
GENERALISED WEIGHTED TRAPEZOIDAL RULES AND
RELATIONSHIP TO OSTROWSKI RESULTS

P. CERONE AND J. ROUMELIOTIS

Abstract. The generalised weighted trapezoidal rule is investigated which

involves f (n) (t) of bounded variation. If the weight is taken to be identically
unity, then previous results are recaptured. A comparison with weighted Os-

trowski results is made and it is demonstrated that if the weight is symmetric

about the midpoint over the interval [a, x) and (x, b] then the bounds are the
same. In particular, if the weight is unity, then the generalised trapezoidal

and Ostrowski results produce the same bounds.

1. Introduction

K.S.K. Iyengar [9], by means of geometrical consideration, has proved the fol-
lowing theorem.
Theorem 1. Let f be a differentiable function on [a, b] and |f ′ (x)| ≤ M . Then∣∣∣∣∣

∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b))

∣∣∣∣∣(1.1)

≤ M (b− a)2

4
− 1

4M
(f (b)− f (a))2 .

(See also [16, p. 471 - 474] for related results). Further generalisations were also
given by Agarwal and Dragomir [11], and Cerone and Dragomir [13].

In [17], the following generalisation of Theorem 1 is proved analytically.
Theorem 2. Let f (x) be a differentiable function defined on [a, b] and |f ′ (x)| ≤ M
for every x ∈ (a, b) . If p (x) is an integrable function on (a, b) such that

0 < c ≤ p (x) ≤ λc (λ ≥ 1, x ∈ [a, b]) ,

then the following inequality holds∣∣∣∣A (f ; p)− 1
2

(f (a) + f (b))
∣∣∣∣(1.2)

≤ M (b− a)
2

·
(λ + q)

(
1− q2

)
+ 2 (λ− 1) q

2λ (1 + q)− (λ− 1) (1 + q2)
,

where A and q are defined by

A (f ; p) =

∫ b

a
p (x) f (x) dx∫ b

a
p (x) dx

and q =
|f (b)− f (a)|

M (b− a)
.

Cerone and Dragomir [4] also proved the following weighted trapezoidal result.
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Theorem 3. Let f : I ⊆ R → R be a differentiable mapping on I̊ (the interior of
I) and [a, b] ⊂̊I with M = sup

x∈[a,b]

f ′ (x) < ∞, m = inf
x∈[a,b]

f ′ (x) > −∞ be the first

moment of w (·) on [a, b] . If f ′ is integrable on [a, b] , then the following inequality∣∣∣∣∣
∫ b

a

w (x) f (x) dx− ν

2
[f (a) + f (b)]−m

(
a + b

2

)
[b− a− ν]

∣∣∣∣∣(1.3)

≤ ν

2
(b− a) (S −m) ≤ M −m

2
ν (b− a) ,

where S is the slope of the secant on [a, b] .
The well-known Ostrowski inequality is given by the following theorem [17],

Theorem 4. Let f be a differentiable function on [a, b] and let |f ′ (x)| ≤ M on
[a, b] . Then, for every x ∈ [a, b] ,

(1.4)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a)M.

A weighted version of the Ostrowski inequality (1.4) for Hölder mappings has
been given in [6] by Dragomir et al. Other results related to the Ostrowski in-
equality may be viewed in [18], [21] and a book devoted to Ostrowski type results
edited by Dragomir and Rassias [7]. A weighted multidimensional generalisation of
Ostrowski’s inequality was treated by Milovanović [12].

In a recent thorough article Matić, Pečarić and Ujević [11] obtained weighted
n−time differentiable Ostrowski type results in terms of a variety of norms. The
norms, including when f (n) is of bounded variation, Hölder continuous and dif-
ferentiable allowing for f (n+1) ∈ Lp [a, b] in terms of the Lebesgue norms ‖·‖p ,
p ≥ 1.

It is the intention of the current paper to examine bounds for the generalised
weighted trapezoidal functional. Bounds will be provided assuming f (n) (·) to be
of bounded variation, absolutely continuous, Lipschitzian and monotonic. Placing
restriction on the weight function provides more explicit coarser bounds. This is
accomplished through the use of a result due to Karamata [10]. Qi [19] and [20]
examines weighted trapezoidal bounds using a Taylor series argument.

