OSTROWSKI'S INEQUALITY FOR VECTOR-VALUED FUNCTIONS OF BOUNDED SEMIVARIATION AND APPLICATIONS

C. BUŞE, S.S. DRAGOMIR, AND A. SOFO

Abstract

An Ostrowski type inequality for vector-valued functions of bounded semivariation and its applications for linear operator inequalities and differential equations in Banach spaces are given.

1. Introduction

Let X be a real or complex Banach space and X^{*} its topological dual space, i.e., the space consisting of all bounded linear functionals $x^{*}: X \rightarrow \mathbb{K}$. Let $-\infty<a<$ $b<\infty$ be two real numbers. A function $f:[a, b] \rightarrow X$ is said to be:
(i) of bounded variation if there exists an $M \geq 0$ such that for all partitions $\Pi: a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b$ we have

$$
\sum_{i=1}^{n}\left\|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right\| \leq M
$$

(ii) of bounded semivariation if there exists an $M \geq 0$ such that for each natural non-null number N and all mutual disjoint intervals $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{N}, t_{N}\right)$ with $\left(s_{i}, t_{i}\right) \subset[a, b]$ for every $i \in\{1, \ldots, N\}$ we have

$$
\left\|\sum_{i=1}^{N}\left(f\left(t_{i}\right)-f\left(s_{i}\right)\right)\right\| \leq M
$$

(iii) of weakly bounded variation if the function $x^{*} \circ f$ is of bounded variation for each $x^{*} \in X^{*}$.
It is clear that if f is of bounded variation, then it is of bounded semivariation. Moreover, if f is of bounded variation, then it is of weakly bounded variation, because for every $x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1$, we have

$$
\left|x^{*}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)\right| \leq\left\|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right\|, \text { for all } i=\overline{1, n}
$$

In fact, a function $f:[a, b] \rightarrow X$ is of bounded semivariation if and only if f is of weakly bounded variation [2].

Let $\Pi: a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b$ be a partition of an interval $[a, b]$. We denote by $\nu(\Pi):=\max \left\{t_{i}-t_{i-1}, i \in 1,2, \ldots, n\right\}$ the norm of Π. Let $f:[a, b] \rightarrow X$ and $g:[a, b] \rightarrow \mathbb{C}$ be two functions. The function g is Riemann-Stieltjes integrable

[^0]with respect to f on $[a, b]$ if for all $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ with $t_{i-1} \leq \xi_{i} \leq t_{i}$ for all $i=\overline{1, n}$, the limit
$$
\lim _{\nu(\Pi) \rightarrow 0} \sum_{i=1}^{n} g\left(\xi_{i}\right)\left[f\left(t_{i}\right)-f\left(t_{i-1}\right)\right]
$$
exists in X. Such a limit is denoted by $\int_{a}^{b} g d f$ and is called the Riemann-Stieltjes integral of g with respect to f on $[a, b]$.

It is easy to see that if g is Riemann-Stieltjes integrable with respect to f, then f is Riemann-Stieltjes with respect to g. In addition, the following formula

$$
\int_{a}^{b} f d g=g(b) f(b)-g(a) f(a)-\int_{a}^{b} g d f
$$

holds.
If one of the functions f, g is continuous and the other is of bounded semivariation, then each of them is Riemann-Stieltjes integrable with respect to the other [2]. In particular, if $f:[a, b] \rightarrow X$ is of bounded semivariation, then f is Riemann integrable on $[a, b]$.

If $f:[a, b] \rightarrow X$ is of bounded semivariation then its totally weak variation (which is denoted as follows by $w-\bigvee_{a}^{b}(f)$) is finite, i.e., there exists $M>0$ such that

$$
\begin{aligned}
w-\bigvee_{a}^{b}(f) & : \quad=\sup \left\{\sum_{i=1}^{n}\left|x^{*}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)\right|, p \in \Pi([a, b]), x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} \\
& =M<\infty
\end{aligned}
$$

where $p: a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b$ and $\Pi([a, b])$ is the set of all partitions of the interval $[a, b]$.

Indeed, the set of all bounded linear operators $T_{p, f}: X^{*} \rightarrow \mathbb{C}$, given by

$$
T_{p, f}\left(x^{*}\right):=\sum_{i=1}^{n} x^{*}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right), \quad p \in \Pi([a, b]),
$$

is uniformly punctually bounded, i.e., for each $x^{*} \in X^{*}$ there exists $K\left(x^{*}\right)>0$ such that

$$
\left|T_{p, f}\left(x^{*}\right)\right| \leq K\left(x^{*}\right)<\infty, \text { for all } p \in \Pi([a, b])
$$

Then from the uniform boundedness principle it follows that there exists $K>0$ such that

$$
\left|T_{p, f}\left(x^{*}\right)\right| \leq K\left\|x^{*}\right\|, \text { for all } p \in \Pi([a, b])
$$

i.e., the desired statement holds.

Having considered all the above, we can now formulate the following result.
Lemma 1. If $g:[a, b] \rightarrow \mathbb{C}$ is a continuous function and $f:[a, b] \rightarrow X$ is of bounded semivariation, then

$$
\begin{equation*}
\left\|\int_{a}^{b} g d f\right\| \leq \sup _{t \in[a, b]}|g(t)|\left(w-\bigvee_{a}^{b}(f)\right) \tag{1.1}
\end{equation*}
$$

Proof. Let $\Pi: a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b$ be an arbitrary partition of the interval $[a, b]$ and $x^{*} \in X^{*}$ with $\left\|x^{*}\right\| \leq 1$. Then for every intermediate point
$\xi_{i} \in\left[t_{i-1}, t_{i}\right]$, we have:

$$
\begin{aligned}
\left|x^{*}\left(\sum_{i=1}^{n} g\left(\xi_{i}\right)\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)\right)\right| & \leq \sum_{i=1}^{n}\left|g\left(\xi_{i}\right)\right|\left|x^{*}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)\right| \\
& \leq \sup _{t \in[a, b]}|g(t)| \sum_{i=1}^{n}\left|x^{*}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)\right| \\
& \leq \sup _{t \in[a, b]}|g(t)|\left(w-\bigvee_{a}^{b}(f)\right) .
\end{aligned}
$$

Then, using a well-known fact (see for example [4, p. 135]), namely that for $x \in X$ one has

$$
\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\},
$$

it follows that

$$
\left\|\sum_{i=1}^{n} g\left(\xi_{i}\right)\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)\right\| \leq \sup _{t \in[a, b]}|g(t)|\left(w-\bigvee_{a}^{b}(f)\right)
$$

Taking the limit as $\nu(\Pi) \rightarrow 0$ in the previous inequality and using the fact that g is Riemann-Stieltjes integrable with respect to f, (1.1) follows.

