A NOTE ON A GEOMETRIC INEQUALITY

M. KLAMKIN

Abstract

In this note the author gives an alternative proof for a geometric inequalities obtained by M. Crasmareanu.

In a recent note "Weighted inequalities in triangle geometry", the RGMIA Research Report, 2(7) (1999), pp. 1035-1037, Mircea Crasmareanu establishes the weighted triangle inequality

$$
\begin{equation*}
m a^{2}+n b^{2}+p c^{2} \geq 4 s \sqrt{m n+n p+p m} \tag{0.1}
\end{equation*}
$$

where a, b, c, S are the sides and area of a triangle and $m+n>0, n+0>0$, $p+m>0, m n+n p+p m>0$.

Firstly, the conditions on m, n, p can be simply stated as $m, n, p>0$. Note that by letting $n+p=a_{1}, p+m=b_{1}$, and $m+n=c_{1}$, it follows that a_{1}, b_{1}, c_{1} are the sides of a triangle T_{1} and then that

$$
\begin{gathered}
2 m=b_{1}+c_{1}-a_{1}, 2 n=c_{1}+a_{1}-b_{1}, 2 p=a_{1}+b_{1}-c_{1}, \\
m n+n p+p m=\frac{\left[2 \sum b_{1} c_{1}-\sum a_{1}^{4}\right]}{4}=4\left(S_{1}^{\prime}\right)^{2},
\end{gathered}
$$

where S_{1}^{\prime} is the area of a triangle whose sides are the square roots of the sides of T_{1}. Inequality (0.1) now becomes

$$
\begin{equation*}
a^{2}\left(b_{1}+c_{1}-a_{1}\right)+b^{2}\left(c_{1}+a_{1}-b_{1}\right)+c^{2}\left(a_{1}+b_{1}-c_{1}\right) \geq 16 S S_{1}^{\prime} \tag{0.2}
\end{equation*}
$$

As known, the Neuberg-Pedoe inequality [1] is

$$
\begin{equation*}
a^{2}\left(b_{1}^{2}+c_{1}^{2}-a_{1}^{2}\right)+b^{2}\left(c_{1}^{2}+a_{1}^{2}-b_{1}^{2}\right)+c^{2}\left(a_{1}^{2}+b_{1}^{2}-c_{1}^{2}\right) \geq 16 S S_{1}^{\prime} \tag{0.3}
\end{equation*}
$$

for two triangles of sides a, b, c and a_{1}, b_{1}, c_{1}. So that (0.2) follows from (0.3) by replacing the sides a_{1}, b_{1}, c_{1} by their square roots. There is equality if and only if the triangles of sides a, b, c and $\sqrt{a_{1}}, \sqrt{b_{1}}, \sqrt{c_{1}}$ are similar.

References

[1] D.S. Mitrinović, J.E. Pečarić and V. Volenic, Recent Advances in Geometric Inequalities, Kluwer, Dordrecht, 1989, p. 355.

Mathematics Department, University of Alberta, Edmonton, Alberta T6G 3G1, Canada.
E-mail address: mklamkin@math.ualberta.ca