Following the presentation of some notation, identities are obtained for our func-
tional of interest in Section 2. Various bounds are developed in Section 3 while in
Section 4, the relationship between the trapezoidal and corresponding Ostrowski
functionals is investigated. It is demonstrated that the bounds are the same if the
weight function is symmetric over the mid-points of the respective intervals [a, x)
and (x, b].

2. Some Notation and an Identity

Before proceeding to develop an identity, it is worthwhile to introduce some
notation.

Let w (·) be a weight function and suppose that w : [a, b] → (0,∞) is integrable
on the interval [a, b] and such that

0 <

∫ b

a

w (t) dt < ∞.
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Also, let

(2.1) mk (c, d;w) =
∫ d

c

ukw (u) du

represent the kth moment about the origin of the weight function w (·) over the
interval [c, d] ⊆ [a, b]. Further, let

0 ≤ Mn (a, x;w) =
1
n!

∫ x

a

(u− a)n
w (u) du(2.2)

=
1
n!

n∑
k=0

(
n
k

)
(−a)n−k

mk (a, x;w)

and

0 ≤ Mn (x, b;w) =
1
n!

∫ b

x

(b− u)n
w (u) du(2.3)

=
1
n!

n∑
k=0

(
n
k

)
bn−k (−1)k

mk (x, b;w) .

It may be observed that for x ∈ [a, b]

M0 (a, b;w) = M0 (a, x;w) + M0 (x, b;w) =
∫ b

a

w (t) dt = m0 (a, b;w)

and

(2.4) Mn (a, x; 1) =
(x− a)n+1

(n + 1)!
, Mn (x, b; 1) =

(b− x)n+1

(n + 1)!
.

We introduce the kernel

(2.5) Qn (x, t;w) :=


1

(n− 1)!

∫ t

x

(t− u)n−1
w (u) du, n ∈ N,

w (t) , n = 0,

x, t ∈ [a, b]

which satisfies

(2.6)
∂Qn

∂t
= Qn−1, n ∈ N.

The kernel may further be written, using (2.2) and (2.3), as

(2.7) Qn (x, t;w) :=

 (−1)n
Mn−1 (t, x;w) , a ≤ t ≤ x,

Mn−1 (x, t;w) , x < t ≤ b,
n ∈ N

and Q0 (x, t;w) = w (t) .
Further, define the functional

Tn (a, x, b; f ;w)(2.8)

=
∫ b

a

w (t) f (t) dt−
n∑

k=0

[
Mk (a, x;w) f (k) (a) + (−1)k

Mk (x, b;w) f (k) (b)
]

for f : [a, b] → R, x ∈ [a, b] and w (·) is a weight function with Mk (·, ·;w) as defined
by (2.2) and (2.3). The following theorem holds.
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Theorem 5. Let f : [a, b] → R with a < b. For n = 0, 1, 2, . . . let Qn+1 (x, t;w) be
as given by (2.5). Further, suppose that for some n ∈ N ∪ {0}, f (n) (t) exists for
t ∈ [a, b], where f (0) (t) ≡ f (t) then for f (n) (·) of bounded variation the identity

(2.9) Tn (a, x, b; f ;w) = (−1)n+1
∫ b

a

Qn+1 (x, t;w) df (n) (t)

holds where T and Qn+1 are as defined by (2.6) and (2.5) respectively.

Proof. Before proceeding with the proof it is worthwhile to firstly note that the
solution to the recurrence relation

(2.10) un = an − un−1 for n = 1, 2, . . .

is given explicitly as

(2.11) un =
n∑

k=1

(−1)n−k
ak + (−1)n

u0.

Now, let

(2.12) In =
∫ b

a

Qn+1 (x, t;w) df (n) (t)

then integration by parts of the Riemann-Stieltjes integral gives

(2.13) In = Qn+1 (x, t;w) f (n) (t)
]b
a

+
∫ b

a

∂Qn+1

∂t
f (n) (t) dt

and so

(2.14) In = An (a, x, b;w; f)− In−1, n = 1, 2, . . . ,

where, to obtain (2.14) from (2.13), we have used

(2.15) An (a, x, b;w; f) = Qn+1 (x, b;w) f (n) (b)−Qn+1 (x, a;w) f (n) (a)

and (2.6) and the fact that for f (n−1) (t) differentiable, df (n−1) (t) = f (n) (t) dt.
To obtain I0 we may either use integration by parts from (2.12) or equivalently

extend the validity of (2.14) to n = 0, producing

I0 = A0 (a, x, b;w; f)− I−1,

where from (2.12)

I−1 =
∫ b

a

Q0 (x, t;w) f (0) (t) dt

and so from (2.5)

I−1 =
∫ b

a

w (t) f (t) dt.

