AN INEQUALITY FOR THE RATIOS OF THE ARITHMETIC MEANS OF FUNCTIONS WITH A POSITIVE PARAMETER

NASSER TOWGHI AND FENG QI

Abstract

In the article, an integral inequality for the ratios of the arithmetic means of functions with a positive parameter are obtained, and an open problem, posed by B.-N. Guo and F. Qi in "An algebraic inequality, II, RGMIA Research Report Collection 4 (2001), no. 1, Article 8 (Available online at http://rgmia.vu.edu.au/v4n1.html)", is resolved partially.

Contents

1. Introduction 1
2. Lemma 2
3. Proofs of Theorems 3

References 5

1. Introduction

In the papers $[2,3]$, using the Cauchy's mean-value theorem and an inequality between the logarithmic mean and one-parameter mean, Dr. F. Qi and Professor B.-N. Guo proved that, if $b>a>0$ and $\delta>0$ be real numbers, then, for any given

Date: May 28-29, 2001.
2000 Mathematics Subject Classification. Primary 26D15.
Key words and phrases. Integral inequality, arithmetic mean of function, ratio, parameter.
The second author was supported in part by NSF of Henan Province ($\# 004051800$), SF for Pure Research of Natural Sciences of the Education Department of Henan Province (\#1999110004), Doctor Fund of Jiaozuo Institute of Technology, and NNSF (\#10001016) of China.

This paper was typeset using $\mathcal{A} \mathcal{M} \mathcal{S}$-LATEX.
positive number $r>0$, we have

$$
\begin{align*}
\frac{b}{b+\delta}<\left(\frac{b+\delta-a}{b-a}\right. & \left.\cdot \frac{b^{r+1}-a^{r+1}}{(b+\delta)^{r+1}-a^{r+1}}\right)^{1 / r} \\
& =\left(\frac{\frac{1}{b-a} \int_{a}^{b} x^{r} \mathrm{~d} x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} x^{r} \mathrm{~d} x}\right)^{1 / r}<\frac{\left[b^{b} / a^{a}\right]^{1 /(b-a)}}{\left[(b+\delta)^{b+\delta} / a^{a}\right]^{1 /(b+\delta-a)}} \tag{1}
\end{align*}
$$

The lower and upper bounds in (1) are the best possible.
Note that, in [2], a rich literature related to inequality (1) and its history and background are listed.

Meanwhile, they posed an open problem in [2] as follows: Let $b>a>0$ and $\delta>0$ be real numbers, $f(x)$ a positive integrable function, then, for any given positive parameter $r>0$, we have

$$
\begin{align*}
\frac{\sup _{x \in[a, b]} f(x)}{\sup _{x \in[a, b+\delta]} f(x)} & <\left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) \mathrm{d} x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} f^{r}(x) \mathrm{d} x}\right)^{1 / r} \\
& <\exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f(x) \mathrm{d} x-\frac{1}{b+\delta-a} \int_{a}^{b+\delta} \ln f(x) \mathrm{d} x\right) \tag{2}
\end{align*}
$$

The lower and upper bounds in (2) are the best possible.
It is well-known that the arithmetic mean of function $f(t)$ on the closed interval $[r, s]$ is defined as

$$
\phi(r, s)= \begin{cases}\frac{1}{s-r} \int_{r}^{s} f(t) \mathrm{d} t, & r \neq s \tag{3}\\ f(r), & r=s\end{cases}
$$

In this paper, we will resolve the above conjecture partially and obtain the following

Theorem 1. Let $f(x) \not \equiv 0$ be a nonnegative integrable function on the closed interval $[a, b+\delta]$, where $b>a$ and $\delta>0$. Then, for any positive parameter $r>0$, we have

$$
\begin{equation*}
\frac{\sup _{x \in[a, b]} f(x)}{\sup _{x \in[a, b+\delta]} f(x)} \leq\left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) \mathrm{d} x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} f^{r}(x) \mathrm{d} x}\right)^{1 / r} \tag{4}
\end{equation*}
$$