The following result easily follows using some elementary considerations and the fact that (1.1) holds for scalar valued functions.
Lemma 2. Let $-\infty<a \leq c \leq b<\infty$ and $f:[a, b] \rightarrow X$ be a function which is of bounded semivariation on $[a, b]$ and of bounded semivariation on $[c, b]$. Then f is of bounded semivariation on $[a, b]$ and

$$
w-\bigvee_{a}^{b}(f)=\left(w-\bigvee_{a}^{c}(f)\right)+\left(w-\bigvee_{c}^{b}(f)\right)
$$

In this paper we point out an inequality of Ostrowski type for vector-valued functions of bounded semivariation and apply it for operator inequalities and for approximating the solutions of certain differential equations in Banach spaces.

For the Ostrowski type inequalities for scalar-valued functions, see [1], [6] and [7].

2. An Ostrowski Type Inequality

The following theorem holds.
Theorem 1. Let X be a Banach space and $f:[a, b] \rightarrow X$ a mapping of bounded semivariation on $[a, b]$. Then for all $s \in[a, b]$, we have the inequalities

$$
\begin{align*}
& \left\|\int_{a}^{b} f(t) d t-(b-a) f(s)\right\| \tag{2.1}\\
\leq & (s-a)\left(w-\bigvee_{a}^{s}(f)\right)+(b-s)\left(w-\bigvee_{s}^{b}(f)\right) \\
\leq & {\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right]\left(w-\bigvee_{a}^{b}(f)\right) . }
\end{align*}
$$

The constant $\frac{1}{2}$ in the second inequality is the best possible one.

Proof. Using the integration by parts formula for Riemann-Stieltjes integrals, we have

$$
\int_{a}^{s}(t-a) d f(t)=(s-a) f(s)-\int_{a}^{s} f(t) d t
$$

and

$$
\int_{s}^{b}(t-b) d f(t)=(b-s) f(s)-\int_{s}^{b} f(t) d t
$$

If we add the two equalities, we obtain

$$
\begin{equation*}
(b-a) f(s)-\int_{a}^{b} f(t) d t=\int_{a}^{s}(t-a) d f(t)+\int_{s}^{b}(t-b) d f(t) \tag{2.2}
\end{equation*}
$$

for any $s \in[a, b]$.
Taking the norm on (2.2), we get

$$
\begin{aligned}
& \left\|(b-a) f(s)-\int_{a}^{b} f(t) d t\right\| \\
\leq & \left\|\int_{a}^{s}(t-a) d f(t)\right\|+\left\|_{s}^{b}(t-b) d f(t)\right\| \\
\leq & \sup _{t \in[a, s]}(t-a)\left(w-\bigvee_{a}^{s}(f)\right)+\sup _{t \in[s, b]}(b-t)\left(w-\bigvee_{s}^{b}(f)\right) \\
= & (s-a)\left(w-\bigvee_{a}^{s}(f)\right)+(b-s)\left(w-\bigvee_{s}^{b}(f)\right)
\end{aligned}
$$

where, for the last inequality, we have applied Lemma 1. Thus, the first inequality in (2.1) is proved.

Using Lemma 2, we may write that

$$
\begin{aligned}
& (s-a)\left(w-\bigvee_{a}^{s}(f)\right)+(b-s)\left(w-\bigvee_{s}^{b}(f)\right) \\
\leq & \max \{s-a, b-s\}\left[\left(w-\bigvee_{a}^{s}(f)\right)+\left(w-\bigvee_{s}^{b}(f)\right)\right] \\
\leq & {\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right]\left(w-\bigvee_{a}^{b}(f)\right) }
\end{aligned}
$$

and the last part of (2.1) is proved.
The fact that $\frac{1}{2}$ is the best constant follows in the same manner as in [5] and we omit the details.

Corollary 1. With the assumptions in Theorem 1, we have

$$
\begin{equation*}
\left\|\int_{a}^{b} f(t) d t-(b-a) f\left(\frac{a+b}{2}\right)\right\| \leq \frac{1}{2}(b-a)\left(w-\bigvee_{a}^{b}(f)\right) \tag{2.3}
\end{equation*}
$$

The constant $\frac{1}{2}$ is best possible.

Remark 1. If $f:[a, b] \rightarrow X$ is of bounded variation on $[a, b]$, then

$$
\begin{align*}
\left\|\int_{a}^{b} f(t) d t-(b-a) f(s)\right\| & \leq(s-a) \bigvee_{a}^{s}(f)+(b-s) \bigvee_{s}^{b}(f) \tag{2.4}\\
& \leq\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b}(f)
\end{align*}
$$

In particular, if f is differentiable and the derivative $f^{\prime}:[a, b] \rightarrow X$ is continuous, then

$$
\begin{align*}
& \left\|\int_{a}^{b} f(t) d t-(b-a) f(s)\right\| \tag{2.5}\\
\leq & (s-a) \int_{a}^{s}\left\|f^{\prime}(t)\right\| d t+(b-s) \int_{s}^{b}\left\|f^{\prime}(t)\right\| d t \\
\leq & {\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right] \int_{a}^{b}\left\|f^{\prime}(t)\right\| d t . }
\end{align*}
$$

Remark 2. When X is \mathbb{K}, the field of scalars, then the inequality (2.4) becomes a known result obtained in [5].