That is,

(2.16) I0 = A0 (a, x, b;w; f)−
∫ b

a

w (t) f (t) dt.

The solution of (2.14) on comparison with (2.10) and (2.11) upon using (2.16) is
given by

In = (−1)n+1
∫ b

a

w (t) f (t) dt +
n∑

k=0

(−1)n−k
Ak (a, x, b;w; f) .
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Thus,

(2.17) (−1)n+1
In =

∫ b

a

w (t) f (t) dt−
n∑

k=0

(−1)k
Ak (a, x, b;w; f)

where from (2.15) and (2.7)

Ak (a, x, b;w; f) = Mk (x, b;w) f (k) (b)− (−1)k+1
Mk (a, x;w) f (k) (a)

and so from (2.17) the identity (2.9) is procured.

Remark 1. If f (n) (t) is absolutely continuous on [a, b], then it is differentiable
and df (n) (t) = f (n+1) (t) dt giving from (2.9) the identity

(2.18) Tn (a, x, b; f ;w) = (−1)n+1
∫ b

a

Qn+1 (x, t;w) f (n+1) (t) dt,

where Tn and Qn are given by (2.8) and (2.5) or (2.7) respectively.
Remark 2. It w (t) ≡ 1 then from (2.5)

Qn (x, t; 1) =
(t− x)n

n!
and from (2.2) and (2.3)

Mk (a, x; 1) =
(x− a)k+1

(k + 1)!
and Mk (x, b; 1) =

(b− x)k+1

(k + 1)!
.

Further, from (2.8) and (2.18)

Tn (a, x, b; f ; 1) =
∫ b

a

f (t) dt−
n∑

k=0

(x− a)k+1
f (k) (a) + (−1)k (b− x)k+1

f (k) (b)
(k + 1)!

= (−1)n+1
∫ b

a

(t− x)n+1

(n + 1)!
f (n+1) (t) dt

is the identity obtained in Cerone et al. [5], giving the non-weighted n−time differ-
entiable generalised trapezoidal identity.

3. Inequalities for the Generalised Weighted Trapezoidal Rule

The following well known lemmas will prove useful for procuring bounds for a
Riemann-Stieltjes integral. They will be stated here for lucidity.
Lemma 1. Let g, v : [a, b] → R be such that g is continuous and v is of bounded
variation on [a, b]. Then the Riemann-Stieltjes integral

∫ b

a
g (t) dv (t) exists and is

such that

(3.1)

∣∣∣∣∣
∫ b

a

g (t) dv (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|g (t)|
b∨
a

(v) ,

where
∨b

a (v) is the total variation of v on [a, b].
Lemma 2. Let g, v : [a, b] → R be such that g is Riemann integrable on [a, b] and
v is L−Lipschitzian on [a, b]. Then

(3.2)

∣∣∣∣∣
∫ b

a

g (t) dv (t)

∣∣∣∣∣ ≤ L

∫ b

a

|g (t)| dt
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with v is L−Lipschitzian if it satisfies

|v (x)− v (y)| ≤ L |x− y|

for all x, y ∈ [a, b].

Lemma 3. Let g, v : [a, b] → R be such that g is Riemann integrable on [a, b] and
v is monotonic nondecreasing on [a, b]. Then

(3.3)

∣∣∣∣∣
∫ b

a

g (t) dv (t)

∣∣∣∣∣ ≤
∫ b

a

|g (t)| dv (t) .

It should be noted that if v is nonincreasing, then −v is nondecreasing.

Theorem 6. Let the conditions of Theorem 5 continue to hold so that f (n) (t) is
of bounded variation for t ∈ [a, b]. Then we have for all x ∈ [a, b] and n ∈ N ∪ {0}

|Tn (a, x, b; f ;w)|(3.4)

=



[Mn (a, x;w) + Mn (x, b;w)
+ |Mn (a, x;w)−Mn (x, b;w)|]× 1

2

∨b
a

(
f (n)

)
,

[Mn+1 (a, x;w) + Mn+1 (x, b;w)]L, f (n) is L− Lipschitzian

Mn (a, x;w)
[
f (n) (x)− f (n) (a)

]
+Mn (x, b;w)

[
f (n) (b)− f (n) (x)

]
, f (n) monotonic nondecreasing

where Tn (a, x, b; f ;w) is given by (2.8) and Mn (a, x;w), Mn (x, b;w) by (2.2) and
(2.3).

