
APPROXIMATE MULTIDIMENSIONAL INTEGRATION
THROUGH DIMENSION REDUCTION VIA THE OSTROWSKI

FUNCTIONAL

P. CERONE

Abstract. An iterative approach is used to represent multidimensional inte-
grals in terms of lower dimensional integrals and function evaluations. The

procedure is quite general utilising one dimensional identities as the seed or

generator to procure multidimensional identities. Bounds are obtained from
the identities.

1. Introduction

We firstly review the Ostrowski type results obtained involving one dimensional
integrals.

For f : [a, b] → R we define the Ostrowski functional by

(1.1) S (f ; c, x, d) := f (x)−M (f ; c, d) ,

where

(1.2) M (f ; c, d) :=
1

d− c

∫ d

c

f (u) du, the integral mean.

We note that

(1.3) (b− a) S

(
f ; a,

a + b

2
, b

)
= (b− a) f

(
a + b

2

)
−
∫ b

a

f (u) du,

recapturing the midpoint rule for the evaluation of the integrals. With this in
mind, the most common task is to obtain bounds on the above functionals. This
task is perhaps best accomplished from an identity involving the functionals. The
following identity may be easily shown to hold, for f of bounded variation, by an
integration by parts argument of the Riemann-Stieltjes integrals and so

(1.4) S (f ; c, x, d) =
∫ d

c

p (x, t, c, d) df (t) , p (x, t, c, d) =


t− c

d− c
, t ∈ [c, x]

t− d

d− c
, t ∈ (x, d].

Further, if f (t) is assumed to be absolutely continuous for t over its respective
interval, then df (t) = f ′ (t) dt and the Riemann-Stieltjes integrals in (1.4) is equiv-
alent to a Riemann integral. In this instance the corresponding identity to (1.4) is
known as Montgomery’s identity (see [6]).
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The following theorem may be proved using the Montgomery identity (see Fink
[22] and Dragomir and Wang [19] – [21]).

Theorem 1. Let f : [a, b] → R be absolutely continuous on [a, b]. Then for all
x ∈ [a, b], we have:

(1.5) |S (f ; a, x, b)|

(1.6)

≤



1
4

+

(
x− a+b

2

b− a

)2
 (b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(p+1)
1
p

[(
x− a

b− a

)p+1

+
(

b− x

b− a

)p+1
]

(b− a)
1
p ‖f ′‖q if f ′ ∈ Lq [a, b] ,

1
p + 1

q = 1, p > 1;[
1
2

+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]
‖f ′‖1 ;

where S (f ; a, x, b) is as given by (1.1), ‖·‖r (r ∈ [1,∞]) are the usual Lebesque
norms on Lr [a, b], namely,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)|

and

‖g‖r :=

(∫ b

a

|g (t)|r dt

) 1
r

, r ∈ [1,∞).

The constants 1
4 , 1

(p+1)
1
p

and 1
2 respectively are sharp in the sense that they cannot

be replaced by a smaller constant.

Ostrowski [26] proved the first inequality in (1.5) in 1938, using a different argu-
ment and hence the justification for the naming of S (f ; a, x, b). Fink [22] also ob-
tained generalisations of the above results as did Anastassiou [1]. See also Dragomir
and Rassias [18], a book devoted to Ostrowski inequalities.

If one drops the condition of absolute continuity and assumes that f is Hölder
continuous, then one may state the result (see [17]):

Theorem 2. Let f : [a, b] → R be of r −H−Hölder type, that is,

|f (x)− f (y)| ≤ H |x− y|r , for all x, y ∈ [a, b] ,

where r ∈ (0, 1] and H > 0 are fixed. Then, for all x ∈ [a, b], we have the inequality:

(1.7) |S (f ; a, x, b)| ≤ H

r + 1

[(
b− x

b− a

)r+1

+
(

x− a

b− a

)r+1
]

(b− a)r
,

where S (f ; a, x, b) is as given by (1.1).
The constant 1

r+1 is also sharp in the above sense.

Note that if r = 1, that is f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)
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(see [13])

(1.8) |S (f ; a, x, b)| ≤

1
4

+

(
x− a+b

2

b− a

)2
 (b− a) L.

Here the constant 1
4 is also best.

Moreover, if one drops the condition of continuity of the function, and assumes
that it is of bounded variation, then the following result may be stated (see [11]).

Theorem 3. Assume that f : [a, b] → R is of bounded variation and denote by∨b
a (f) its total variation. Then

(1.9) |S (f ; a, x, b)| ≤

[
1
2

+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f)

for all x ∈ [a, b] .
The constant 1

2 is the best possible.

If we assume more about f , that is, f is monotonically increasing, then the
inequality (1.9) may be improved in the following manner [12].