In the following we will present three examples in which we apply Theorem 1 and its consequence from (2.5).

Let $X=L^{2}([0,1], \mathbb{R})$. We consider the function $f:[0,1] \rightarrow X$ given by $f(t)=$ $t \cdot 1_{[0, t]}, t \in[0,1]$. Here $1_{[0, t]}$ is the characteristic function on the interval $[0, t]$.

Let $\Pi: 0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=1$ be an arbitrary partition of the interval $[0,1]$. Then for all $x^{*} \in L^{2}([0,1], \mathbb{R})=X^{*}$, we have:

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|x^{*}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)\right| \\
= & \sum_{i=1}^{n}\left|\int_{0}^{1} x^{*}(s)\left[\left(f\left(t_{i}\right)\right)(s)-\left(f\left(t_{i-1}\right)\right)(s)\right] d s\right| \\
= & \sum_{i=1}^{n}\left|\int_{0}^{t_{i-1}} x^{*}(s) \cdot t_{i} s d s-\int_{0}^{t_{i-1}} x^{*}(s) \cdot t_{i-1} s d s+\int_{t_{i-1}}^{t_{i}} x^{*}(s) \cdot t_{i} s d s\right| \\
\leq & \sum_{i=1}^{n}\left[\left(t_{i}-t_{i-1}\right) \int_{0}^{t_{i-1}}\left|x^{*}(s)\right| d s+\int_{t_{i-1}}^{t_{i}}\left|x^{*}(s)\right| d s\right] \\
\leq & 2 \int_{0}^{1}\left|x^{*}(s)\right| d s \leq 2\left(\int_{0}^{1}\left|x^{*}(s)\right|^{2} d s\right)^{\frac{1}{2}}=2\left\|x^{*}\right\|_{2} .
\end{aligned}
$$

Taking the supremum for all $x^{*} \in X^{*}$ with $\left\|x^{*}\right\|_{2} \leq 1$, we obtain that $w-\bigvee_{0}^{1}(f) \leq$ 2 , which shows that f is of bounded semivariation. On the other hand,

$$
\begin{aligned}
\left\|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right\|_{2}^{2} & =\int_{0}^{1}\left|\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)(s)\right|^{2} d s \\
& =\int_{0}^{t_{i-1}}\left(t_{i}-t_{i-1}\right)^{2} s^{2} d s+\int_{t_{i-1}}^{t_{i}}\left(t_{i} s\right)^{2} d s \\
& =\left(t_{i}-t_{i-1}\right)^{2} \frac{t_{i-1}^{3}}{3}+\frac{t_{i}^{3}}{3}\left(t_{i}^{3}-t_{i-1}^{3}\right)
\end{aligned}
$$

If we choose $t_{i}=\frac{i}{n^{p}}, i=0,1,2 \ldots, n$, then

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right\|_{2} \\
\geq & \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right) t_{i-1} \sqrt{\frac{t_{i-1}}{3}}=\frac{1}{n^{p}} \sum_{i=1}^{n} \frac{i-1}{n^{p}} \sqrt{\frac{i-1}{3 n^{p}}} \\
\geq & \frac{1}{n^{2 p} \sqrt{3 n^{p}}} \sum_{i=1}^{n-1} i=\frac{n(n-1)}{2 n^{2 p} \sqrt{3 n^{p}}} \rightarrow \infty
\end{aligned}
$$

as $n \rightarrow \infty$, if p is a suitable positive number.
Proposition 1. With the above notations the following inequality holds:

$$
\begin{equation*}
w-\bigvee_{0}^{1}(f) \geq \frac{\sqrt{35 s^{5}-30 s^{3}+8}}{\sqrt{15}(1+|2 s-1|)}, \text { for all } s \in[0,1] \tag{2.6}
\end{equation*}
$$

Proof. We apply Theorem 1 for our function $f, a=0$ and $b=1$. Then, for all $0 \leq s \leq 1$, we have:

$$
\begin{aligned}
\left\|\int_{0}^{1} t \cdot 1_{[0, t]} d t-f(s)\right\|_{2}^{2} & =\int_{0}^{1}\left\{\left(\int_{0}^{1} t \cdot 1_{[0, t]} d t\right)(\xi)-[f(s)](\xi)\right\}^{2} d \xi \\
& =\int_{0}^{1}\left\{\int_{0}^{1} t \cdot 1_{[0, t]}(\xi) d t-[f(s)](\xi)\right\}^{2} d \xi \\
& =\int_{0}^{s}\left(\int_{1}^{\xi} t d t-s \xi\right)^{2} d \xi+\int_{s}^{1}\left(\int_{\xi}^{1} t d t\right)^{2} d \xi \\
& =\int_{0}^{s}\left(\frac{1-\xi^{2}}{2}-s \xi\right)^{2} d \xi+\int_{s}^{1}\left(\frac{1-\xi^{2}}{2}\right)^{2} d \xi \\
& =\frac{1}{60}\left(35 s^{5}-30 s^{3}+8\right)
\end{aligned}
$$

and the proposition is proved.

Remark 3. Using the plot of the function $g(s)$ in the right hand side of the inequality (2.6), we will obtain the estimate

$$
w-\bigvee_{0}^{1}(f) \geq \sup _{s \in[0,1]} \frac{\sqrt{35 s^{5}-30 s^{3}+8}}{\sqrt{15}(1+|2 s-1|)}=.5968668193
$$

(see Figure 1).