Here, by
∨b

a (h) we signify the total variation of h (t) for t ∈ [a, b]. That is∨b
a (h) =

∫ b

a
|dh (t)| .

Proof. Taking the modulus of identity (2.9) and using Lemma 1, we have

|Tn (a, x, b; f ;w)| =

∣∣∣∣∣
∫ b

a

Qn+1 (x, t;w) df (n) (t)

∣∣∣∣∣(3.5)

≤ sup
t∈[a,b]

|Qn+1 (x, t;w)|
b∨
a

(
f (n)

)
.

Now, from (2.5)

sup
t∈[a,b]

|Qn+1 (x, t;w)|(3.6)

=
1
n!

max

{∫ x

a

(u− a)n
w (u) du,

∫ b

x

(b− u)n
w (u) du

}
= max {Mn (a, x;w) ,Mn (x, b;w)}

and so using the fact that max {X, Y } = 1
2 [X + Y + |X − Y |] gives the first in-

equality in (3.4) upon utilising (3.5).
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For f (n) (·) L−Lipschitzian on [a, b], then from Lemma 2 and (3.5)

|Tn (a, x, b; f ;w)| =

∣∣∣∣∣
∫ b

a

Qn+1 (x, t;w) df (n) (t)

∣∣∣∣∣(3.7)

≤ L

∫ b

a

|Qn+1 (x, t;w)| dt.

Using the definition (2.5), we may notice that

(3.8) Qn+1 (x, t;w) =


(−1)n+1

n!

∫ x

t

(u− t)n
w (u) du, t ∈ [a, x]

1
n!

∫ t

x

(t− u)n
w (u) du, t ∈ (x, b]

and so

n!
∫ b

a

|Qn+1 (x, t;w)| dt(3.9)

=

x∫
a

x∫
t

(u− t)n
w (u) dudt +

b∫
x

t∫
x

(t− u)n
w (u) dudt.

We may simplify the expression on the right by an interchange of the order of
integration to give

x∫
a

x∫
t

(u− t)n
w (u) dudt =

x∫
a

w (u)

u∫
a

(u− t)n
dtdu

=
1

n + 1

x∫
a

(u− a)n+1
w (u) du

and in a similar fashion
b∫
x

t∫
x

(t− u)n
w (u) dudt =

1
n + 1

b∫
x

(b− u)n+1
w (u) du

Hence, from (3.9),

(3.10)
∫ b

a

|Qn+1 (x, t;w)| dt = Mn+1 (a, x;w) + Mn+1 (x, b;w)

giving the second inequality in (3.4) upon utilising (3.7).
For the final inequality in (3.4), when f (n) (t) is monotonic nondecreasing on

[a, b] , we use Lemma 3 and thus, from identity (2.9)

|Tn (a, x, b; f ;w)| =

∣∣∣∣∣
∫ b

a

Qn+1 (x, t;w) df (n) (t)

∣∣∣∣∣(3.11)

≤
∫ b

a

|Qn+1 (x, t;w)| df (n−1) (t) .
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Two cases need to be treated. For n = 0 then

|T0 (a, x, b; f ;w)| ≤
∫ b

a

|Q1 (x, t;w)| df (t) ,

where, from (2.5),

|Q1 (x, t;w)| =



∫ x

t

w (u) du, t ∈ [a, x] ,

∫ t

x

w (u) du, t ∈ (x, b].

Thus,

|T0 (a, x, b; f ;w)|(3.12)

≤
x∫
a

 x∫
t

w (u) du

 df (t) +

b∫
x

 t∫
x

w (u) du

 df (t)

=

 x∫
t

w (u) du

 f (t)

x

t=a

+

x∫
a

w (t) f (t) dt

+

 t∫
x

w (u) du

 f (t)

b

t=x

−
b∫
x

w (t) f (t) dt

= −M0 (a, x;w) f (a) +

x∫
a

w (t) f (t) dt + M0 (x, b;w) f (b)−
b∫
x

w (t) f (t) dt

≤ M0 (a, x;w) [f (x)− f (a)] + M0 (x, b;w) [f (b)− f (x)] .