Theorem 2. There exists a positive function $f(x)$ defined on the closed interval $[0,3]$ such that $f^{r}(x)$ and $\ln f(x)$ being integrable on $[0,3]$, and

$$
\begin{equation*}
\left(\frac{\frac{1}{2} \int_{0}^{2} f^{r}(x) \mathrm{d} x}{\frac{1}{3} \int_{0}^{3} f^{r}(x) \mathrm{d} x}\right)^{1 / r}>\exp \left(\frac{\int_{0}^{2} \ln f(x) \mathrm{d} x}{2}-\frac{\int_{0}^{3} \ln f(x) \mathrm{d} x}{3}\right), \quad r>0 \tag{5}
\end{equation*}
$$

Remark 1. It is natural to ask that, what conditions does the function f satisfy, the right hand side of inequality (2) holds? If f is continous, monotonic, or convex, does it hold?

2. Lemma

To prove Theorem 1, the following lemma is necessary.
Lemma 1. Let $r>0$ be a positive real number, let $a_{i}, 1 \leq i \leq n$, be a nonnegative sequence and $\infty>\alpha \geq \max _{1 \leq i \leq n}\left\{a_{i}\right\}>0$ a constant. Define

$$
\begin{equation*}
F_{n}(r)=\frac{\sum_{i=1}^{n} a_{i}^{r}}{\sum_{i=1}^{n} a_{i}^{r}+n \alpha^{r}}, \quad r>0 \tag{6}
\end{equation*}
$$

Then $0 \leq F_{n}(r) \leq \frac{1}{2}$, and the functions $F_{n}(r),\left[F_{n}(r)\right]^{1 / r}$ and $\left[2 F_{n}(r)\right]^{1 / r}$ are decreasing.

Proof. It is trivial to see that $0 \leq F_{n}(r) \leq \frac{1}{2}$.
Direct differentiation gives us

$$
\frac{\mathrm{d} F_{n}(r)}{\mathrm{d} r}=\frac{n \alpha^{r} \sum_{i=1}^{n} a_{i}^{r} \ln \left(\frac{a_{i}}{\alpha}\right)}{\left(\sum_{i=1}^{n} a_{i}^{r}+n \alpha^{r}\right)^{2}}<0,
$$

therefore, $F_{n}(r)$ is a decreasing function of r.
The function $a^{1 / t}$ is a strictly increasing function of t on the closed interval $[0,1]$ for $0<a<1$. Let $r<s$, then

$$
\begin{gathered}
{\left[F_{n}(r)\right]^{1 / r} \geq\left[F_{n}(s)\right]^{1 / r}>\left[F_{n}(s)\right]^{1 / s}} \\
{\left[2 F_{n}(r)\right]^{1 / r} \geq\left[2 F_{n}(s)\right]^{1 / r} \geq\left[2 F_{n}(s)\right]^{1 / s} .}
\end{gathered}
$$

Thus, the functions $\left[F_{n}(r)\right]^{1 / r}$ and $\left[2 F_{n}(r)\right]^{1 / r}$ are decreasing.

3. Proofs of Theorems

In this section, we will prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Assume that f is integrable in the sense of Riemann. Taking a partition $P_{1}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of the closed interval $[a, b]$ with $x_{i}=a+\frac{i(b-a)}{n}$ for $0 \leq i \leq n$ and a partition $P_{2}=\left(x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{2 n}\right)$ of the closed interval $[a, b+\delta]$ with $x_{j}=b+\frac{(j-n) \delta}{n}$ for $n+1 \leq j \leq 2 n$, by definition of Riemann integral (see [1]), we have

$$
\begin{equation*}
\int_{a}^{b} f^{r}(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f^{r}\left(x_{i}\right) \tag{7}
\end{equation*}
$$