Theorem 4. Let f : [a, b] → R be monotonic nondecreasing. Then for all x ∈ [a, b],
we have the inequalities:

|S (f ; a, x, b)|(1.10)

≤ 1
b− a

{
[2x− (a + b)] f (x) +

∫ b

a

sgn (t− x) f (t) dt

}

≤ 1
b− a

{(x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]}

≤

[
1
2

+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[f (b)− f (a)] ,

where S (f ; a, x, b) is as given by (1.1).
All the inequalities in (1.10) are sharp and the constant 1

2 is the best possible.

The interested reader is encouraged to see [8] for an extensive treatment of the
Ostrowski (interior point) rule and its applications to numerical quadrature. Also,
for other recent results including Ostrowski type inequalities for n−time differen-
tiable functions, visit the RGMIA website at http://rgmia.vu.edu.au/database.html.

It is the aim of the current paper to extend the above results to multidimensional
integrals and to provide explicit bounds. We now outline some of the existing results
in this area.

In 1975, G.N. Milovanović generalized the first inequality in Theorem 1 due to
Ostrowski [26], to the case where f is a function of several variables.

Following [24], let D = {(x1, . . . , xm) |ai < xi < bi (i = 1, . . . ,m)} and let D̄ be
the closure of D, then we have the following generalisation of Theorem 1.
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Theorem 5. Let f : Rm → R be a differentiable function defined on D̄ and let∣∣∣ ∂f
∂x1

∣∣∣ ≤ Mi (Mi > 0; i = 1, . . . ,m) in D. Then, for every X = (x1, . . . , xm) ∈ D̄,∣∣∣∣∣∣∣∣f (X)− 1
m∏

i=1

(bi − ai)

∫ b1

a1

· · ·
∫ bm

am

f (y1, . . . , ym) dy1 · · · dym

∣∣∣∣∣∣∣∣(1.11)

≤
m∑

i=1

[
1
4

+

(
xi − ai+bi

2

)2
(bi − ai)

2

]
(bi − ai) Mi.

The following weighted version can also be found in [24].

Theorem 6. Let f : Rm → R be a differentiable function defined on

D = {(x1, ..., xm) |ai ≤ xi ≤ bi (i = 1, ...,m)}

and let
∣∣∣ ∂f
∂xi

∣∣∣ ≤ Mi (Mi > 0, i = 1, ...,m) in D. Furthermore, let function x 7−→
p (x) be integrable and p (x) > 0 for every x ∈ D. Then for every x ∈ D, we have
the inequality:

(1.12)
∣∣∣∣f (x)−

∫
D

p (y) f (y) dy∫
D

p (y) dy

∣∣∣∣ ≤
m∑

i=1

Mi

∫
D

p (y) |xi − yi| dy∫
D

p (y) dy
.

The following result was obtained in [15] for f (·) Hölder continuous.

Theorem 7. Assume that the mapping f : [a1, b1]× ...× [an, bn] → R satisfies the
following r−Hölder type condition:

(H) |f (x̄)− f (ȳ)| ≤
n∑

i=1

Li |xi − yi|ri (Li ≥ 0, i = 1, ..., n)

for all x̄ = (x1, ..., xn) , ȳ = (y1, ..., yn) ∈
[
ā, b̄

]
:= [a1, b1] × ... × [an, bn] , where

ri ∈ (0, 1], i = 1, ..., n. We have then the Ostrowski type inequality:∣∣∣∣∣∣∣∣f (x̄)− 1
n∏

i=1

(bi − ai)

∫ b̄

ā

f (̄t) dt̄

∣∣∣∣∣∣∣∣(1.13)

≤
n∑

i=1

Li

ri + 1

[(
xi − ai

bi − ai

)ri+1

+
(

bi − xi

bi − ai

)ri+1
]

(bi − ai)
ri

≤
n∑

i=1

Li (bi − ai)
ri

ri + 1

for all x̄ ∈
[
ā, b̄

]
, where

∫ b̄

ā
f (̄t) dt̄ =

∫ b1
a1

...
∫ bn

an
f (t1, ..., tn) dtn...dt1.

The following generalisation of Theorem 7 holds (see [15]) which involves a
weighted multidimensional Ostrowski type result for f (·) Hölder continuous.

Theorem 8. Let f, w :
[
ā, b̄

]
→ R such that f is of r−Hölder type with the

constants Li and ri ∈ (0, 1] (i = 1, . . . , n) and where w is integrable on
[
ā, b̄

]
,
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nonnegative on this interval and

∫ b̄

ā

w (x̄) dx̄ :=
∫ b1

a1

...

∫ bn

an

w (x1, . . . , xn) dxn . . . dx1 > 0.

