €[0,00],

where a, B : [a,b] = R and a (t) = a; (t), t € [¢;,d;] and B (t) = B, (t), t € [¢i, d;].

Proof. Follows directly from Theorem 7 applied to each subinterval [¢;,d;], i =
1,2,...,n with ¢; =a and ¢, = 0. I
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