Proposition 2. Let X be a Banach space, A a linear and bounded operator on X and $-\infty<a<b<\infty$. Then for each $s \in[a, b]$, we have:

$$
\begin{gather*}
\left\|\int_{a}^{b} e^{t A} d t-(b-a) e^{s A}\right\| \tag{2.7}\\
\leq \begin{cases}{\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right]\left[e^{b\|A\|}-e^{a\|A\|}\right],} & \text { if } \quad a \geq 0 ; \\
{\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right]\left[e^{-a\|A\|}-e^{-b\|A\|}\right],} & \text { if } \quad b \leq 0 ; \\
{\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right]\left[e^{b\|A\|}+e^{-a\|A\|}-2\right],} & \text { if } \quad a \leq 0 \leq b .\end{cases}
\end{gather*}
$$

Proof. Let $\mathcal{L}(X)$ be the Banach space of all bounded linear operators on X endowed with the operatorial norm. We recall that if $A \in \mathcal{L}(X)$, then its operatorial norm is defined by

$$
\|A\|=\sup \{\|A x\|: x \in X,\|x\| \leq 1\}
$$

We recall also that the series $\left(\sum_{n \geq 1} \frac{(t A)^{n}}{n!}\right)$ converges absolutely and locally uniformly for $t \in \mathbb{R}$. Let $e^{t A}$ be its sum. It is easy to see that $\left\|e^{t A}\right\| \leq e^{|t|\|A\|}$ for every $t \in \mathbb{R}$ and $\left(e^{t A}\right)^{\prime}=A e^{t A}$ for all $t \in \mathbb{R}$. Then applying the inequality from (2.5) with X replaced by $\mathcal{L}(X)$ and $f(t)=e^{t A}$, we get

$$
\begin{aligned}
\left\|\int_{a}^{b} e^{t A} d t-(b-a) e^{s A}\right\| & \leq\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right] \cdot \int_{a}^{b}\left\|A e^{t A}\right\| d t \\
& \leq\left[\frac{1}{2}(b-a)+\left|s-\frac{a+b}{2}\right|\right]\|A\| \int_{a}^{b} e^{|t|\|A\|} d t .
\end{aligned}
$$

Now the estimate (2.7) can be obtained using elementary calculus. We omit the details.

Proposition 3. Let $A, B \in \mathcal{L}(X)$ such that $\|A\| \neq\|B\|$. Then

$$
\left\|e^{\frac{1}{2} A}(B-A) e^{\frac{1}{2} B}-\left(e^{B}-e^{A}\right)\right\| \leq \frac{1}{2}\|B-A\| \cdot(\|A\|+\|B\|) \cdot \frac{e^{\|B\|}-e^{\|A\|}}{\|B\|-\|A\|}
$$

Proof. Let $f:[0,1] \rightarrow \mathcal{L}(X)$ be defined by

$$
f(t)=e^{(1-t) A}(B-A) e^{t B}
$$

We have

$$
\begin{aligned}
\int_{0}^{1} f(t) d t & =\int_{0}^{1} e^{(1-t) A}\left(e^{t B}\right)^{\prime} d t+\int_{0}^{1}\left(e^{(1-t) A}\right)^{\prime} e^{t B} d t \\
& =2\left(e^{B}-e^{A}\right)-\int_{0}^{1} f(t) d t
\end{aligned}
$$

Then from Corollary 1 it follows that

$$
\begin{aligned}
& \left\|e^{\frac{1}{2} A}(B-A) e^{\frac{1}{2} B}-\left(e^{B}-e^{A}\right)\right\| \\
\leq & \frac{1}{2} \bigvee_{0}^{1}(f)=\frac{1}{2} \int_{0}^{1}\left\|f^{\prime}(t)\right\| d t \\
\leq & \frac{1}{2}\|B-A\| \cdot \frac{\|A\|+\|B\|}{\|B\|-\|A\|} \int_{0}^{1} e^{(1-t)\|A\|}(\|B\|-\|A\|) e^{t\|B\|} d t \\
= & \frac{1}{2}\|B-A\|(\|A\|+\|B\|) \cdot \frac{e^{\|B\|}-e^{\|A\|}}{\|B\|-\|A\|}
\end{aligned}
$$

We have used the inequalities

$$
\left\|e^{t A}\right\| \leq e^{|t| \cdot\|A\|}, \text { for all } t \in \mathbb{R}
$$

and

$$
\left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\| \cdot\left\|T_{2}\right\|, \text { for all } T_{1}, T_{2} \in \mathcal{L}(X)
$$

The above theorem may be used for the numerical approximation of the integral $\int_{a}^{b} f(t) d t$ in terms of arbitrary Riemann sums.

Let $I_{n}: a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b$ be a division of $[a, b], h_{i}:=t_{i+1}-t_{i}$ $(i=\overline{0, n-1})$ and $\nu(h):=\max _{i=\overline{0, n-1}}\left\{h_{i}\right\}$. Consider the intermediate points $\xi_{i} \in$ $\left[t_{i}, t_{i+1}\right](i=\overline{0, n-1})$ and define the Riemann sum

$$
\begin{equation*}
R_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right):=\sum_{i=0}^{n-1} h_{i} f\left(\xi_{i}\right) . \tag{2.8}
\end{equation*}
$$

The following result holds.
Theorem 2. Let $f:[a, b] \rightarrow X$ be of bounded semivariation on $[a, b]$. Then we have

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=R_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)+V_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right) \tag{2.9}
\end{equation*}
$$

where the quadrature formula $R_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)$ is defined in (2.8) and the remainder $V_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)$ satisfies the estimate:

$$
\begin{align*}
& \left\|V_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)\right\| \tag{2.10}\\
\leq & \sum_{i=0}^{n-1}\left(\xi_{i}-t_{i}\right)\left(w-\bigvee_{t_{i}}^{\xi_{i}}(f)\right)+\sum_{i=0}^{n-1}\left(t_{i+1}-\xi_{i}\right)\left(w-\bigvee_{\xi_{i}}^{t_{i+1}}(f)\right) \\
\leq & {\left[\frac{1}{2} \nu(h)+\max _{i=0, n-1}\left|\xi_{i}-\frac{t_{i+1}-t_{i}}{2}\right|\right]\left(w-\bigvee_{a}^{b}(f)\right) } \\
\leq & \nu(h)\left(w-\bigvee_{a}^{b}(f)\right) .
\end{align*}
$$