Here we have used the fact that if g (t) > 0 and f (t) monotonic nondecreasing for
t ∈ [a, b], then

b∫
a

g (t) f (t) dt ≤ f (b)

b∫
a

g (t) dt and(3.13)

−
b∫
a

g (t) f (t) dt ≤ −f (a)

b∫
a

g (t) dt.

For n ∈ N then

n!
∫ b

a

|Qn+1 (x, t;w)| df (n) (t)(3.14)

=

x∫
a

 x∫
t

(u− t)n
w (u) du

 df (n) (t) +

b∫
x

 t∫
x

(t− u)n
w (u) du

 df (n) (t)

: = An + Bn.
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Integration by parts produces on using the Leibnitz rule,

An =

 x∫
t

(u− t)n
w (u) du

 f (n) (t)

x

t=a

+ n

x∫
a

 x∫
t

(u− t)n−1
w (u) du

 f (n) (t) dt

= −n!Mn (a, x;w) f (n) (a) + n

x∫
a

 x∫
t

(u− t)n−1
w (u) du

 f (n) (t) dt

≤ n!Mn (a, x;w)
[
f (n) (x)− f (n) (a)

]
and

Bn =

 t∫
x

(t− u)n
w (u) du

 f (n) (t)

b

t=x

− n

b∫
x

 t∫
x

(t− u)n−1
w (u) du

 f (n) (t) dt

= n!Mn (x, b;w) f (n) (b)− n

b∫
x

 t∫
x

(t− u)n−1
w (u) du

 f (n) (t) dt

≤ n!Mn (x, b;w)
[
f (n) (b)− f (n) (x)

]
,

where we have used the monotonicity of f (n) (·) via (3.13) together with (3.9) and
(3.10) to obtain the upper bounds.

Substituting An and Bn into (3.14) and (3.11) and further recognising that it
subsumes the result for n = 0 as given by (3.12), then the last inequality in (3.4)
results.

Remark 3. For the monotonic nondecreasing result in (3.4) a tighter bound could
have been obtained if the result (3.13) were not used. This, however, would have
produced a more cumbersome bound. The n = 0 case may have been accommodated
in the general n case since, as given in (2.5), Q0 (x, t;w) = w (t) and since w (t) > 0
then |Q0 (x, t;w)| = w (t).

The following theorem gives bounds on |Tn (a, x, b; f ;w)| in terms of the Lebesgue
norms of f (n+1) (t).

Theorem 7. Let the general conditions of Theorem 5 hold and further, let f (n) (t)
be absolutely continuous for t ∈ [a, b], then

|Tn (a, x, b; f ;w)|(3.15)

≤



[Mn+1 (a, x;w) + Mn+1 (x, b;w)]
∥∥f (n+1)

∥∥
∞ , f (n+1) ∈ L∞ [a, b] ;

‖Qn (x, ·;w)‖q

∥∥f (n+1)
∥∥

p
, f (n+1) ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;
[Mn (a, x;w) + Mn (x, b;w)

+ |Mn (a, x;w)−Mn (x, b;w)|]
∥∥f (n+1)

∥∥
1

2
, f (n+1) ∈ L1 [a, b] ,

where Mn (a, x;w) and Mn (x, b;w) are as given by (2.2) and (2.3), Qn (a, x, b;w)
is defined in (2.5) and Tn (a, x, b;w) by (2.8).
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Further, ‖·‖p signify the usual Lebesgue norms where

‖h‖∞ := ess sup
t∈[a,b]

|h (t)| for h ∈ L∞ [a, b] ,

and

‖h‖p :=

 b∫
a

|h (t)|p dt


1
p

for h ∈ Lp [a, b] , 1 ≤ p < ∞.

Proof. From the identity (2.18) we have on using properties of the modulus and
integral,

(3.16) |Tn (a, x, b;w)| ≤
∫ b

a

∣∣∣Qn+1 (x, t;w) f (n+1) (t)
∣∣∣ dt.

