OSTROWSKTI’S INEQUALITY FOR VECTOR-VALUED
FUNCTIONS OF BOUNDED SEMIVARIATION AND
APPLICATIONS

C. BUSE, S.S. DRAGOMIR, AND A. SOFO

ABSTRACT. An Ostrowski type inequality for vector-valued functions of bounded
semivariation and its applications for linear operator inequalities and differen-
tial equations in Banach spaces are given.

1. INTRODUCTION

Let X be a real or complex Banach space and X* its topological dual space, i.e.,
the space consisting of all bounded linear functionals z* : X — K. Let —co < a <
b < oo be two real numbers. A function f : [a,b] — X is said to be:

(i) of bounded variation if there exists an M > 0 such that for all partitions
IHia=tg<t1 < -+ <tp_1 <t, =0bwe have

D IF () = f (Ea)l] < M.
i=1
(ii) of bounded semivariation if there exists an M > 0 such that for each natural

non-null number N and all mutual disjoint intervals (s1,t1), (s2,t2),..., (SN, tN)
with (s;,t;) C [a,b] for every i € {1,..., N} we have

i=1

(iii) of weakly bounded variation if the function z* o f is of bounded variation
for each z* € X*.

It is clear that if f is of bounded variation, then it is of bounded semivariation.
Moreover, if f is of bounded variation, then it is of weakly bounded variation,
because for every z* € X*, ||z*|| <1, we have

l2* (f (t:) = [ (tic))| < If () = f(tic)||, forall i=T,n.

In fact, a function f : [a,b] — X is of bounded semivariation if and only if f is
of weakly bounded variation [2].

Let IT:a=tg <t; < <tp_1 <t,=>Dbe a partition of an interval [a,b]. We
denote by v (IT) := max {¢; — t;—1, ¢ € 1,2,...,n} thenorm of II. Let f : [a,b] — X
and ¢ : [a,b] — C be two functions. The function g is Riemann-Stieltjes integrable
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with respect to f on [a,b] if for all & = (£1,&,,...,&,) with t,_1 < &, < t; for all
i = 1,n, the limit

lim Z!] (&) [f (t) — f (ti1)]
v(I1)—0 et
exists in X. Such a limit is denoted by fj gdf and is called the Riemann-Stieltjes
integral of g with respect to f on [a,b].
It is easy to see that if g is Riemann-Stieltjes integrable with respect to f, then
f is Riemann-Stieltjes with respect to g. In addition, the following formula

b

b
/fdg=g<b>f<b>—g<a>f<a>—/ odf

a

holds.

If one of the functions f, g is continuous and the other is of bounded semivari-
ation, then each of them is Riemann-Stieltjes integrable with respect to the other
[2]. In particular, if f : [a,b] — X is of bounded semivariation, then f is Riemann
integrable on [a, b].

If f:[a,b] — X is of bounded semivariation then its totally weak variation
(which is denoted as follows by w — \/Z (f)) is finite, i.e., there exists M > 0 such
that

b n
w=\/(f) : =SUP{ZI$* (f () = f (ti))l,p € M ([a, b)), 2" € X7, |l Sl}
= M< oofi

where p:a =ty <ty < -+ <tn_1 <t, =>band II([a,b]) is the set of all partitions
of the interval [a, b].
Indeed, the set of all bounded linear operators T}, y : X* — C, given by

Ty (%) =) @™ (f(t:) = (ti-1)), p €M ([a,b]),
i=1

is uniformly punctually bounded, i.e., for each z* € X* there exists K (z*) > 0
such that

|Tp,5 (z¥)] < K (%) < 00, for all p eIl([a,b]).
Then from the uniform boundedness principle it follows that there exists K > 0
such that
Tp.p (%) < K [|z7]], for all p € II([a,b]),
i.e., the desired statement holds.
Having considered all the above, we can now formulate the following result.