Proof. If we apply (2.1) on the interval $\left[x_{i}, x_{i+1}\right] \quad(i=\overline{0, n-1})$, we may write that

$$
\begin{align*}
& \left\|\int_{t_{i}}^{t_{i+1}} f(t) d t-h_{i} f\left(\xi_{i}\right)\right\| \tag{2.11}\\
\leq & \left(\xi_{i}-t_{i}\right)\left(w-\bigvee_{t_{i}}^{\xi_{i}}(f)\right)+\left(t_{i+1}-\xi_{i}\right)\left(w-\bigvee_{\xi_{i}}^{t_{i+1}}(f)\right) \\
\leq & {\left[\frac{1}{2} h_{i}+\left|\xi_{i}-\frac{t_{i+1}-t_{i}}{2}\right|\right]\left(w-\bigvee_{t_{i}}^{t_{i+1}}(f)\right) . }
\end{align*}
$$

Summing over i from 0 to $n-1$ and using the generalised triangle inequality, we have:

$$
\begin{aligned}
\left\|V_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)\right\| & \leq \sum_{i=0}^{n-1}\left(\xi_{i}-t_{i}\right)\left(w-\bigvee_{t_{i}}^{\xi_{i}}(f)\right)+\sum_{i=0}^{n-1}\left(t_{i+1}-\xi_{i}\right)\left(w-\bigvee_{\xi_{i}}^{t_{i+1}}(f)\right) \\
& \leq \sum_{i=0}^{n-1}\left[\frac{1}{2} h_{i}+\left|\xi_{i}-\frac{t_{i+1}-t_{i}}{2}\right|\right]\left(w-\bigvee_{t_{i}}^{t_{i+1}}(f)\right) \\
& \leq\left[\frac{1}{2} \nu(h)+\max _{i=0, n-1}\left|\xi_{i}-\frac{t_{i+1}-t_{i}}{2}\right|\right]\left(w-\bigvee_{a}^{b}(f)\right) \\
& \leq \nu(h)\left(w-\bigvee_{a}^{b}(f)\right) .
\end{aligned}
$$

If we consider the mid-point rule defined by

$$
\begin{equation*}
M_{n}\left(f ; I_{n}\right):=\sum_{i=0}^{n-1} h_{i} f\left(\frac{t_{i}+t_{i+1}}{2}\right) \tag{2.12}
\end{equation*}
$$

then we may state the following corollary.
Corollary 2. Let $f:[a, b] \rightarrow X$ be of bounded semivariation on $[a, b]$. Then we have:

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=M_{n}\left(f ; I_{n}\right)+Q_{n}\left(f ; I_{n}\right) \tag{2.13}
\end{equation*}
$$

where $M_{n}\left(f ; I_{n}\right)$ is the mid-point rule defined by (2.12) and the remainder $Q_{n}\left(f ; I_{n}\right)$ satisfies the estimate:

$$
\begin{equation*}
\left\|Q_{n}\left(f ; I_{n}\right)\right\| \leq \frac{1}{2} \sum_{i=0}^{n-1} h_{i}\left(w-\bigvee_{t_{i}}^{t_{i+1}}(f)\right) \leq \frac{1}{2} \nu(h)\left(w-\bigvee_{a}^{b}(f)\right) \tag{2.14}
\end{equation*}
$$

In practical applications, it is useful to consider an equidistant partitioning

$$
E_{n}: x_{i}:=a+\frac{i}{n}(b-a), \quad i=\overline{0, n} .
$$

Thus, the mid-point rule becomes

$$
M_{n}(f):=\frac{1}{n} \sum_{i=0}^{n-1} f\left[a+\left(i+\frac{1}{2}\right) \cdot \frac{b-a}{n}\right]
$$

and we have the representation

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=M_{n}(f)+Q_{n}(f) \tag{2.15}
\end{equation*}
$$

where the remainder $Q_{n}(f)$ satisfies the bounds

$$
\begin{equation*}
\left\|Q_{n}(f)\right\| \leq \frac{1}{2 n}\left(w-\bigvee_{a}^{b}(f)\right) \tag{2.16}
\end{equation*}
$$

If one would like to approximate the integral of a function $f:[a, b] \rightarrow X$ of bounded semivariation with a theoretical error less than $\varepsilon>0$, the required minimal number n_{ε} in the equidistant partitioning is

$$
\begin{equation*}
n_{\varepsilon}=\left[\frac{1}{2 \varepsilon}\left(w-\bigvee_{a}^{b}(f)\right)\right]+1 \tag{2.17}
\end{equation*}
$$

where $[r]$ denotes the integer part of $r \in \mathbb{R}$.

3. Application for Differential Equations in Banach Spaces

Let us consider the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{u}(t)=A(t) u(t), \quad t \in \mathbb{R} ; \tag{A,s,x}\\
u(s)=x
\end{array}\right.
$$

on a Banach space X. Here $A(t)$ is a bounded linear operator on X for each $t \in \mathbb{R}$, the function $t \longmapsto A(t): \mathbb{R} \rightarrow \mathcal{L}(X)$ is continuous and integrally bounded, i.e., there exists a $\delta>0$ such that

$$
\sup _{t \in \mathbb{R}} \int_{t}^{t+\delta}\|A(u)\| d u=K_{\delta}<\infty
$$

and $s \in \mathbb{R}, x \in X$ are given.
It is well-known that the solution of (A, s, x) is given by

$$
u(t)=U(t, s) x
$$

where $U(t, s):=P(t) P^{-1}(s)$ and $P(\cdot)$ is the solution of the operatorial Cauchy problem

$$
\left\{\begin{array}{l}
\dot{X}(t)=A(t) X(t) \\
X(0)=I
\end{array}\right.
$$

Here I denotes the identity operator on $\mathcal{L}(X)$. Let $f: \mathbb{R} \rightarrow X$ be a continuously differentiable function. We also consider the inhomogeneous and nonautonomous Cauchy problem
(A, f, s, x)

$$
\left\{\begin{array}{l}
\dot{u}(t)=A(t) u(t)+f(t), \quad t \in \mathbb{R} \\
u(s)=x
\end{array}\right.
$$