Now, for f (n+1) ∈ L∞ [a, b]∫ b

a

∣∣∣Qn+1 (x, t;w) f (n+1) (t)
∣∣∣ dt ≤

∥∥∥f (n+1)
∥∥∥
∞

∫ b

a

|Qn+1 (x, t;w)| dt,

which upon using (3.10) produces the first inequality in (3.15).
For the second bound we use Hölder’s integral inequality in (3.16) to give∫ b

a

∣∣∣Qn+1 (x, t;w) f (n+1) (t)
∣∣∣ dt ≤

(∫ b

a

|Qn+1 (x, t;w)|q dt

) 1
q
(∫ b

a

∣∣∣f (n+1) (t)
∣∣∣p dt

) 1
p

= ‖Qn (x, ·;w)‖q

∥∥∥f (n+1)
∥∥∥

p
,

where p > 1, 1
p + 1

q = 1.
The final inequality in (3.15) is obtained from (3.16) to give∫ b

a

∣∣∣Qn+1 (x, t;w) f (n+1) (t)
∣∣∣ dt ≤ sup

t∈[a,b]

|Qn+1 (x, t;w)|
∫ b

a

∣∣∣f (n+1) (t)
∣∣∣ dt,

where we may use (3.6) and a property of the max {X, Y } to obtain the stated
result.

Remark 4. If we take the weight function w (t) ≡ 1 then the results of Cerone et
al. [5] involving the generalised trapezoidal rule and n−time differentiable functions
is recaptured.

A question that needs to be asked is can we choose the parameter x in such a
way that the bound is minimized? The following lemma examines such an issue.
Lemma 4. Let

2φn (a, x, b;w)(3.17)
= [Mn (a, x;w) + Mn (x, b;w) + |Mn (a, x;w)−Mn (x, b;w)|]

and

(3.18) Ψn+1 (a, x, b;w) = Mn+1 (a, x;w) + Mn+1 (x, b;w) .

Then

(3.19) φ∗n (a, x̃, b;w) = min
x∈[a,b]

φn (a, x, b;w) =
Mn (a, x̃;w) + Mn (x̃, b;w)

2
,

where x̃ is the solution of Mn (a, x;w) = Mn (x, b;w).
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Further,

Ψ∗
n+1

(
a,

a + b

2
, b;w

)
(3.20)

= min
x∈[a,b]

Ψn+1 (a, x, b;w) = Mn+1

(
a,

a + b

2
;w
)

+ Mn+1

(
a + b

2
, b;w

)
,

where w (·) is a positive weight function and x ∈ [a, b] , with Mn (a, x;w) and
Mn (x, b;w) are as defined in (2.2) and (2.3).

Proof. The functions Mn (a, x;w) and Mn (x, b;w) are both positive with Mn (a, x;w)
increasing and Mn (x, b;w) decreasing in x ∈ [a, b]. Thus, the minimum is attained
when |Mn (a, x;w)−Mn (x, b;w)| = 0 giving the result as stated.

Now, Ψn+1 (a, x;w) ≥ 0 and

Ψn+1 (a, a;w) = Ψn+1 (b, b;w) = Mn (a, b;w) .

Also, for w (x) > 0

Ψ′
n+1 (a, x, b;w) = [(x− a)n − (b− x)n]

w (x)
n!

and so Ψ′
n+1 (a, a, b;w) < 0, Ψ′

n+1 (a, b, b;w) > 0 bringing us to the conclusion
that Ψn (a, x, b;w) is convex in x. Since w (x) > 0, the minimum is attained when
x = a+b

2 , making Ψ′
n+1

(
a, a+b

2 , b;w
)

= 0.

The following lemma obtains some coarser bounds which may prove to be more
useful in practice. It involves obtaining bounds on

(3.21) Ψn+1 (a, x, b;w) = ‖Qn+1 (x, ·;w)‖1 = Mn+1 (a, x;w) + Mn+1 (x, b;w) .

Lemma 5. Let w (t) be a weight function defined on [a, b] and x ∈ [a, b], then

|Ψn+1 (a, x, b;w)| = ‖Qn+1 (x, ·;w)‖1(3.22)

≤



C (1) ‖w‖∞ , w ∈ L∞ [a, b] ;

C
1
2 (q) ‖w‖p , w ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;
νn+1

(n + 1)!
‖w‖1 , w ∈ L1 [a, b] ,

where

C (q) =
(x− a)q(n+1)+1 + (b− x)q(n+1)+1

q (n + 1) + 1
and

ν =
b− a

2
+
∣∣∣∣x− a + b

2

∣∣∣∣ .
Proof. From the definitions (2.2) and (2.3) it may be noticed that Ψn+1 (a, x, b;w)
from (3.21) may be expressed as

Ψn+1 (a, x, b;w) = ‖Qn+1 (a, x, b;w)‖1(3.23)

=
1

(n + 1)!