AN INEQUALITY FOR THE RATIOS OF THE ARITHMETIC MEANS OF FUNCTIONS 4

$$
\begin{equation*}
\int_{a}^{b+\delta} f^{r}(x) \mathrm{d} x=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n} \sum_{i=1}^{n} f^{r}\left(x_{i}\right)+\frac{\delta}{n} \sum_{j=n+1}^{2 n} f^{r}\left(x_{j}\right)\right) \tag{8}
\end{equation*}
$$

Let $\alpha=\sup _{x \in[a, b+\delta]} f(x)$ and $a_{i}=f\left(x_{i}\right)$ for $1 \leq i \leq n$. From formulae (7) and (8) and using the notations of Lemma 1 , it follows that

$$
\begin{aligned}
& \left(\frac{\int_{a}^{b} f^{r}(x) \mathrm{d} x}{b-a} / \frac{\int_{a}^{b+\delta} f^{r}(x) \mathrm{d} x}{b+\delta-a}\right)^{1 / r} \\
& =\left(\frac{\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f^{r}\left(x_{i}\right)}{\lim _{n \rightarrow \infty}\left[\frac{b-a}{n(b+\delta-a)} \sum_{i=1}^{n} f^{r}\left(x_{i}\right)+\frac{\delta}{n(b+\delta-a)} \sum_{j=n+1}^{2 n} f^{r}\left(x_{j}\right)\right]}\right)^{1 / r} \\
& =\left(\lim _{n \rightarrow \infty} \frac{\frac{1}{n} \sum_{i=1}^{n} f^{r}\left(x_{i}\right)}{\frac{b-a}{n(b+\delta-a)} \sum_{i=1}^{n} f^{r}\left(x_{i}\right)+\frac{\delta}{n(b+\delta-a)} \sum_{j=n+1}^{2 n} f^{r}\left(x_{j}\right)}\right)^{1 / r} \\
& =\left(\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} f^{r}\left(x_{i}\right)}{\frac{b-a}{b+\delta-a} \sum_{i=1}^{n} f^{r}\left(x_{i}\right)+\frac{\delta}{b+\delta-a} \sum_{j=n+1}^{2 n} f^{r}\left(x_{j}\right)}\right)^{1 / r} \\
& \geq\left(\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} f^{r}\left(x_{i}\right)}{\sum_{i=1}^{n} f^{r}\left(x_{i}\right)+\sum_{j=n+1}^{2 n} f^{r}\left(x_{j}\right)}\right)^{1 / r} \\
& \geq\left(\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} f^{r}\left(x_{i}\right)}{\sum_{i=1}^{n} f^{r}\left(x_{i}\right)+n \alpha^{r}}\right)^{1 / r} \\
& =\left(\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} a_{i}^{r}}{\sum_{i=1}^{n} a_{i}^{r}+n \alpha^{r}}\right)^{1 / r} \\
& =\lim _{n \rightarrow \infty}\left(\frac{\sum_{i=1}^{n} a_{i}^{r}}{\sum_{i=1}^{n} a_{i}^{r}+n \alpha^{r}}\right)^{1 / r} \\
& =\lim _{n \rightarrow \infty}\left[F_{n}(r)\right]^{1 / r} \quad\left(\text { by definition of } F_{n}(r)\right) \\
& \geq \lim _{n \rightarrow \infty} \lim _{r \rightarrow \infty}\left[F_{n}(r)\right]^{1 / r} \quad\left(\text { since }\left[F_{n}(r)\right]^{1 / r}\right. \text { is strictly decreasing) } \\
& =\lim _{n \rightarrow \infty} \frac{\max _{1 \leq i \leq n}\left\{a_{i}\right\}}{\alpha} \quad \text { (by the L'Hospital rule) } \\
& =\frac{\sup _{x \in[a, b]} f(x)}{\sup _{x \in[a, b+\delta]} f(x)} .
\end{aligned}
$$