We then have the inequality,

(1.14)

∣∣∣∣∣f (x̄)− 1∫ b̄

ā
w (ȳ) dȳ

∫ b̄

ā

w (ȳ) f (ȳ) dȳ

∣∣∣∣∣ ≤
n∑

i=1

Li

∫ b̄

ā
|xi − yi|ri w (ȳ) dȳ∫ b̄

ā
w (ȳ) dȳ

,

for all x̄ ∈
[
ā, b̄

]
.

The following theorem was proved in [3] by examining the four regions of the
s− t plane.

Theorem 9. Let f : [a, b] × [c, d] → R be so that f (·, ·) is integrable on [a, b] ×
[c, d] , f (x, ·) is integrable on [c, d] for any x ∈ [a, b] and f (·, y) is integrable on
[a, b] for any y ∈ [c, d] , f ′′x,y = ∂2f

∂x∂y exists on (a, b)× (c, d) and is bounded, i.e.,

∥∥f ′′s,t

∥∥
∞ := sup

(x,y)∈(a,b)×(c,d)

∣∣∣∣∂2f (x, y)
∂x∂y

∣∣∣∣ < ∞

then we have the inequality:∣∣∣∣∣
∫ b

a

∫ d

c

f (s, t) dsdt− [(b− a)
∫ d

c

f (x, t) dt + (d− c)
∫ b

a

f (s, y) ds(1.15)

− (d− c) (b− a) f (x, y)]
∣∣∣∣

≤

[
1
4

(b− a)2 +
(

x− a + b

2

)2
][

1
4

(d− c)2 +
(

y − c + d

2

)2
]∥∥f ′′s,t

∥∥
∞

for all (x, y) ∈ [a, b]× [c, d] .

It should be noted that the tightest bound is obtained if x and y are taken at
their respective midpoints and the constants 1

4 are best possible in the sense that
they cannot be replaced by smaller constants.

The following theorem was treated in [14] and it obtains bounds in terms of the
Lp ([a, b]× [c, d]) norms.

Theorem 10. Let f : [a, b]× [c, d] → R be a continuous mapping on [a, b]× [c, d] ,
f ′′x,y = ∂2f

∂x∂y exists on (a, b)× (c, d) and is in Lp [(a, b)× (c, d)], i.e.,

∥∥f ′′s,t

∥∥
p

:=

(∫ b

a

∫ d

c

∣∣∣∣∂2f (x, y)
∂x∂y

∣∣∣∣p dxdy

) 1
p

< ∞, p ≥ 1
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then we have the inequality:∣∣∣∣∣
∫ b

a

∫ d

c

f (s, t) dsdt− [(b− a)
∫ d

c

f (x, t) dt + (d− c)
∫ b

a

f (s, y) ds(1.16)

− (d− c) (b− a) f (x, y)
∣∣∣∣

≤



[
(x− a)q+1 + (b− x)q+1

q + 1

] 1
q
[

(y − c)q+1 + (d− y)q+1

q + 1

] 1
q ∥∥f ′′s,t

∥∥
p
,

f ′′s,t ∈ Lp [(a, b)× (c, d)] ,[
1
2

+

∣∣x− a+b
2

∣∣
b− a

][
1
2

+

∣∣y − c+d
2

∣∣
d− c

]
(b− a) (d− c)

∥∥f ′′s,t

∥∥
1
,

f ′′s,t ∈ L1 [(a, b)× (c, d)] ,

for all (x, y) ∈ [a, b]× [c, d] .

In the current article it is proposed to obtain Ostrowski type results for multi-
dimensional integrals using an iterative approach using the one-dimensional result
as a seed or generator of the multidimensional.

An identity for multidimensional integrals using an iterative approach is pre-
sented in Section 2 and bounds are obtained in terms of the Lp [In] norms where
In = [a1, b1]× · · · × [an, bn]. Perturbed rules are developed in Section 3 while Sec-
tion 4 describes work underway to extend the results to involve higher derivatives,
Trapezoidal type rules and three point rules.

The present work recaptures the results of Theorems 9 and 10 as particular
instances. It allows the approximation of a multidimensional integral in terms of
lower dimensional integrals and function evaluations.

2. Identities from an Iterative Approach

The following theorem uses an iterative approach to extend the Ostrowski func-
tional identity to multidimensions. Firstly, we will require some notation.

Let In =
n∏

i=1

[ai, bi] = [a1, b1] × [a2, b2] × · · · × [an, bn] . Further, let f : In → R

and define operators Fi (f) and λi (f) by

(2.1) Fi (f) := f (t1, . . . , ti−1, xi, ti+1, . . . , tn) where xi ∈ [ai, bi]

and

(2.2) λi (f) :=
1
di

∫ bi

ai

f (t1, . . . , ti−1, ti, ti+1, . . . , tn) dti.

