NOTES ON INTEGRAL INEQUALITIES

Nasser Towghi

Raytheon System Company

180 Hartwell Road, Mail Stop S3FG4, Bedford, MA 01730

Nasser_M_Towghi@res.raytheon.com, Phone: 781-999-5546

Abstract

Sufficient conditions for an integral inequality posed as an open question by Feng Qi is given, and proof of previously known integral inequalities under weaker hypothesis are obtained.

2000 Mathematical Subject Classification. Primary 26D15.

Key words and phrases. Inequalities, Integral Inequalities.

1 Introduction.

In this paper we give sufficient conditions for the following integral inequality to hold,

$$\int_{a}^{b} [f(x)]^{t} \mathrm{d}x \ge \left(\int_{a}^{b} f(x) \mathrm{d}x\right)^{t-1} \quad t > 1.$$

$$\tag{1}$$

This problem was posed by Feng Qi [1]. In [1] it was also shown

$$\int_{a}^{b} [f(x)]^{n+2} \mathrm{d}x \ge \left(\int_{a}^{b} f(x) \mathrm{d}x\right)^{n+1},\tag{2}$$

provided that $f^{(n)} \ge n!$, and $f^{(i)}(a) \ge 0$ for i = 0, ..., n - 1.

We give sufficient conditions for inequality (3) to hold. Our proof is somewhat more simplified than the proof of (2) given in [1], and we use slightly weaker assumptions.

We first set the stage. Let $f^{(0)}(x) = f(x)$, $f^{(-1)}(x) = \int_a^x f(s)ds$, and [x] denote the greatest integer less than or equal to x. For $t \in (n, n+1]$), where n is a positive integer, let $\gamma(t) = t(t-1)(t-2)\cdots[t-(n-1)]$. For t < 1, let $\gamma(t) = 1$.

Proposition 1 Let t > 1, $x \in [a, b]$, and $f^{(i)}(a) \ge 0$ for $i \le [t-2]$. If $f^{[t-2]}(x) \ge \gamma(t-1)(x-a)^{(t-[t])}$, then $(b-a)^{t-1} \le \int_a^b f(x) dx$, and inequality (1) holds.

Proof. If 1 < t < 2 then $f^{[t-2]}(b) \le \int_a^b f(x) dx$, $\gamma(t-1) = 1$, and (t-[t]) = t-1. Therefore $(b-a)^{t-1} \le \int_a^b f(x) dx$. Suppose that $t \in [n, n+1)$, where n is positive integer, and $n \ge 2$. Now

$$\int_{a}^{b} f(x)dx \geq \int_{a}^{b} \int_{a}^{x_{1}} \int_{0}^{x_{2}} \cdots \int_{a}^{x_{n-2}} f^{(n-2)}(x_{n-1})dx_{n-1}dx_{n-1} \cdots dx_{1}$$
(3)

$$\geq \int_{a}^{b} \int_{a}^{x_{1}} \int_{a}^{x_{2}} \cdots \int_{a}^{x_{n-2}} \gamma(t-1)(x_{n-1}-a)^{(t-n)} \mathrm{d}x_{n-1} \mathrm{d}x_{n-1} \cdots \mathrm{d}x_{1}$$
$$= (b-a)^{(t-1)}.$$

To show that inequality (1) holds we define the following quantities,

$$F(t) = \int_{a}^{b} [f(x)]^{t} \mathrm{d}x, \ G(t) = \left[\int_{a}^{b} f(x) \mathrm{d}x\right]^{t}, \ G_{I}(t) = \left[\frac{G(1)}{b-a}\right]^{t}.$$
(4)

We must show that $G(t-1) \leq F(t)$. Note that $G(t-1) = G_I(t) \frac{(b-a)^t}{G(1)}$. By Jenson's inequality $G_I(t) \leq F(t)/(b-a)$. Consequently

$$G(t-1) \leq F(t) \frac{(b-a)^{t-1}}{G(1)}$$
(5)
(Inequality (3) \Rightarrow) $\leq F(t)$.

References

•

 Feng Qi, "SEVERAL INTEGRAL INEQUALITIES," Journ. of Inequalities in Pure and Applied Math. Vol.1 no. 2 Article 19 (2000).