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Abstract

In this paper, one studies the concavity of some functions that can be written

as powers of linear combinations of powers of some concave functions.

The necessary conditions (without any differentiability hypotheses on the functions)

and the sufficient conditions (with differentiability hypotheses on the functions) for the

optimal solutions of the optimization problems have, among other hypotheses, that of

concavity (or generalized concavity) of the functions that define the problem.

In this paper, one studies the concavity of a function by showing that its values are

the optimum values of a convex optimization problem. The studied functions are those

that can be written as powers of linear combinations of powers of some concave functions.

Let r > 1 be a real number. Obviously, the function ϕ :]0,+∞[→ R defined, for any

t ∈]0,+∞[, by ϕ(t) = t1/r is concave and increasing. From this, we deduce that, if D ⊆ Rn

is a nonempty convex set and f : D →]0,+∞[ is a concave function, then the function

α : D → R defined, for any x ∈ D, by

α(x) = (f(x))1/r

is concave. Now, from the properties of the concave functions, we obtain that, if a1, . . . , ap

are real positive numbers, D ⊆ Rn is a nonempty convex set and f1, . . . , fp : D →]0,+∞[

are concave functions, then the function β : D → R defined, for any x ∈ D, by

β(x) = a1(f1(x))
1/r + . . .+ ap(fp(x))

1/r
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is concave.

Below, we want to answer to the following question:

If a1, . . . , ap are p positive real numbers, r > 1 is a real number, D ⊆ Rn is a nonempty

convex set and f1, . . . , fp : D →]0,+∞[ are concave functions, is the function γ : D → R

defined, for any x ∈ D, by:

γ(x) =

(
p∑

i=1

ai(fi(x))
1/r

)r

concave?

The answer is not immediate, because, as shown in the following example, the square

of a positive concave function may not be concave.

Example. Let f :]0,+∞[→]0,+∞[ be the function defined, for each x ∈ R, x > 0,

by f(x) = x2/3. Evidently, the function f is concave on ]0,+∞[. Let’s consider now

the function γ :]0,+∞[→ R defined, for each x > 0, by γ(x) = f 2(x). Since γ′′(x) =

(4/9)x−2/3 > 0, for all x > 0, we deduce that the square of a concave function might not

be a concave function (might be even a convex function, as in this example).

LEMMA 1. Let q ∈]0,+∞[, a = (a1, . . . , ap) ∈]0,+∞[p and b = (b1, . . . , bp) ∈]0,+∞[p.

Then the optimization problem

min a1z1 + . . .+ apzp

subject to

b1(z1)
−q + . . .+ bp(zp)

−q ≤ 1(1)

z1 > 0, i = 1, . . . , p

has an unique optimal solution z0 = (z0
1 , . . . , z

0
p) ∈ Rp given by:

z0
i =

(
bi
ai

) 1
q+1

(
p∑

i=1

(
ai

bi

) q
q+1

) 1
q

, i = 1, . . . , p.

Proof. Let ψ :]0,+∞[p→ R be defined, for each z = (z1, . . . , zp) ∈]0,+∞[p, by:

ψ(z) = b1(z1)
−q + . . .+ bp(zp)

−q − 1.
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Evidently, the function ψ is convex and differentiable on ]0,+∞[p.

Let us suppose that problem (1) has an optimal solution z0 = (z0
1 , . . . , z

0
p). Since the

function ψ satisfies Slater’s constraint qualification [ψ((b1(p+ 1))1/q, . . . , (bp(p+ 1))1/q) <

0], in view of Karush-Kuhn-Tucker necessary optimality theorem [see [4], pp.109-110],

there exists a nonnegative number ν such that:

ai − qνbi(z
0
i )

−q−1 = 0, i ∈ {1, . . . , p},(2)

ν

(
p∑

i=1

(biz
0
i )

−q − 1

)
= 0.(3)

If ν = 0, then from (2) it follows that ai = 0, i ∈ {1, . . . , p} which contradicts a ∈]0,+∞[p.

Hence ν > 0. Then, from (3) we deduce that:

p∑
i=1

bi(z
0
i )

−q = 1.(4)

On the other hand, from (2) it follows that:

z0
i =

(
qνbi
ai

) 1
q+1

, i = 1, . . . , p.(5)

By substitution in (4), this implies that:

1 =

p∑
i=1

(
ai

qνbi

) q
q+1

=

(
1

qν

) q
q+1

p∑
i=1

(
ai

bi

) q
q+1

.

From this it follows that:

ν =
1

q

(
p∑

i=1

(
ai

bi

) q
q+1

) q+1
q

.(6)

Now, by substitution in (5), it implies that:

z0
i =

(
bi
ai

) 1
q+1

(
p∑

i=1

(
ai

bi

) q
q+1

) 1
q

, i = 1, . . . , p.(7)

Therefore, if problem (1) has an optimal solution z0 = (z0
1 , . . . , z

0
p), then it is unique

and it is given by (7).

On the other hand, problem (1) is convex and for z0 = (z0
1 , . . . , z

0
p) given by (7), there

exists a nonnegative number ν given by (6) such that the Karush-Kuhn-Tucker conditions
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(2)-(3) are hold. Then, in view of Karush-Kuhn-Tucker sufficient optimality theorem [see

[4], pp. 93-95], the point z0 is an optimal solution for problem (1).