The solution of (A, f, s, x) is given by

$$
\begin{equation*}
u(t):=U(t, s) x+\int_{s}^{t} U(t, \tau) f(\tau) d \tau \tag{3.1}
\end{equation*}
$$

In the above conditions the family of bounded linear operators $\{U(t, \tau): t, \tau \in \mathbb{R}\}$ has some properties which will be summarized next.
(1) $U(t, \xi) U(\xi, \tau)=U(t, \tau)$ for all $t, \xi, \tau \in \mathbb{R}$;
(2) $U(t, t)=I$ for each $t \in \mathbb{R}$;
(3) there exist $\omega \in \mathbb{R}$ and $M>0$ such that

$$
\begin{equation*}
\|U(t, \xi)\| \leq M e^{\omega|t-\xi|} \text { for every } t \in \mathbb{R} \text { and } \xi \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

(4) the functions $t \mapsto U\left(t, \xi_{0}\right)$ and $\xi \mapsto U\left(t_{0}, \xi\right)$ are continuously differentiable for each fixed $\xi_{0} \in \mathbb{R}$ and $t_{0} \in \mathbb{R}$ respectively. Moreover,

$$
\frac{d}{d t}\left[U\left(t, \xi_{0}\right)\right]=A(t) U\left(t, \xi_{0}\right)
$$

and

$$
\frac{d}{d t}\left[U\left(t_{0}, \xi\right)\right]=-U\left(t_{0}, \xi\right) A(\xi)
$$

A proof of these properties can be found in [3].
Theorem 3. We will preserve all the hypotheses made on the functions $A(\cdot)$ and $f(\cdot)$ before. The solution $u(\cdot)$ of $(A, f, 0, x)$ can be represented as

$$
\begin{equation*}
u(t)=U(t, 0) x+S_{n}(\boldsymbol{\lambda}, \boldsymbol{\mu}, t)+Q_{n}(\boldsymbol{\lambda}, \boldsymbol{\mu}, t), \quad t \geq 0 \tag{3.3}
\end{equation*}
$$

where

$$
S_{n}(\boldsymbol{\lambda}, \boldsymbol{\mu}, t)=t \sum_{i=0}^{n-1}\left(\lambda_{i+1}-\lambda_{i}\right) U\left(t, \mu_{i} t\right) f\left(\mu_{i} t\right)
$$

$\boldsymbol{\lambda}: 0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n-1}<\lambda_{n}=1$ is a partition of the interval [0,1] and $\lambda_{i} \leq \mu_{i} \leq \lambda_{i+1}$ for all positive integers i with $0 \leq i \leq n-1$. Moreover, the remainder $Q_{n}(\boldsymbol{\lambda}, \boldsymbol{\mu}, t)$ satisfies the estimates:

$$
\begin{align*}
& \left\|Q_{n}(\boldsymbol{\lambda}, \boldsymbol{\mu}, t)\right\| \tag{3.4}\\
\leq & \frac{1}{2} \nu(\boldsymbol{\lambda}) t \cdot M e^{\omega t}\left[\||A(\cdot)|\|_{[0, t], \infty}\||f(\cdot)|\|_{[0, t], \infty}+\left\|\left|f^{\prime}(\cdot)\right|\right\|_{[0, t], \infty}\right]
\end{align*}
$$

and

$$
\begin{align*}
& \left\|Q_{n}(\boldsymbol{\lambda}, \boldsymbol{\mu}, t)\right\| \tag{3.5}\\
\leq & \frac{1}{2} \nu(\boldsymbol{\lambda}) \cdot M e^{\omega t}\left[K_{\delta}\left(2+\frac{t}{\delta}\right)\||f(\cdot)|\|_{[0, t], \infty}+\bigvee_{0}^{t}(f)\right],
\end{align*}
$$

respectively for each $t \in[0, \infty)$, where ω is a positive number such that the estimate (3.2) holds.

Proof. For a fixed $t>0$ consider the function $g(\tau)=U(t, \tau) f(\tau)$ for $\tau \in[0, t]$. Then g is differentiable on $[0, t]$ and

$$
g^{\prime}(\tau)=-U(t, \tau) A(\tau) f(\tau)+U(t, \tau) f(\tau), \text { for all } \tau \in[0, t] .
$$

We have

$$
\begin{aligned}
\left\|g^{\prime}(\tau)\right\| & \leq\|U(t, \tau)\|\|A(\tau)\|\|f(\tau)\|+\|U(t, \tau)\|\|f(\tau)\| \\
& \leq M e^{\omega t}\left[\|A(\cdot)\|\left\|_{[0, t], \infty} \cdot\right\|\left|f(\cdot)\left\|_{[0, t], \infty}+\right\|\right| f^{\prime}(\cdot) \|_{[0, t], \infty}\right]
\end{aligned}
$$

and then

$$
\begin{aligned}
\bigvee_{0}^{t}(g) & =\int_{0}^{t}\left\|g^{\prime}(\tau)\right\| d \tau \\
& \leq M t e^{\omega t}\left[\left\|\left|A(\cdot)\| \|_{[0, t], \infty} \cdot\||f(\cdot)|\|_{[0, t], \infty}+\left\|\left|\left|f^{\prime}(\cdot)\right| \|_{[0, t], \infty}\right] .\right.\right.\right.\right.
\end{aligned}
$$