That is, Fi (f) evaluates f (·) in the ith variable at xi ∈ [ai, bi] and λi (f) is the in-
tegral mean of f (·) in the ith variable. Assuming that f (·) is absolutely continuous
in the ith variable ti ∈ [ai, bi] , we have

(2.3) Li (f) :=
1
di

∫ bi

ai

pi (xi, ti)
∂f

∂ti
dti = (Fi − λi) (f) ,



MULTIDIMENSIONAL INTEGRATION THROUGH DIMENSION REDUCTION 7

for i = 1, 2, . . . , n, where

(2.4)
pi (xi, ti)

di
=


ti − ai

bi − ai
, ti ∈ [ai, xi]

ti − bi

bi − ai
, ti ∈ (xi, bi] ,

and di = bi − ai.
Thus (2.3) – (2.4) is ostensibly equivalent to identity (1.4) for

f (t1, . . . , ti−1, ti,ti+1, . . . , tn) absolutely continuous for ti ∈ [ai, bi] .
Theorem 11. Let f : In → R be absolutely continuous in such a manner that the
partial derivatives of order one with respect to every variable exist. Then

En (f)(2.5)

= f (x1, x2, . . . , xn)−
n∑

i=1

1
di

∫ bi

ai

f (x1, x2, . . . , xi−1, ti, xi+1, . . . , xn) dti

+
n∑

i<j

1
didj

∫ bj

aj

∫ bi

ai

f (x1, . . . , xi−1, ti, xi+1, . . . , xj , . . . , xn) dtidtj

− · · · · · · · · · − (−1)n

Dn

∫ bn

an

· · ·
∫ bi

ai

f (t1, . . . , tn) dt1 . . . dtn

where

(2.6) En (f) :=
1

Dn

∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

pi (xi, ti)
∂nf

∂tn . . . ∂t1
dt1 . . . dtn,

(2.7) Dn =
n∏

i=1

di, di = bi − ai,

and pi (xi, ti) is given by (2.4).

Proof. Define Er (f) by

(2.8) Er (f) =

(
r∏

i=1

Li

)
(f)

then from the left identity in (2.3), En (f) is as given by (2.6). Further,

(2.9) Er (f) = Lr (Er−1 (f)) , for r = 1, 2, . . . , n

where E0 (f) = f.
Now, from (2.8),

E1 (f) = L1 (f) = (F1 − λ1) (f) ,

which is the Montgomery identity for t1, x1 ∈ [a1, b1]

E1 (f) =
1
d1

∫ b1

a1

p1 (x1, t1)
∂f

∂t1
(t1, t2, . . . , tn) dt1(2.10)

= f (x1, t2, . . . , tn)− 1
d1

∫ b1

a1

f (t1, t2, . . . , tn) dt1.
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Further,

E2 (f) = L2 (E1 (f)) = (F2 − λ2) (E1 (f))
= F2 (E1 (f))− λ2 (E1 (f))

= f (x1, x2, t3, . . . , tn)− 1
d1

∫ b1

a1

f (t1, x2, t3, . . . , tn) dt1

− 1
d2

∫ b2

a2

[
f (x1, t2, . . . , tn)− 1

d1

∫ b1

a1

f (t1, t2, . . . , tn) dt1

]
dt2

= f (x1, x2, t3, . . . , tn)− 1
d1

∫ b1

a1

f (t1, x2, t3, . . . , tn) dt1

− 1
d2

∫ b2

a2

f (t1, t2, t3, . . . , tn) dt2 +
1

d1d2

∫ b2

a2

∫ b1

a1

f (t1, t2, . . . , tn) dt1dt2

and continuing in this manner until r = n gives the result as stated in (2.5).

Remark 1. The result given by (2.5) may be utilised to approximate the n− di-
mensional integral in terms of lower dimensional integrals and a function evalua-
tion f (x1, x2, . . . , xn) where xi ∈ [bi, ai] , i = 1, 2, . . . , n. Specifically, there are

(
n
0

)
function evaluations,

(
n
1

)
single integral evaluations etc., in each of the axes,

(
n
2

)
double integral evaluations and so on, and, of course,

(
n
n

)
n−dimensional integral

evaluations. This results from the fact that from (2.8) and (2.1) – (2.3)

(2.11) En (f) =

(
n∏

i=1

Li

)
(f) =

(
n∏

i=1

(Fi − λi)

)
(f) .

It will be subsequently demonstrated that the above procedure of utilising a
one-dimensional identity as the seed or generator to recursively obtain a multidi-
mensional identity may be extended to other seed identities.