∫ b

a

κn+1 (a, x, b;u)w (u) du,
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where

(3.24) κ (a, x, b;u) =

 u− a, u ∈ [a, x] ,

b− u, u ∈ (x, b].

Now,

(n + 1)! |Ψn+1 (a, x, b;w)| ≤
∫ b

a

∣∣κn+1 (a, x, b;u) w (u)
∣∣ du

and so for w ∈ Lp [a, b], 1 < p < ∞ then∫ b

a

∣∣κn+1 (a, x, b;u) w (u)
∣∣ du(3.25)

≤

(∫ b

a

κq(n+1) (a, x, b;u) du

) 1
q
(∫ b

a

wp (u) du

) 1
p

.

Explicitly,(∫ b

a

κq(n+1) (a, x, b;u) du

) 1
q

=

[∫ x

a

(u− a)q(n+1)
du +

∫ b

x

(b− u)q(n+1)
du

] 1
q

=

[
(x− a)q(n+1)+1 + (b− x)q(n+1)+1

q (n + 1) + 1

] 1
q

which together with (3.25) gives the second inequality (3.22).
For w ∈ L∞ [a, b] , then∫ b

a

∣∣κn+1 (a, x, b;u) w (u)
∣∣ du ≤ C (1) ‖w‖∞

the first inequality in (3.22).
Finally, for w ∈ L1 [a, b] , then∫ b

a

∣∣κn+1 (a, x, b;u)w (u)
∣∣ du ≤

[
sup

x∈[a,b]

κ (a, x, b;u)

]n+1

‖w‖1

where

sup
x∈[a,b]

κ (a, x, b;u) = max {x− a, b− x} =
b− a

2
+
∣∣∣∣x− a + b

2

∣∣∣∣ = ν.

Karamata [10] proved the following theorem.
Theorem 8. Let g, w : [a, b] → R be integrable on [a, b] and suppose m ≤ g (t) ≤ M
and 0 < c ≤ w (t) ≤ λc for t ∈ [a, b] and some constants m,M, c and λ. If G and
A (g, w) are defined as

(3.26) G :=
1

b− a

∫ b

a

g (t) dt and A (g, w) :=

∫ b

a
g (t) w (t) dt∫ b

a
w (t) dt

then

(3.27)
λm (M −G) + M (G−m)

λ (M −G) + (G−m)
≤ A (g, w) ≤ m (M −G) + λM (G−m)

(M −G) + λ (G−m)
.
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Using the above theorem of Karamata, the third inequality in (3.22) may be
improved.

If we associate κn+1 (a, x, b;w) , as defined by (3.24), with g (t) above, then

0 ≤ κ (a, x, b;u) ≤ ν = max {x− a, b− x} =
b− a

2
+
∣∣∣∣x− a + b

2

∣∣∣∣
and

G =
C (1)
b− a

=
1

b− a

∫ b

a

κn+1 (a, x, b;u) du.

Hence, from (3.23)

(n + 1)!Ψn+1 (a, x, b;w) = ‖Qn+1 (x, ·;w)‖1

≤
λνn+1C (1) ‖w‖1

(b− a) νn+1 − C (1) + λC (1)
≤ νn+1 ‖w‖1 .

The last inequality follows from the fact that

C (1) =
∫ b

a

κn+1 (a, x, b;u) du ≤ νn+1 (b− a) .

4. Comparison of Ostrowski and Trapezoidal Results

The generalised weighted trapezoid kernel Qn (x, t;w) defined by (2.5) and (2.7)
is a mapping Qn (·, ·;w) : [a, b]2 → R, a, b ∈ R, a < b where

(4.1) Qn (x, t;w) :=



(−1)n

(n− 1)!

∫ x

t

(u− t)n−1
w (u) du, t ∈ [a, x] , n ∈ N

(−1)n

(n− 1)!

∫ t

x

(t− u)n−1
w (u) du, t ∈ (x, b] , n ∈ N

w (t) , n = 0.