Now the estimate from (3.3) easily follows from (2.14).
On the other hand

$$
\begin{align*}
& \bigvee_{0}^{t}(g)=\int_{0}^{t}\left\|g^{\prime}(\tau)\right\| d \tau \tag{3.6}\\
\leq & M e^{\omega t}\| \| f(\cdot)\left\|_{[0, t], \infty} \int_{0}^{t}\right\| A(\tau) \| d \tau+M e^{\omega t} \bigvee_{0}^{t}(f) \\
= & M e^{\omega t}\left[\||f(\cdot)|\|_{[0, t], \infty}\left(\sum_{i=0}^{n_{t}} \int_{i}^{i+\delta}\|A(\tau)\| d \tau+\int_{n_{t}+\delta}^{t}\|A(\tau)\| d \tau\right)+\bigvee_{0}^{t}(f)\right] \\
\leq & M e^{\omega t}\left[\||f(\cdot)|\|_{[0, t], \infty}\left(n_{t}+2\right) K_{\delta}+\bigvee_{0}^{t}(f)\right] \\
\leq & M e^{\omega t}\left[\||f(\cdot)|\|_{[0, t], \infty}\left(\frac{t}{\delta}+2\right) K_{\delta}+\bigvee_{0}^{t}(f)\right]
\end{align*}
$$

where n_{t} is the integer part of $\frac{t}{\delta}$.
Using (3.6) and (2.14), we obtain the estimate (3.5).
If we define the quadrature formula

$$
\begin{equation*}
M_{n}(\boldsymbol{\lambda}, t):=t \sum_{i=0}^{n-1}\left(\lambda_{i+1}-\lambda_{i}\right) U\left(t, \frac{\lambda_{i}+\lambda_{i+1}}{2} \cdot t\right) f\left(\frac{\lambda_{i}+\lambda_{i+1}}{2} \cdot t\right), \tag{3.7}
\end{equation*}
$$

then we may state the following corollary.

Corollary 3. The solution of $(A, f, 0, x)$ can be represented as

$$
u(t)=U(t, 0) x+M_{n}(\boldsymbol{\lambda}, t)+L_{n}(\boldsymbol{\lambda}, t)
$$

where $M_{n}(\boldsymbol{\lambda}, t)$ is as given in (3.7) and the remainder $L_{n}(\boldsymbol{\lambda}, t)$ satisfies the estimates

$$
\left\|L_{n}(\boldsymbol{\lambda}, t)\right\| \leq \frac{1}{2} \nu(\boldsymbol{\lambda}) t^{2} \cdot M e^{\omega t}\left[\||A(\cdot)|\|_{[0, t], \infty}\||f(\cdot)|\|_{[0, t], \infty}+\left\|\left|f^{\prime}(\cdot)\right|\right\|_{[0, t], \infty}\right]
$$

and

$$
\left\|L_{n}(\boldsymbol{\lambda}, t)\right\| \leq \frac{1}{2} \nu(\boldsymbol{\lambda}) t \cdot M e^{\omega t}\left[K_{\delta}\left(2+\frac{t}{\delta}\right)\||f(\cdot)|\|_{[0, t], \infty}+\bigvee_{0}^{t}(f)\right]
$$

respectively for each $t \in[0, \infty)$.
Remark 4. In practical applications, it is easier to consider a uniform partitioning of $[0, t]$ given by

$$
E_{n}: x_{i}:=\frac{i}{n} \cdot t, \quad 0 \leq i \leq n
$$

and then (3.7) becomes

$$
\tilde{M}_{n}(t):=\frac{t}{n} \sum_{i=0}^{n-1}\left(\lambda_{i+1}-\lambda_{i}\right) U\left(t, \frac{2 i+1}{2 n} \cdot t\right) f\left(\frac{2 i+1}{2 n} \cdot t\right)
$$

In this, case, we have the representation of $u(\cdot)$ given by

$$
u(t)=U(t, 0) x+\tilde{M}_{n}(t)+\tilde{L}_{n}(t)
$$

where the remainder $\tilde{L}_{n}(\cdot)$ satisfies the error bounds

$$
\left\|\tilde{L}_{n}(t)\right\| \leq \frac{1}{2 n} t^{2} \cdot M e^{\omega t}\left[\||A(\cdot)|\|_{[0, t], \infty}\| \| f(\cdot)\left|\left\|_{[0, t], \infty}+\right\|\right| f^{\prime}(\cdot) \mid \|_{[0, t], \infty}\right]
$$

and

$$
\left\|\tilde{L}_{n}(t)\right\| \leq \frac{1}{2 n} t \cdot M e^{\omega t}\left[K_{\delta}\left(2+\frac{t}{\delta}\right)\||f(\cdot)|\|_{[0, t], \infty}+\bigvee_{0}^{t}(f)\right]
$$

respectively.

4. A Numerical Example

Let $X=\mathbb{R}^{2}, x=(\xi, \eta) \in \mathbb{R}^{2},\|x\|_{2}=\sqrt{\xi^{2}+\eta^{2}}$. We consider the linear, 2-dimensional, non-autonomous and inhomogeneous differential system

$$
\left\{\begin{array}{l}
\dot{u}_{1}(t)=\left(-1-\sin ^{2} t\right) u_{1}(t)+(-1+\sin t \cos t) u_{2}(t)+e^{-t} \tag{4.1}\\
\dot{u}_{1}(t)=(1+\sin t \cos t) u_{1}(t)+\left(-1-\cos ^{2} t\right) u_{2}(t)+e^{-2 t} \\
u_{1}(0)=u_{2}(0)=0
\end{array}\right.
$$

If we denote

$$
A(t):=\left(\begin{array}{cc}
-1-\sin ^{2} t & -1+\sin t \cos t \\
1+\sin t \cos t & -1-\cos ^{2} t
\end{array}\right), \quad f(t)=\left(e^{-t}, e^{-2 t}\right), \quad x=(0,0)
$$

and we identify (ξ, η) with $\binom{\xi}{\eta}$, then the above system is the Cauchy problem $(A, f, 0, x)$. The fundamental matrix associated with $A(t)$ is

$$
\begin{equation*}
U(t, s)=P(t) P^{-1}(s), \quad t \in \mathbb{R}, s \in \mathbb{R} \tag{4.2}
\end{equation*}
$$

where $P(\cdot)$ is the solution of the following operatorial Cauchy problem

$$
\begin{equation*}
\dot{Y}(t)=A(t) Y(t), \quad Y(0)=I_{2}, \quad t \in \mathbb{R} \tag{4.3}
\end{equation*}
$$

and I_{2} is the 2-dimensional, quadratic real matrix identity.
Let $W-(t):=\left(\begin{array}{ll}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right)$. Then it is easy to see that

$$
\begin{aligned}
\dot{W}(t) W^{-1}(t) & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\text { and } W^{-1}(t)\left(\begin{array}{cc}
-1 & -1 \\
1 & -2
\end{array}\right) W(t) & =A(t), \text { for all } t \in \mathbb{R}
\end{aligned}
$$