The following theorem bounds for τn

(
a
∼
, x

∼
, b

∼

)
are obtained where

τn

(
a
∼
, x

∼
, b

∼

)
(2.12)

= f (x1, x2, . . . , xn)−
n∑

i=1

1
di

∫ bi

ai

f (x1, x2, . . . , xi−1, ti, xi+1, . . . , xn) dti

+
n∑

i<j

1
djdi

∫ bj

aj

∫ bi

ai

f (x1, . . . , xi−1, ti, xi+1, . . . , xj−1, tj , xj+1, . . . , xn) dtidtj

− · · · · · · · · · − (−1)n

Dn

∫ bn

an

· · ·
∫ b1

a1

f (t1, . . . , tn) dt1 . . . dtn

and z
∼

= (z1, z2, . . . , zn) .

Theorem 12. Let the conditions of Theorem 11 continue to hold. Then

(2.13)
∣∣∣τn

(
a
∼
, x

∼
, b

∼

)∣∣∣
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(2.14) ≤



n∏
i=1

Pi (1)
∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
∞

,
∂nf

∂tn . . . ∂t1
∈ L∞ [In] ;

(
n∏

i=1

Pi (q)

) 1
q ∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
p

,
∂nf

∂tn . . . ∂t1
∈ Lp [In] ,

p > 1, 1
p + 1

q = 1;
n∏

i=1

θi

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
1

,
∂nf

∂tn . . . ∂t1
∈ L1 [In] ,

where τn

(
a
∼
, x

∼
, b

∼

)
is as defined by (2.12),

(2.15) (q + 1) Pi (q) = (xi − ai)
q+1 + (bi − xi)

q+1
,

(2.16) θi =
bi − ai

2
+
∣∣∣∣xi −

ai + bi

2

∣∣∣∣ .
Proof. From (2.6) and (2.12)∣∣∣τn

(
a
∼
, x

∼
, b

∼

)∣∣∣(2.17)

= |En (f)| ≤ 1
Dn

∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

pi (xi, ti)
∂nf

∂tn . . . ∂t1

∣∣∣∣∣ dt1 . . . dtn.

Now, for ∂nf
∂tn...∂t1

∈ L∞ [In], then

Dn |En (f)|(2.18)

≤
∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

pi (xi, ti)

∣∣∣∣∣ dt1 . . . dtn

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
∞

=
n∏

i=1

∫ bi

ai

|pi (xi, ti)| dti

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
∞

=
n∏

i=1

[∫ xi

ai

(ti − ai) dti +
∫ bi

xi

(bi − ti) dti

]∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
∞

=
1
2n

n∏
i=1

[
(xi − ai)

2 + (bi − xi)
2
] ∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
∞

.

Hence combining (2.17) and (2.18) gives the first inequality of (2.13).
Further, using the Hölder inequality we have for ∂nf

∂tn...∂t1
∈ Lp [In], 1 ≤ p < ∞,

Dn |En (f)| ≤

(∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

pi (xi, ti)

∣∣∣∣∣
q

dt1 . . . dtn

) 1
q ∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
p

,
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where ∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

pi (xi, ti)

∣∣∣∣∣
q

dt1 . . . dtn

=
n∏

i=1

∫ bi

ai

|pi (xi, ti)|q dti

=
n∏

i=1

[∫ xi

ai

(ti − ai)
q
dti +

∫ bi

xi

(bi − ti)
q
dti

]

=
1

(q + 1)n

n∏
i=1

[
(xi − ai)

q+1 + (bi − xi)
q+1
]

and so the second inequality is valid on noting (2.15).
The final inequality in (2.13) is obtained from (2.17) for ∂nf

∂tn...∂t1
∈ L1 [In], giving

Dn |En (f)| ≤ sup
t
∼
∈

[
a
∼

, b
∼

]
∣∣∣∣∣

n∏
i=1

pi (xi, ti)

∣∣∣∣∣
∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣ ∂nf

∂tn . . . ∂t1

∣∣∣∣ dt1 . . . dtn

=
n∏

i=1

sup
ti∈[ai,bi]

|pi (xi, ti)|
∥∥∥∥ ∂fn

∂tn . . . ∂t1

∥∥∥∥
1

=
n∏

i=1

max {xi − ai, bi − xi}
∥∥∥∥ ∂fn

∂tn . . . ∂t1

∥∥∥∥
1

.

On noting that max {X, Y } = X+Y
2 + |X−Y |

2 readily produces the stated result.