Lemma 1. If g : [a,b] — C is a continuous function and f : [a,b] — X is of
bounded semivariation, then

/:gdf

Proof. Let Il : a = tg < t; < -+ < tp—1 < t, = b be an arbitrary partition of
the interval [a,b] and z* € X* with ||z*|| < 1. Then for every intermediate point

(1.1) ‘

b
< sup [g(t)| <w—\/(f)>-

te[a,b] a
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& € [ti—1,ti], we have:

z” (Zg (&) (f () — f (hl)))‘ = Z lg (€l |z (f (t:) — f (ti-1))]
i=1

A

< S lg (¢t |Z|x f (i)l
b
< talpb] g ()] (w -V (f)) :

Then, using a well-known fact (see for example [4, p. 135]), namely that for x € X
one has

2] = sup {|2* (2)] : 2" € X7, [l2"]| <1},
it follows that

D 9(&) (f (k) = f (tioa))
=1

Taking the limit as v (IT) — 0 in the previous inequality and using the fact that g
is Riemann-Stieltjes integrable with respect to f, (1.1) follows. I

b
< sup |g(0) (w—\/(f)>-

t€la,b] a

The following result easily follows using some elementary considerations and the
fact that (1.1) holds for scalar valued functions.
Lemma 2. Let —o0o < a<c¢<b< oo and f : [a,b] — X be a function which is
of bounded semivariation on [a,b] and of bounded semivariation on [c,b]. Then f
is of bounded semivariation on [a,b] and

b c b
w=\/(f) = (w—\/(f)> + (w—\/(f)> :
a a

In this paper we point out an inequality of Ostrowski type for vector-valued
functions of bounded semivariation and apply it for operator inequalities and for
approximating the solutions of certain differential equations in Banach spaces.

For the Ostrowski type inequalities for scalar-valued functions, see [1], [6] and
[7].

2. AN OSTROWSKI T'YPE INEQUALITY

The following theorem holds.

Theorem 1. Let X be a Banach space and f : [a,b] — X a mapping of bounded
semivariation on [a,b]. Then for all s € [a,b], we have the inequalities

(2.1) ‘ tydt — (b—a) f ()
s b
- <s—a><w—\/<f>)+ (w V(s )
b
< [;(ba)Jr‘s aH” (w \ (f )

The constant % in the second inequality is the best possible one.
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Proof. Using the integration by parts formula for Riemann-Stieltjes integrals, we
have

‘f@f@#@:@f@ﬂwaff@ﬁ
and
b b
/@—@#@=@—$ﬂ@—/f@ﬁ-

If we add the two equalities, we obtain

S

b b
@2 G-0fe- [ foda= [ c-adnr [ @i

for any s € [a, b].
Taking the norm on (2.2), we get

b
@*@ﬂﬁ*/f@ﬁ

IN

b
/@*@#@

s b
wp<r—@<w—\/u0—kmm(b—@(w—\/uo

t€la,s] a te[s,b]

s b
(s —a) <w—\/(f)> +(b—s) (w—\/(f)>

a S

[ e-aaqo]+

AN

where, for the last inequality, we have applied Lemma 1. Thus, the first inequality
in (2.1) is proved.
Using Lemma 2, we may write that

s b
(s —a) (w—\/(f)>+(b—8) (’w—\/(f)>

a

s b
< max{s—a,b— s} (w—\/(f))-f—(w—\/(f))}
< B(b—aﬂ— s—a;rbu (w—\/(f)>

and the last part of (2.1) is proved.
The fact that % is the best constant follows in the same manner as in [5] and we
omit the details. i

Corollary 1. With the assumptions in Theorem 1, we have

/abf(t)dt—(b—a)f(a;bﬂ S%(b_a) (w_\b/(f))

a
The constant % 1s best possible.

23 ‘
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Remark 1. If f : [a,b] — X is of bounded variation on [a,b], then
b

< (s—a)\/(N+0-9\ ()

S

s—“;bH\b/m.

a

b
/f(t)dt—(b—a)f(S)

IN

[;(b—a)—l—

In particular, if f is differentiable and the derivative f' : [a,b] — X is continuous,
then

(2.5) ’ t)ydt —(b—a) f(s)
s b
< oo [ If Ol o-s) [ 17 @)
b
< [zo-a+ls- 3] [irana

Remark 2. When X is K, the field of scalars, then the inequality (2.4) becomes a
known result obtained in [5].

