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Abstract
Sufficient conditions for an integral inequality posed as an open question by Feng Qi is given, and

proof of previously known integral inequalities under weaker hypothesis are obtained.
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1 Introduction.

In this paper we give sufficient conditions for the following integral inequality to hold,∫ b

a

[f(x)]tdx ≥

(∫ b

a

f(x)dx

)t−1

t > 1. (1)

This problem was posed by Feng Qi [1]. In [1] it was also shown∫ b

a

[f(x)]n+2dx ≥

(∫ b

a

f(x)dx

)n+1

, (2)

provided that f (n) ≥ n!, and f (i)(a) ≥ 0 for i = 0, .., n− 1.

We give sufficient conditions for inequality (3) to hold. Our proof is somewhat more simplified than the

proof of (2) given in [1], and we use slightly weaker assumptions.

We first set the stage. Let f (0)(x) = f(x), f (−1)(x) =
∫ x

a
f(s)ds, and [x] denote the greatest integer less

than or equal to x. For t ∈ (n, n + 1]), where n is a positive integer, let γ(t) = t(t− 1)(t− 2) · · · [t− (n− 1)].

For t < 1, let γ(t) = 1.

Proposition 1 Let t > 1, x ∈ [a, b], and f (i)(a) ≥ 0 for i ≤ [t− 2]. If f [t−2](x) ≥ γ(t− 1)(x− a)(t−[t]), then

(b− a)t−1 ≤
∫ b

a
f(x)dx, and inequality (1) holds.

Proof. If 1 < t < 2 then f [t−2](b) ≤
∫ b

a
f(x)dx, γ(t − 1) = 1, and (t − [t]) = t − 1. Therefore (b − a)t−1 ≤∫ b

a
f(x)dx. Suppose that t ∈ [n, n + 1), where n is positive integer, and n ≥ 2. Now∫ b

a

f(x)dx ≥
∫ b

a

∫ x1

a

∫ x2

0

· · ·
∫ xn−2

a

f (n−2)(xn−1)dxn−1dxn−1 · · ·dx1 (3)
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≥
∫ b

a

∫ x1

a

∫ x2

a

· · ·
∫ xn−2

a

γ(t− 1)(xn−1 − a)(t−n)dxn−1dxn−1 · · ·dx1

= (b− a)(t−1).

To show that inequality (1) holds we define the following quantities,

F (t) =
∫ b

a

[f(x)]tdx, G(t) =

[∫ b

a

f(x)dx

]t

, GI(t) =
[

G(1)
b− a

]t

. (4)

We must show that G(t − 1) ≤ F (t). Note that G(t − 1) = GI(t)
(b−a)t

G(1) . By Jenson’s inequality GI(t) ≤

F (t)/(b− a). Consequently

G(t− 1) ≤ F (t)
(b− a)t−1

G(1)
(5)

(Inequality (3) ⇒) ≤ F (t).

.
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