Remark 2. The expression for τn

(
a
∼
, x

∼
, b

∼

)
may be written in a less explicit form

which is perhaps more appealing. Namely,

(2.19) τn

(
a
∼
, x

∼
, b

∼

)
= f (x1, x2, . . . , xn) +

n−1∑
k=1

(−1)k
∑

k

Mk + (−1)nMn,

where Mk represents the integral means in k variables with the remainder being

evaluated at their respective interior point and
∑

k Mk is a sum over all
(

n
k

)
,

k−dimensional integral means. Here

Mn =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

f (t1, . . . , tn) dt1 . . . dtn

and∑
1

M1 =
1
d1

∫ b1

a1

f (t1, x2, . . . , xn) dt1 +
1
d2

∫ b2

a2

f (x1, t2, x3, . . . , xn) dt2

+ · · ·+ 1
dn

∫ bn

an

f (x1, x2, . . . , xn−1, tn) dtn.
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Corollary 1. Let the conditions of Theorem 11 hold and let αi = ai+bi

2 , then∣∣∣τn

(
a
∼
, α

∼
, b

∼

)∣∣∣(2.20)

≤



Dn

2n

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
∞

,
∂nf

∂tn . . . ∂t1
∈ L∞ [In] ;

D
1+ 1

q
n

2n (q + 1)
n
q

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
p

,
∂nf

∂tn . . . ∂t1
∈ Lp [In] ,

p > 1, 1
p + 1

q = 1;
Dn

2n

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
1

,
∂nf

∂tn . . . ∂t1
∈ L1 [In] ,

where α
∼

=
a
∼

+b
∼

2 , τn

(
a
∼
, x

∼
, b

∼

)
is as given by (2.12) or (2.19) and

Dn =
n∏

i=1

di =
n∏

i=1

(bi − ai) .

Proof. Taking xi = ai+bi

2 , that is x
∼

= α
∼

in Theorem 12 produces the tightest bound

from (2.13) as given by (2.20).

Remark 3. We note that taking n = 1 in (2.13) produces the results (1.5) which
were obtained by Dragomir and Wang [19] – [21]. If n = 2 is taken, then the first in-
equality in (2.13) reproduces the results of Barnett and Dragomir [3] as represented
in Theorem 9, equation (1.15). The results (1.16) are obtained from the remainder
of the inequalities in (2.13). Double integral Ostrowski type results have also been
examined in [16].

3. Perturbed Rules from the Chebychev Functional

For g, h : [a, b] → R the following T (g, h) is well known as the Chebychev
functional. Namely,

(3.1) T (g, h) = M (gh)−M (g)M (h) ,

where M (g) = 1
b−a

∫ b

a
g (t) dt is the integral mean (see [4], [5] and [7]).

The Chebychev functional (3.1) is known to satisfy a number of identities in-
cluding

(3.2) T (g, h) =
1

b− a

∫ b

a

h (t) [g (t)−M (g)] dt.

Further, a number of sharp bounds for |T (g, h)| exist, under various assumptions
about g and h, including (see [7] for example, or [25, p. 296])
(3.3)

|T (g, h)| ≤



[T (g, g)]
1
2 [T (h, h)]

1
2 , g, h ∈ L2 [a, b]

Au −Al

2
[T (h, h)]

1
2 , Al ≤ g (t) ≤ Au, t ∈ [a, b]

(
Au −Al

2

)(
Bu −Bl

2

)
, Bl ≤ h (t) ≤ Bu, t ∈ [a, b] (Grüss).
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It will be demonstrated how (3.1) may be used to obtain perturbed results for
which (3.2) will provide an identity with which to obtain bounds.

The multidimensional versions of the above results hold since they have been
shown to hold for a general linear functional by Andrica and Badea [2] (see also
[25, Chapters IX and X, p. 239 – 210]).

The following theorem gives perturbed results using a multidimensional version
of (3.3).

Theorem 13. Let the conditions of Theorem 12 hold. Then

(3.4)

∣∣∣∣∣τn

(
a
∼
, x

∼
, b

∼

)
−

n∏
i=1

(
xi −

ai + bi

2

)
· 1
Dn

(
n∏

i=1

∆i

)
(f)

∣∣∣∣∣
(3.5)

≤



κn

[
1

Dn

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥2

2

− 1
D2

n

[(
n∏

i=1

∆i

)
(f)
]2] 1

2

,
∂nf

∂tn . . . ∂t1
∈ L2 [In] ;

κn

BU

(
a
∼
, b

∼

)
−BL

(
a
∼
, b

∼

)
2

 ,

BL

(
a
∼
, b

∼

)
≤ ∂nf

∂tn . . . ∂t1
≤ BU

(
a
∼
, b

∼

)
, t

∼
∈ In

AU

(
a
∼
, x

∼
, b

∼

)
−AL

(
a
∼
, x

∼
, b

∼

)
2

BU

(
a
∼
, b

∼

)
−BL

(
a
∼
, b

∼

)
2

 ,

AL

(
a
∼
, x

∼
, b

∼

)
≤ Pn

(
x
∼
, t

∼

)
≤ AU

(
a
∼
, x

∼
, b

∼

)
, t

∼
∈ In,

where,

τn

(
a
∼
, x

∼
, b

∼

)
is as defined by (2.12) or (2.19),

Dn is as given by (2.7),

Pn

(
x
∼
, t

∼

)
=

n∏
i=1

pi (xi, ti) , pi (xi, ti) is as defined by (2.4)(3.6)

and

(3.7) ∆i (f) = f (t1, . . . , ti−1, bi, ti+1, . . . , tn)− f (t1, . . . , ti−1, ai, ti+1, . . . , tn) .