In the following we will present three examples in which we apply Theorem 1
and its consequence from (2.5).

Let X = L?([0,1],R). We consider the function f : [0,1] — X given by f (t) =
t-1jg,, t € [0,1]. Here 1jg 4 is the characteristic function on the interval [0, ].

Let IT: 0 =t) < t; < - < tp_1 < tp, = 1 be an arbitrary partition of the
interval [0, 1]. Then for all z* € L?([0,1],R) = X*, we have:

Z |z* (f (t:) = f (ti-1))]
i=1
- X
- X

Z[t i) / 2" (s >ds+/;1|x*< >|ds]

i=1

< /|x |ds<2(/ 2 ( ds) — 2",

Taking the supremum for all 2* € X* with ||z*||, < 1, we obtain that w — \/(1) (f) <
2, which shows that f is of bounded semivariation. On the other hand,

1) — Ft)2 = / (£ (8) = F (ti2) (s) 2 ds

ti—1 t;
/ (t: — tifl)z s?ds + / (tis)2 ds
0 ti—1

3 3 )
’31 +3 (3 —13,).

/0 z" (s) [(f (8)) () = (f (tiz1)) (5)] ds

i—1 ti—1 ti
/ x* (s) - tisds — / x* (s) - ti—15ds +/ x* (s) - t;sds
0 0 ti—1

i

IN

= (t — ti—1)2
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If we choose t; = 1=0,1,2...,n, then

i
np?

If (i) — f (tiza)llo

I

=1

tiig 1 <&i—1 [i—1
ti—ti—1)tie =—>
1(1 i-1)ti1 3 np p np 3nP

I

7

Y

-1

1 - nn-—1
B o nn-1)
n2Py/3nP 2n2pP+\/3np
as n — 00, if p is a suitable positive number.

Proposition 1. With the above notations the following inequality holds:

V3555 — 3053 + 8
V15 (1425 — 1)’

(2.6) w—\/(f)> for all s€0,1].
0

Proof. We apply Theorem 1 for our function f, a = 0 and b = 1. Then, for all
0 < s <1, we have:

2

- / (/Olt.l[o,ﬂdt) (5)—[f(s)](£)}2d£

= /01 /Olt-l[o,t](f)dt—[f(S)](f)}2d£

2

¢ 2 1 1
dt — d. d d.
/1tt s§> §+/s (/Ett) ¢
2 2 1 2\ 2
1_25 —sg) d§+/ (1_25> d¢

= (35s° — 30s® +8) .

1
H/ t- 1[07t]dt — f(s)
0

I
c\m
7N N 7 N7 \

and the proposition is proved. i

Remark 3. Using the plot of the function g (s) in the right hand side of the in-
equality (2.6), we will obtain the estimate

w— \1/ (F)> sup Y220 =307 48 ooe668193
0 T seo) VIB(1 425 —1])

(see Figure 1).
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Proposition 2. Let X be a Banach space, A a linear and bounded operator on X
and —oo < a < b < co. Then for each s € [a,b], we have:

(2.7) ’ /b etAdt — (b —a) e
; b—a)+|s— 2 ;F b [eblAll _ eallAl] if a0
< ; (b—a)+|s— a;b: [e-alAll _=blal] | i p<o;
:;(b_aH . “‘2”’: 141 4 e=al Al _2] | if a<0<b.

Proof. Let £ (X) be the Banach space of all bounded linear operators on X endowed
with the operatorial norm. We recall that if A € £(X), then its operatorial norm
is defined by

1A= sup {[|Az]|: = € X, ] < 1}.

n

We recall also that the series (Zn21 (t4)

— ) converges absolutely and locally uni-

formly for ¢ € R. Let ' be its sum. It is easy to see that ||e!|| < elll4ll for every

t € R and (etA)l = Ae*4 for all t € R. Then applying the inequality from (2.5)
with X replaced by £ (X) and f (t) = et4, we get

b b
’/a e'tdt — (b—a) e B(b—a)Jr‘s_“;bH /a | Aet | dt

1 b b
{2 (b—a)+‘s— “; H ||A||/ eltlliAl gt

Now the estimate (2.7) can be obtained using elementary calculus. We omit the
details. |

IA

IA
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Proposition 3. Let A,B € L(X) such that ||A|| # || B||. Then
GBI GlAl

1Bl = (1]~

1A 1B

e (B - A)ed? — (8 — )| < LB - Al (1] + |1B]) -

Proof. Let f:[0,1] — £ (X) be defined by
f (t) _ e(l—t)A (B _ A) etB

/01 ftydt = /01 1= (B gt 4 /01 (e(l—t)A)/etht
= 2(63—6‘4) /Olf(t)dt.