Here w (t) is a weight function with properties as ascribed earlier in the paper. An
identity relating the generalised weighted trapezoid functional Tn (a, x, b; f ;w) as
defined by (2.8) is given by (2.9).

In our notation define the weighted Ostrowski functional Θ (a, x, b; f ;w) by

(4.2) Θn (a, x, b; f ;w) :=
∫ b

a

w (t) f (t) dt−
n∑

k=0

Ek (a, x, b;w) f (k) (x) ,

where

(4.3) Ek (a, x, b;w) =
1
k!

x∫
t

(u− x)k
w (u) du.
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Let the kernel Kn (x, t;w) be such that Kn (·, ·, w) : [a, b]2 → R, a, b ∈ R, a < b
and w (·) a given weight function, then

(4.4) Kn (x, t;w) :=



1
(n− 1)!

∫ t

a

(t− u)n−1
w (u) du, t ∈ [a, x) , n ∈ N

0 t = x

(−1)n

(n− 1)!

∫ b

t

(u− t)n−1
w (u) du, t ∈ (x, b] , n ∈ N

w (t) , x, t ∈ [a, b] .

Matić et al. [11] show that for f (n) (·) continuous and of bounded variation on [a, b]
then for x ∈ [a, b]

(4.5) Θn (a, x, b; f ;w) = (−1)n+1
∫ b

a

κn+1 (x, t;w) df (n) (t) .

Further, for f (n) (·) absolutely continuous on [a, b] then df (n) (t) = f (n+1) (t) dt,
giving the identity

(4.6) Θn (a, x, b; f ;w) = (−1)n+1
∫ b

a

κn+1 (x, t;w) f (n+1) (t) dt

from (4.5).
The bounds for |T (a, x, b; f ;w)| and |Θ(a, x, b; f ;w)| depend on the behaviour

of |Qn+1 (x, t;w)| and |Kn+1 (x, t;w)| respectively.
The following lemma gives sufficient conditions for the bounds on |T (a, x, b; f ;w)|

and |Θ(a, x, b; f ;w)| to be equal.

Lemma 6. For w : [a, b] → (0,∞),
∫ b

a
w (t) dt < ∞ and w (t) symmetric about the

respective midpoints for t ∈ [a, x) and t ∈ (x, b] then,

(4.7) |Kn (x, t;w)| =


|Qn (x, a + x− t;w)| , t ∈ [a, x) ,

0 t = x

|Qn (x, x + b− t;w)| , t ∈ (x, b] .

An interchange of Qn and Kn in (4.7) is valid under the same conditions.

Proof. Consider for t ∈ [a, x)

(n− 1)! |Qn (x, a + x− t;w)| =
∫ x

a+x−t

[u− (a + x− t)]n−1
w (u) du

=
∫ t

a

(t− v)n+1
w (a + x− v) dv

= (n− 1)! |Kn (x, t;w)| ,

provided w (a + x− v) = w (v) , that is, w
(

a+x
2 − z

)
= w

(
a+x

2 + z
)

for z ∈ [a, x).
A similar argument gives the result for t ∈ (x, b]. We note that if t varies from c to
d, then T = c + d − t varies from d to c. Thus the interchange of Kn and Qn in
(4.7) is valid and the equivalent expression to (4.7) holds.
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Remark 5. A consequence of Lemma 6 is that if w (t) ≡ α, a constant, then
the Lebesgue norms giving the bounds for |T (a, x, b; f ;w)| and |Θ(a, x, b; f ;w)| are
equal. In particular, the unweighted case w (t) = α = 1 produce the same bounds as
shown in Cerone [2]. Weights such as

wn (t) =



(
t− a+x

2

)2n
, t ∈ [a, x)

0, t = x(
t− x+b

2

)2n
, t ∈ (x, b], n ∈ N

and

W (t) =



∣∣t− a+x
2

∣∣ , t ∈ [a, x)

0, t = x∣∣t− x+b
2

∣∣ , t ∈ (x, b],

would produce the same bounds for the trapezoidal and Ostrowski functions defined
by (2.9) and (4.2).
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[14] G.V. MILOVANOVIĆ and J.E. PEC̆ARIĆ, On generalisation of the inequality of A. Os-

trowski and some related applications, Univ. Beograd Publ. Elektrotehn Fak. Ser. Mat. Fiz.,

No. 544-576.
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