Proof. From (2.6) and (2.12) or (2.19)

En (f) =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

pi (xi, ti)
∂nf

∂tn . . . ∂t1
dt1 . . . dtn(3.8)

= τn

(
a
∼
, x

∼
, b

∼

)
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and we require to evaluate

Gn : =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

pi (xi, ti) dt1 . . . dtn(3.9)

=
1

Dn

∫ bn

an

· · ·
∫ b1

a1

Pn

(
x
∼
, t

∼

)
dt1 . . . dtn

where (3.6) has been used and,

(3.10) Hn :=
1

Dn

∫ bn

an

· · ·
∫ b1

a1

∂nf

∂tn . . . ∂t1
dt1 . . . dtn

in order to calculate

(3.11)
∣∣∣τn

(
a
∼
, x

∼
, b

∼

)
−GnHn

∣∣∣ .
Here we associate M (g) and Hn with M (h) in (3.1) – (3.3).

Now, utilising (2.4),

Gn =
1

Dn

n∏
i=1

∫ bi

ai

pi (xi, ti) dti =
1

Dn

n∏
i=1

[∫ xi

ai

(ti − ai) dti +
∫ bi

xi

(bi − ti) dti

]

=
1

Dn

n∏
i=1

A2
i −B2

i

2
,

where Ai = xi − ai and Bi = bi − xi.
Hence

Gn =
1

Dn

n∏
i=1

(Ai + Bi) (Ai −Bi)
2

=
1

Dn

n∏
i=1

di

(
xi −

ai + bi

2

)
(3.12)

=
n∏

i=1

(
xi −

ai + bi

2

)
.

Further, explicit evaluation of the integrals in (3.10) gives

(3.13) Hn =
1

Dn

(
n∏

i=1

∆i

)
(f) ,

where ∆i (t) is as defined by (3.7). Substitution of (3.12) and (3.13) into (3.11)
gives the left hand side of (3.4).

Now for the right hand side.
We require to calculate

(3.14) κ2
n = G(2)

n −G2
n,
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where

G(2)
n =

1
Dn

∫ bn

an

· · ·
∫ b1

a1

(
n∏

i=1

pi (xi, ti)

)2

dt1 . . . dtn

=
1

Dn

n∏
i=1

∫ bi

ai

p2
i (xi, ti) dti

=
1

Dn

n∏
i=1

[∫ xi

ai

(ti − ai)
2
dti +

∫ bi

xi

(ti − bi)
2
dti

]

=
1

3Dn

n∏
i=1

[
A3

i + B3
i

]
.

Now X3 + Y 3 = (X + Y )
[(

X+Y
2

)2
+ 3

(
X−Y

2

)2]
and so

G(2)
n =

1
3Dn

n∏
i=1

di

[(
di

2

)2

+ 3
(

xi −
ai + bi

2

)2
]

(3.15)

=
1
3

n∏
i=1

[(
di

2

)2

+ 3
(

xi −
ai + bi

2

)2
]

.

Substituting (3.15) and (3.12) into (3.14) gives the first inequality in (3.4) on noting
that[

1
Dn

∫ bn

an

· · ·
∫ b1

a1

(
∂nf

∂tn . . . ∂t1

)2

dt1 . . . dtn −H2
n

] 1
2

=

[
1

Dn

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥2

2

−H2
n

] 1
2

and using (3.13).
Now for the second inequality we note that (see [10], for example)

0 ≤

{
1

Dn

∫ bn

an

· · ·
∫ b1

a1

(
∂nf

∂tn . . . ∂t1

)2

dt1 . . . dtn

−

[
1

Dn

∫ bn

an

· · ·
∫ b1

a1

∂nf

∂tn . . . ∂t1
dt1 . . . dtn

]2


1
2

≤
BU

(
a
∼
, b

∼

)
−BL

(
a
∼
, b

∼

)
2

, where BL

(
a
∼
, b

∼

)
≤ ∂nf

∂tn . . . ∂t1
≤ BU

(
a
∼
, b

∼

)
.

The second inequality is thus coarser than the first, but may be more useful in
certain implementations.