Then from Corollary 1 it follows that

We have

(B Ae 3B (eB—eA)H

1
1
< 5\/ ||f ) dt
0
HAH+||B|| Y asolal tI|B
< Lypogp ALELBE (1B = |A]) 151 gt
2|| | IBI= 4] Js 1B — Al
1 SIBI _ Gl
= _|B—A|(JA|+ Bl S S
5 | I (AN -+ 1B TBI= 4]

We have used the inequalities
HetAH < elt“”‘é‘”7 forall teR

and
HTlTQH S ||T1|| . HTQ”, for all Tl,TQ S E(X) .

The above theorem may be used for the numerical approximation of the integral
f; f () dt in terms of arbitrary Riemann sums.

Let I, ca=ty <t < - <tp_1 <ty =>beadivision of [a,b], h; :=t;11 —1;
(i=0,n—1) and v (h) := max {h }. Consider the intermediate points &; €

i=0,n—1

[ti;tis1] (i =0,n — 1) and define the Riemann sum

(2.8) o (f3 10, €) Z hif (€

The following result holds.

Theorem 2. Let f : [a,b] — X be of bounded semivariation on [a,b]. Then we
have

b
(29) / f(t) dt = Ry, (faIn7£)+Vn (f;In7£)7
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where the quadrature formula R, (f;I,,€) is defined in (2.8) and the remainder
Voo (f; In, &) satisfies the estimate:

(2'10) ”Vn (van,g)H

n—1 &; n—1 tit1
=t (w\/(f)) +Z(ti+1 = &) (w \/ (f))

IA
—
Iy
©

S+
~

INA
DO |
A
S
+
5
»

b
< MM(w—VUO.

Proof. If we apply (2.1) on the interval [x;, z;41] (z =0,n— 1) , we may write that

211 [ -
& tita
< (G—t) (w -V (f)) + (tiy1 — &) (w -V (f))
ti &
< {1@4‘ f'_tiﬂ_ti] <w_t\7(f)>
- 2 ' 2 b

Summing over i from 0 to n — 1 and using the generalised triangle inequality, we
have:

n—1 & n—1 tit1
IV (Fi 1m0 < (@m(wVUO+§ijm<wVUO

&

™

n—1 1 ti+1 —t tit1
< - {thﬁ‘ & B) ] (w_ \tL/ (f))
b
o oo

b

< mm<w—VUO.

|
If we consider the mid-point rule defined by
n—1
t; +tig1

2.12 M, (f; 1) = hif | ——— 1,
(212) (F:1,) Z;f< ;)

then we may state the following corollary.

Corollary 2. Let f : [a,b] — X be of bounded semivariation on [a,b]. Then we
have:

b
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where My, (f; 1) is the mid-point rule defined by (2.12) and the remainder Qy, (f; I,)
satisfies the estimate:

n—1 tit1 b
(214)  @u (LI < 5 3k <w =Y (f)> < gvin) (w - \/(f)) .
i=0

t;

In practical applications, it is useful to consider an equidistant partitioning

En:mi::a—i—l(b—a), i=0,n.
n

Thus, the mid-point rule becomes

and we have the representation

(2.15) / F () dt =M, (F)+Qn (f).

where the remainder @, (f) satisfies the bounds

b
(216) 1Qn (DI < 5 <w -V <f>> .

If one would like to approximate the integral of a function f : [a,b] — X of
bounded semivariation with a theoretical error less than € > 0, the required minimal
number n. in the equidistant partitioning is

1 b
(2.17) ne = lzg (w -\ (f))

where [r] denotes the integer part of r € R.

