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Abstract. In this article, the Bernoulli polynomials are generalised and some

properties of the resulting generalisations are presented.

1. Introduction

It is well-known that the Bernoulli numbers Bn can be defined [1, 2, 14] as

φ(x) ,
x

ex −1
=

∞∑
n=0

Bn

n!
· xn, |x| < 2π. (1)

The Bernoulli polynomials Bn(x) can be defined [1, 2, 14] by

φ(z, x) ,
z exz

ez −1
=

∞∑
n=0

Bn(x)
n!

· zn, |z| < 2π, (2)

and write Bn = Bn(0) for the Bernoulli numbers.

The usual definition of the generalised Bernoulli polynomials is

tσ eut

(et −1)σ
=

∞∑
n=0

Bσ
n(u) · tn

n!
, |t| < 2π. (3)

For more information about Bernoulli numbers and Bernoulli polynomials, please

refer to [6, 15, 16].

Many approaches for calculating Bernoulli numbers are presented in [1, 2, 5, 14].
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Now we introduce a new function Bn(a, b) for b > a > 0 which is defined as

φ(x; a, b) ,
x

bx − ax
=

∞∑
n=0

Bn(a, b) · xn

n!
, |x| <

2π

ln b − ln a
. (4)

In this article, we will give some relations between Bn, Bn(x) and Bn(a, b), and

many properties of the function Bn(a, b).

2. Relationships between Bn, Bn(x) and Bn(a, b)

It is clear that

B0(a, b) =
1

ln b − ln a
and Bn(1, e) = Bn. (5)

Since

x

bx − ax
=

1
ax

· x

ex(ln b−ln a) −1

=

( ∞∑
n=0

(ln b − ln a)n−1

n!
Bnxn

)( ∞∑
k=0

(ln a)k

k!
(−1)kxk

)

=
∞∑

j=0

(
j∑

i=0

(−1)j−iBi ·
(ln b − ln a)i−1(ln a)j−i

i!(j − i)!

)
xj ,

hence

Bj(a, b) =
j∑

i=0

(−1)j−i(ln b − ln a)i−1(ln a)j−i

(
j

i

)
Bi. (6)

Further, because

x

bx − ax
=

x e−x ln a

ex(ln b−ln a) −1

=
1

ln b − ln a

∞∑
n=0

(ln b − ln a)n

n!
· Bn

(
ln a

ln a − ln b

)
· xn

=
∞∑

n=0

(ln b − ln a)n−1

n!
· Bn

(
ln a

ln a − ln b

)
· xn,

then we have

Bn(a, b) = (ln b − ln a)n−1 · Bn

(
ln a

ln a − ln b

)
. (7)

Moreover, since
x etx

ex −1
=

x

(e1−t)x − (e−t)x
,

thus

Bn(t) = Bn(e−t, e1−t). (8)



GENERALISATION OF BERNOULLI POLYNOMIALS 3

3. Some Properties of Generalisation of Bernoulli Polynomials

For real numbers b > a > 0 and x ∈ R, define

g(x) = g(x; a, b) =


bx − ax

x
, x 6
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The Mathieu’s series defined in [3] can be expressed as

S(r) =
1
r2

∫ ∞

0

sin t

g(t/r; 1, e)
dt =

1
r

∫ ∞

0

φ(x) sin(rt) dt. (17)

Recently, some new results of Mathieu’s series were obtained in [7].

By mathematical induction on n ∈ N, we obtain a recursion formula for deriva-

tives of g with respect to x of g as follows

(n + 1)g(n)(x) + xg(n+1)(x) = (ln b)n+1bx − (ln a)n+1ax. (18)

In particular, if we put b = e and a = 1, then

(n + 1)g(n)(x; 1, e) + xg(n+1)(x; 1, e) = ex . (19)

Note that the function g(x; 1, e) is absolutely monotonic increasing, see [8]–[11].

Since [g′(x; 1, e)]2 > g(x; 1, e)·g′′(x; 1, e), by standard arguments, we deduce that

ϕ(x) is convex and 3 (ϕ′(x))2 6 ϕ(x)ϕ′′(x).

Using the expression (16) of function g, many new Steffensen pairs have been

established in [4, 9, 10].
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