The proof of Theorem 1 is complete.
Proof of Theorem 2. Define

$$
f(x)= \begin{cases}\varepsilon, & x \in[0,1) \tag{9}\\ 1, & x \in[1,2) \\ \varepsilon^{\beta}, & x \in[2,3]\end{cases}
$$

where $\varepsilon>0$ and β is a given constant. A calculation shows that

$$
\begin{gathered}
\left(\frac{\frac{1}{2} \int_{0}^{2} f^{r}(x) \mathrm{d} x}{\frac{1}{3} \int_{0}^{3} f^{r}(x) \mathrm{d} x}\right)^{1 / r}=\left(\frac{3\left(1+\varepsilon^{r}\right)}{2\left[1+\varepsilon^{r}+\varepsilon^{\beta r}\right]}\right)^{1 / r}, \\
\exp \left(\frac{\int_{0}^{2} \ln f(x) \mathrm{d} x}{2}-\frac{\int_{0}^{3} \ln f(x) \mathrm{d} x}{3}\right)=\varepsilon^{\frac{1-2 \beta}{6}}, \\
\frac{\mathrm{~d} h_{\varepsilon}(r)}{\mathrm{d} r} \triangleq \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\frac{1+\varepsilon^{r}}{1+\varepsilon^{r}+\varepsilon^{\beta r}}\right)=\frac{\varepsilon^{(1+\beta) r} \ln \varepsilon}{\left[1+\varepsilon^{r}+\varepsilon^{\beta r}\right]^{2}} \triangleq g_{\varepsilon}(r) .
\end{gathered}
$$

If $0<\varepsilon<1$, the function $g_{\varepsilon}(r)<0$, and $h_{\varepsilon}(r)$ is decreasing with $r>0$, then $h_{\varepsilon}(r)>\lim _{r \rightarrow \infty} h_{\varepsilon}(r)=1$. If $\varepsilon>1$, the function $g_{\varepsilon}(r)>0$, and $h_{\varepsilon}(r)$ is increasing with $r>0$, then $h_{\varepsilon}(r)>\lim _{r \rightarrow 0} h_{\varepsilon}(r)=\frac{2}{3}$. Therefore, for $0<\varepsilon<1$ and $\beta<\frac{1}{2}$, or for $\varepsilon>1$ and $\beta>\frac{1}{2}$, we have

$$
\left(\frac{3\left(1+\varepsilon^{r}\right)}{2\left[1+\varepsilon^{r}+\varepsilon^{\beta r}\right]}\right)^{1 / r}>1>\varepsilon^{\frac{1-2 \beta}{6}}, \quad r>0 .
$$

The proof of Theorem 2 is complete.

References

[1] R. Beals, Advanced Mathematical Analysis, Graduate Texts in Mathematics 12, Springer-Verlag, New York•Heidelberg•Berlin, 1973. Reprinted in China by World Publishing Corporation, Beijing, China.
[2] B.-N. Guo and F. Qi, An algebraic inequality, II, RGMIA Res. Rep. Coll. 4 (2001), no. 1, Article 8. Available online at http://rgmia.vu.edu.au/v4n1.html.
[3] F. Qi, An algebraic inequality, J. Inequal. Pure Appl. Math. 2 (2001), no. 1, Article 13. Available online at http://jipam.vu.edu.au/v2n1/006_00.html. RGMIA Res. Rep. Coll. 2 (1999), no. 1, Article 8, 81-83. Available online at http://rgmia.vu.edu.au/v2n1.html.
(Towghi) Raytheon System Company, 180 Hartwell Road, Mail Stop S3FG4, Bedford, MA 01730, USA

E-mail address: Nasser_M_Towghi@res.raytheon.com
(Qi) Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, The People's Republic of China

E-mail address: qifeng@jzit.edu.cn
$U R L:$ http://rgmia.vu.edu.au/qi.html