+1,

3. APPLICATION FOR DIFFERENTIAL EQUATIONS IN BANACH SPACES
Let us consider the Cauchy problem

at)=A)u(t), teR;
(A, s,x)
u(s) ==

on a Banach space X. Here A (t) is a bounded linear operator on X for each ¢t € R,
the function ¢ — A (¢) : R =L (X) is continuous and integrally bounded, i.e.,
there exists a 6 > 0 such that

t+8
sup/ A (w)]| du = Ks < o0,
ter Ji

and s € R, z € X are given.
It is well-known that the solution of (A4, s,x) is given by

u()=U(ts)x



OSTROWSKI INEQUALITY 11

where U (t,s) := P (t) P71 (s) and P (-) is the solution of the operatorial Cauchy
problem

X(t)=A@)X (1)

X(0)=1

Here I denotes the identity operator on £(X). Let f : R —X be a continuously
differentiable function. We also consider the inhomogeneous and nonautonomous
Cauchy problem

w(t)=AQut)+ @), tek
(A7f78’$)

u(s) = x.

The solution of (4, f,s,x) is given by

(3.1) w () ::U(t,s)x+/ Ut 1) f(7) dr.

In the above conditions the family of bounded linear operators {U (¢,7) : t,7 € R}
has some properties which will be summarized next.

) UEEUET)=U(t,7) forall t,&, 7 €R,;

(2) U (t,t) =1 for each t € R;

(3) there exist w € R and M > 0 such that

)

(

(3.2 U ()] < Me**=¢l for every t e R and € € R;

4) the functions ¢t — U (t,£,) and £ — U (tg, ) are continuously differentiable
for each fixed £, € R and ¢y € R respectively. Moreover,

d

% [U (t7§0)] =A (t) U (tafo)

and

% [U (to,&)] = U (to,&) A(E).

A proof of these properties can be found in [3].

Theorem 3. We will preserve all the hypotheses made on the functions A (-) and
f () before. The solution u (+) of (A, f,0,2) can be represented as

(3-3) u(t) =U(t,0) 2+ S (A p, 1) + Qn (A, pst), £ 20,

where
n—1
Sy (A, p,t) = tz (Nixr = X)) U (t, pt) f (pit)
i=0

A:0=X <A < <A1 < Ay =1 is a partition of the interval [0,1] and
Ai <y < Aipa for all positive integers i with 0 < ¢ < m — 1. Moreover, the
remainder Qp, (A, i, t) satisfies the estimates:

(3-4) 1Qn (A, 1, )|

1 " ’
< vt Me A 000 117 o0+ 117 Ol
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and

(3.5) 1Qn (A, 1, 1)l
< ;V()\)~Mewt[K5<2+§>”|f Mo.17.00 +\/

respectively for each t € [0,00), where w is a positive number such that the estimate

(3.2) holds.

Proof. For a fixed t > 0 consider the function g (7) = U (¢,7) f (1) for 7 € [0,¢].
Then g is differentiable on [0,¢] and

g (r)=-U(t,7)A(T)f(r)+U(t,7)f(r), forall 7€][0,t].
We have
lg' (DI < N EDITAOINS O+ T @D
216 1A G000 - 117 Olllo0 + 11 Ol 0]

/ g’ ()] dr
0 0

< Mt [AO g0 I1F M0 + 117 Ol 0] -

Now the estimate from (3.3) easily follows from (2.14).
On the other hand

36) V(o) = / g ()]l dr

A

IN

<

Py

D
I

t

< Meet|||f () OO/O ||A(7')||dT+Mew’\O/(f)

r e pitd t K
- Me _|Hf(')|||[0,t],oo (;/Z ||A(r)||dr+/m+6|A dr>+\0/ ]
< Me*! |f(~)|||[o7t]7oo(nt+2)K6+\/(f)]

0

r t
< M |1 Ollo00 (§ +2) K; +\/<f>] ’
L 0

where n; is the integer part of %.
Using (3.6) and (2.14), we obtain the estimate (3.5). 1

If we define the quadrature formula

n—1
. Ai + Ait1 Ai + g1
BT M= G =AU (1200 0) (2 ),

then we may state the following corollary.
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Corollary 3. The solution of (A, f,0,x) can be represented as
u(t)=U(t,0)x + M, (A, t) + L, (A, 1),

where M, (A, 1) is as given in (3.7) and the remainder Ly, (A, t) satisfies the esti-
mates

1o DI < 502 M (1A Ol 17 Olllgy e + 117 Ol 0

and
1 t k
||Ln<A,t>||s2u<A>t~Mewtha(z+5)|f Moo+ V (f ]
0

respectively for each t € [0, 00).