Now, let $Z(t):=W-(t) P(t)$. We have

$$
\begin{aligned}
\dot{Z}(t) & =\dot{W}(t) P(t)+W(t) \dot{P}(t) \\
& =\left[\dot{W}(t) W^{-1}(t)+W(t) A(t) W^{-1}(t)\right] Z(t) \\
& =B Z(t)
\end{aligned}
$$

where $B=\left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)$. Also, using the fact that $Z(0)=I_{2}$ it follows that

$$
Z(t)=\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-2 t}
\end{array}\right), \quad t \in \mathbb{R}
$$

Then the solution $P(\cdot)$ of the operatorial Cauchy problem (4.2) is

$$
P(t)=\left(\begin{array}{cc}
e^{-t} \cos t & e^{-2 t} \sin t \\
-e^{-t} \sin t & e^{-2 t} \cos t
\end{array}\right), t \in \mathbb{R}
$$

and the exact solution of the system (4.1) is $u(t)=\left(u_{1}(t), u_{2}(t)\right)$, where

$$
\left\{\begin{array}{c}
u_{1}(t)=e^{-t} \cos t \cdot E_{1}(t)+e^{-2 t} \sin t \cdot E_{2}(t) \tag{4.4}\\
u_{2}(t)=-e^{-t} \sin t \cdot E_{1}(t)+e^{-2 t} \cos t \cdot E_{2}(t)
\end{array} \quad t \in \mathbb{R}\right.
$$

and

$$
\begin{aligned}
E_{1}(t) & =\int_{0}^{t}\left(\cos s-e^{-s} \sin s\right) d s \\
& =\sin t+\frac{1}{2} e^{-t}(\cos t+\sin t)-\frac{1}{2} \\
E_{2}(t) & =\int_{0}^{t}\left(\cos s+e^{s} \sin s\right) d s \\
& =\sin t+\frac{1}{2}(\sin t-\cos t) \cdot e^{t}+\frac{1}{2}
\end{aligned}
$$

Now, if we consider

$$
\begin{aligned}
\tilde{M}_{n}(t)= & \frac{t}{n}\left[\left(e^{-t} \cos t\right) \cdot S_{1}(n)+\left(e^{-2 t} \sin t\right) \cdot S_{2}(n)\right. \\
& \left.\left(e^{-t} \sin t\right) \cdot S_{1}(n)+\left(e^{-2 t} \cos t\right) \cdot S_{2}(n)\right]
\end{aligned}
$$

where

$$
S_{1}(n)=\sum_{i=0}^{n-1}\left[\cos \left(\frac{2 i+1}{2 n} \cdot t\right)-e^{-\left(\frac{2 i+1}{2 n} \cdot t\right)} \cdot \sin \left(\frac{2 i+1}{2 n} \cdot t\right)\right]
$$

and

$$
S_{2}(n)=\sum_{i=0}^{n-1}\left[\cos \left(\frac{2 i+1}{2 n} \cdot t\right)+e^{\frac{2 i+1}{2 n} \cdot t} \cdot \sin \left(\frac{2 i+1}{2 n} \cdot t\right)\right]
$$

then the exact solution given in (4.4) may be represented by

$$
u(t)=\tilde{M}_{n}(t)+\tilde{L}_{n}(t), \quad t \in \mathbb{R}
$$

For $n=10^{3}$, the plot of the $2-$ norm of the error $\left\|\tilde{L}_{n}(\cdot)\right\|_{2}$ is embodied in Figure 2.

Acknowledgement 1. The research of Professor Constantin Buşe was supported by the Victoria University of Technology through the ARC small grant SGS 9/00.

References

[1] G.A. ANASTASSIOU, Ostrowski type inequalities, Proc. of Amer. Math. Soc., 123(12) (1995), 3775-3781.
[2] W. ARENDT, C.J.K. BATTY, M. HIEBER and F. NEUBRANDER, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag Basel, 2001.
[3] Yu. L. DALECKII and M.G. KREIN, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence R.I., (1974).
[4] T. KATO, Perturbation Theory for Linear Operators, $2^{\text {nd }}$ Ed., Springer-Verlag, Berlin Heidelberg, New York, (1976).
[5] S.S. DRAGOMIR, On the Ostrowski's integral inequality for mapping with bounded variation and applications, Math. Ineq. \&s Appl., 4(1) (2001), 59-66.
[6] S.S. DRAGOMIR and Th.M. RASSIAS, Ostrowski Type Inequalities and Applications in Numerical Integration, RGMIA Monographs, Victoria University, 2000 (ONLINE: http://rgmia.vu.edu.au/monographs)
[7] A.M. FINK, Bounds on the derivation of a function from its averages, Czech. Math. J., 42 (1992), 289-310.
(C.Buşe), Department of Mathematics, West University of Timişoara, Bd. V. Parvan 4, 1900 Timişoara, România.

E-mail address: buse@hilbert.math.uvt.ro
URL: http://rgmia.vu.edu.au/BuseCVhtml/index.html
(S.S. Dragomir and A. Sofo), School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: sever@matilda.vu.edu.au
$U R L$: http://rgmia.vu.edu.au/SSDragomirWeb.html
E-mail address: sofo@matilda.vu.edu.au
URL: http://sci.vu.edu.au/staff/anthonys.html

[^0]: Date: May 04, 2001.
 1991 Mathematics Subject Classification. Primary 26D15, 26D99; Secondary 46B99.
 Key words and phrases. Ostrowski's inequality, vector-valued functions.