Using Lemma 1, we can state the following theorem:

THEOREM 1. Let r ∈ R, r > 1 and (a1, . . . , ap) ∈]0,+∞[p. Let D ⊆ Rn be a nonempty

convex set, let f1, . . . , fp : D →]0,+∞[ be concave functions and g : D → R be defined for

each x ∈ D by:

g(x) =

(
p∑

i=1

ai(fi(x))
1/r

)r

.

Then g is a concave function.

Proof. Let q = 1/(r − 1). Then q > 0. Consider the function h : D → R defined for

each x ∈ D by

h(x) = min

{
p∑

i=1

aizifi(z) : (z1, . . . , zp) ∈ Z

}
,(8)

where

Z =

{
(z1, . . . , zp) ∈]0,+∞[p:

p∑
i=1

ai(zi)
−q ≤ 1

}
.

From Lemma 1, since f1, . . . , fp are strictly positive on D, it follows that the minimum

in (8) exists and is finite for each x ∈ D. If, for each z = (z1, . . . , zp) ∈ Z, we define the

function:

hz : D → R by hz(x) =

p∑
i=1

aizifi(x),

then for each x ∈ D, h(x) may also be written as

h(x) = min{hz(x) : (z1, . . . , zp) ∈ Z}.(9)

Evidently, for each (z1, . . . , zp) ∈ Z, the function hz is concave. From this and (9), we

deduce that the function h is also concave.

To complete the proof, we will show that, for each x ∈ D we have h(x) = g(x).

Toward this end, fix x ∈ D and let z(x) = (z1(x), . . . , zp(x)) ∈ Z denote an optimal

solution to problem (8). From Karush-Kuhn-Tucker theorem, it follows that there exists

a nonnegative number ν(x) such that

fi(x)− qν(x)(zi(x))
−q−1 = 0, i ∈ {1, . . . , p}(10)
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(
p∑

i=1

ai

(zi(x))q+1
− 1

)
ν(x) = 0.(11)

If ν(x) = 0, then from (10) it follows that fi(x) = 0 for each i ∈ {1, . . . , p}, which

contradicts the strict positivity of f1, . . . , fp on D. Hence ν(x) > 0. Then, from (11) we

deduce that:
p∑

i=1

ai

(zi(x))q
= 1.(12)

On the other hand, from (10) it follows that:

zi(x) =

(
qν(x)

fi(x)

) 1
q+1

, i ∈ {1, . . . , p}.

By substitution in (12), it implies that:

1 =

p∑
i=1

ai

(
fi(x)

qν(x)

) q
q+1

=

(
1

qν(x)

) q
q+1

p∑
i=1

ai(fi(x))
q

q+1 .

Therefore

ν(x) =
1

q

(
p∑

i=1

ai(fi(x))
q

q+1

) q+1
q

.(13)

Now, from, (12) and (13) we have that

p∑
i=1

aizi(x)fi(x) =

p∑
i=1

aiqν(x)(zi(x))
−q = qν(x)

p∑
i=1

ai

(zi(x))q
= qν(x) =

=

(
p∑

i=1

ai(fi(x))
q

q+1

) q+1
q

hence
p∑

i=1

aizi(x)fi(x) =

(
p∑

i=1

ai(fi(x))
q

q+1

) q+1
q

.(14)

Since (z1(x), . . . , zp(x)) ∈ Z, is an optimal solution of problem (8), we have that the

left-hand-side of equality (14) coincides with h(x). The right-hand-side of equality (14) is

equal with g(x), because (q + 1)/q = r. The proof is complete.

The following remarks show us that, in theorem 1, the exponent r cannot be changed.

Remark 1. Let r ∈ R, r > 1, (r1, . . . , rp) ∈ Rp, with ri > 1, for each i ∈ {1, . . . , p} and

(a1, . . . , ap) ∈]0,+∞[p. Let D ⊆ Rn be a convex nonempty set, f1, . . . , fp : D →]0,+∞[
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be concave functions and g : D → R be defined, for each x ∈ D, by

g(x) =

(
p∑

i=1

ai(fi(x))
1
ri

)r

.

Is g a concave function? Usually, the answer is no. Let r = 2, p = 2, r1 = 4/3, r2 = 2,

a1 = a2 = 1 and f1, f2 :]0,+∞[→ R be the concave functions defined, for each x ∈]0,+∞[,

by f1(x) = f2(x) = x. The function g :]0,+∞[→]0,+∞[ defined, for each x ∈]0,+∞[, by

g(x) = (x3/4 + x1/2)2 = x3/2 + x+ 2x5/4

is not concave, because g′′(x) = (3/4)x−1/2 + (5/8)−3/4 > 0, for each x ∈]0,+∞[. (The

function g is strictly convex).

Remark 2. Let (r1, . . . , rp) ∈ Rp, with ri > 1, for each i ∈ {1, . . . , p} and (a1, . . . , ap) ∈

]0,+∞[p. Let D ⊆ Rn be a nonempty convex set f1, . . . , fp : D →]0,+∞[ be concave

functions and h : D → R be defined, for each x ∈ D, by

h(x) =

(
p∑

i=1

ai(fi(x))
1/ri

) p∑
i=1

ri

.

Is h a concave function? The answer is usually no. Let p = 2, r1 = 2, r2 = 3,

a1 = a2 = 1 and f1, f2 :]0,+∞[→ R be the concave functions defined, for each x ∈]0,+∞[,

by f1(x) = f2(x) = x. The function h :]0,+∞[→ R defined, for each x ∈]0,+∞[, by

h(x) = (x1/2 + x1/3)5

is not concave, because h′′(x) > 0, for each x ∈]0,+∞[. In fact, the function h is strictly

convex.
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