Remark 4. In practical applications, it is easier to consider a uniform partitioning
of [0,t] given by
E,: z;:=—-t, 0<i<n

and then (3.7) becomes

n—1 . .
t 2i+1 2i+1
= — t -t -t
nz B ( 2n >f< 2n >

In this, case, we have the representation of u () given by

w(t) =U (t,0)x + M, (t) + L, (t)

where the remainder Ly, (+) satisfies the error bounds

|20 @) < 52 e [IAONo.0.00 15 Olllgg0 + 11 Ol 0]

|2

respectively.

and

t
H<—t Me“t[K5(2+ >|||f M 0,4],00 +\/ ]
0

4. A NUMERICAL EXAMPLE

Let X = R?, = = (&n) € R, |z|l, = V€ +n2. We consider the linear,
2-dimensional, non-autonomous and inhomogeneous differential system

iy (t) = (=1 —sin®t) uy (t) + (=1 +sintcost) us (t) + e
(4.1) ty (t) = (14 sintcost) ug (£) + (=1 — cos? t) ug (t) + e 2%

(751 (0) = U2 (0) =0.
If we denote

—1—sin?t —1 4+ sintcost
A(t) = , ft)=(e"e®), x=(0,0)

1+ sintcost —1 —cos?t
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and we identify (£, 7) with < g ), then the above system is the Cauchy problem
(A, f,0,2). The fundamental matrix associated with A (t) is

(4.2) Ut,s)=P ()P " (s), teR, seR,
where P (+) is the solution of the following operatorial Cauchy problem
(4.3) Y(#)=A®)Y (t), Y(0) =1, teR,

and I is the 2-dimensional, quadratic real matrix identity.

Let W — (¢) := ( (i):itnt ii)r;tt ) . Then it is easy to see that
, (01
waowto = ()
and W~ < ) :;)W(t) = A(t), forall t € R.
Now, let Z (t) := W — (t) P (t). We have
Z(t) = W@ PO +W(E)P()
= [Wewrmswmanw o]z
= BZ(t),
where B = ( _01 _02 ) . Also, using the fact that Z (0) = I it follows that

et 0
Z(t):< 0 e_2t>,t€R.

Then the solution P (-) of the operatorial Cauchy problem (4.2) is

e tcost e~?tsint

P(t)= , teR
—e"tsint e ?tcost

and the exact solution of the system (4.1) is u (t) = (uq (¢) , u2 (t)), where

uy (t) = e tcost- By (t) + e 2tsint - By (t)
(4.4) teR,
ug (t) = —e~tsint- By (t) + e 2 cost - B (t)

and
t
Ei(t) = / (coss — e *sins) ds
0
. 1 —t . 1
= sint+ —e " (cost +sint) — —,
2 2
¢
Ey(t) = / (coss + e°sins) ds
0

. 1, . .1
= s1nt+§(smtfcost)~e +§.
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Now, if we consider

M, (t) = % [(e7"cost) - Sy (n) + (e * sint) - S5 (n)
(e *sint) - Sy (n) + (e * cost) - Sz (n)]
where
n—1 . .
21+1 (2041 4 . 20 +1
S1(n)§{cos( o ~t)e(2n )~s1n( o t)]
and
n—1 . .
_ 21+ 1 2l 21+ 1
Sa (n) = iz:; |:COS ( 5 t) +e sin ( o t)} )

then the exact solution given in (4.4) may be represented by
w(t) =My (t)+ Lo (t), t€R,

For n = 102, the plot of the 2—norm of the error Hf/n ()H2 is embodied in Figure
2.

2.59-08—3
2e-na§
1.5e-081
1 e—DEi-E

5e-091
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