The final inequality is obtained on noting that

0 ≤ κn ≤
AU

(
a
∼
, x

∼
, b

∼

)
−AL

(
a
∼
, x

∼
, b

∼

)
2

,

AL

(
a
∼
, x

∼
, b

∼

)
≤ Pn

(
x
∼
, t

∼

)
≤ AU

(
a
∼
, x

∼
, b

∼

)
, t

∼
∈ In,

where κn is as defined by (3.14). The inequalities in (3.4) are in increasing coarse-
ness.
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Remark 4. It is well known that (see [25, p. 296]) for φ ≤ h (t) ≤ Φ:

0 ≤ [T (h, h)]
1
2 ≤

[
1

b− a
‖h‖22 −M

2 (h)
] 1

2

≤ (Φ−M (h)) (M (h)− φ) ≤
(

Φ− φ

2

)2

.

The second inequality may not be as useful since if h were the kernel, then we would
be able to evaluate [T (h, h)]

1
2 explicitly. If it were the derivative of the integrand,

then M (h) would be the difference operator for example, (3.13). Thus a bound
between the first and second in (3.4) could be

κn

(
BU

(
a
∼
, b

∼

)
−Hn

)(
Hn −BL

(
a
∼
, b

∼

))
,

where Hn is as given by (3.10) or explicitly as (3.13).

4. Concluding Remarks and Discussion

The current paper has demonstrated how to obtain identities and subsequent
bounds for multidimensional integrals using one dimensional Ostrowski results as
the generator or seed. This is accomplished in an iterative manner.

Many other seed or generator results may be utilised to extend the problems to
multidimensional formulations.

The generalised trapezoidal rule

(4.1) T (f ; c, x, d) :=
(

x− c

d− c

)
f (c) +

(
d− x

d− c

)
f (d)−M (f ; c, d)

satisfies the identity

(4.2) T (f ; c, x, d) =
∫ d

c

q (x, t, c, d) df (t) , q (x, t, c, d) =
t− x

d− c
, x, t ∈ [c, d] ,

as shown in [5].
Further, define the three point functional T (f ; a, α, x, β, b) which involves the

difference between the integral mean and, a weighted combination of a function
evaluated at the end points and an interior point. Namely, for a ≤ α < x < β ≤ b,

T (f ; a, α, x, β, b) : =
(

α− a

b− a

)
f (a) +

(
β − α

b− a

)
f (x)(4.3)

+
(

b− β

b− a

)
f (b)−M (f ; a, b) .

Cerone and Dragomir [6] showed that for f of bounded variation, the identity

(4.4) T (f ; a, α, x, β, b) =
∫ b

a

r (x, t) df (t) , r (x, t) =


t− α

b− a
, t ∈ [a, x]

t− β

b− a
, t ∈ (x, b]

is valid. They effectively demonstrated that the Ostrowski functional and the trape-
zoid functional could be recaptured as particular instances. Specifically, from (4.3)
and (4.4),

S (f ; a, x, b) = T (f ; a, a, x, b, b)
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and
T (f ; a, x, b) = T (f ; a, x, x, x, b) ,

where S (f ; a, x, b) and T (f ; a, x, b) are defined by (1.1) and (4.1) and satisfy iden-
tities (1.3) and (4.2) respectively.

It should be noted at this stage that

(b− a) T

(
f ; a,

5a + b

6
,
a + b

2
,
a + 5b

6
, b

)
=

b− a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
−
∫ b

a

f (x) dx

is the Simpson functional.
Further, if f (t) is assumed to be absolutely continuous for t over its respective

interval, then df (t) = f ′ (t) dt and the Riemann-Stieltjes integrals in (4.2) and (4.4)
are equivalent to Riemann integrals.

Work is proceeding to utilise the generalised trapezoidal rule and three point
rules defined by (4.1) – (4.4) as generators for multidimensional integrals.

The work may also be extended to allow the error to be expressed in terms of
the higher derivatives. Thus, for example, the identity of Cerone et al. [9]

(−1)m
∫ b

a

Pm (x, t) f (m) (t) dt(4.5)

=
∫ b

a

f (t) dt−
n∑

k=1

[
(b− x)k + (−1)k−1 (x− a)k

] f (k−1) (x)
k!

,

where

(4.6) Pm (x, t) =


(t− a)m

m!
, t ∈ [a, x]

(t− b)m

m!
, t ∈ (x, b]

may be used as a generator for n−dimensional integrals. Hanna et al. [23] utilise
(4.5) – (4.6) to obtain approximations to double integrals in terms of single inte-
grals and, function and lower order derivative evaluations at interior points. Double
integrals have also been examined in [16]. An operatorial manner is being investi-
gated to obtain an m× n recursive formulation of the problem for n−dimensional
integrals involving the m−derivative in each direction.

Finally, we are not restricted to using the same identity in each of the directions
but may use different ones as long as one is able to justify this.
Acknowledgement 1. The work for this paper was done while the author was on
sabbatical at La Trobe University, Bendigo.
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