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Abstract. W. J. Blundon has proved in 1965 that∣∣p2 −
(
2R2 + 10Rr − r2

)∣∣ ≤ 2(R− 2r)
√

R(R− 2r),

where R, r and p are respectively the radii of the circumcircle, the incircle and
the semiperimeter of a triangle. The aim of this paper is to outline the con-

nection of these inequalities with some deep results in real algebraic geometry.

1. Introduction

Let R, r and p be respectively the radii of the circumcircle, the incircle and the
semiperimeter of a triangle. W. J. Blundon [2] has proved in 1965 that

(B) 2R2 + 10Rr − r2 − 2(R− 2r)
√

R(R− 2r) ≤ p2 ≤
≤ 2R2 + 10Rr − r2 + 2(R− 2r)

√
R(R− 2r).

The equality occurs in the left-side inequality if and only if the triangle is either
equilateral or isosceles, having the basis greater than the congruent sides; the equal-
ity occurs in the right-side inequality if and only if the triangle is either equilateral
or isosceles, with the basis less than the congruent sides.

Following a frequently used technique to prove geometric inequalities by algebraic
means (e.g., see [3]), we shall prove that W. J. Blundon’s inequalities are a direct
consequence of an algebraic inequality involving elementary symmetric functions:

Theorem A. Let x, y, z ∈ C be such that x + y + z, xy + yz + zx, xyz ∈ R. Then
x, y, z ∈ R, if and only if

(x + y + z)2 (xy + yz + zx)2 + 18 (x + y + z) (xy + yz + zx) xyz ≥
≥ 4 (x + y + z)3 xyz + 4 (xy + yz + zx)3 + 27x2y2z2.

Moreover, the above inequality is strict unless x = y = z.

In any triangle we have:

a + b + c = 2p

ab + bc + ca = p2 + r2 + 4Rr

abc = 4Rrp

so that, for

x = p− a, y = p− b and z = p− c
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we have

x + y + z = p

xy + yz + zx = r(4R + r)
xyz = pr2

Now (after reducing the appropriate terms) we can write the inequality in Theorem
A as

(*) p4 − 2
(
2R2 + 10Rr − r2

)
p2 + 64rR3 + 48r2R2 + 12r3R + r4 ≤ 0,

i.e., (
p2 − 2R2 − 10Rr + r2

)2 ≤ 4R (R− 2r)3

which implies both Euler’s inequality R ≥ 2r and W. J. Blundon’s inequality.
Theorem A leads also to the inequality (*) in any of the following cases:

x =
1
a

, y =
1
b
, z =

1
c

; x = tg
A

2
, y = tg

B

2
, z = tg

C

2
;

x = ra , y = rb, z = rc .

Inequalities between elementary symmetric functions (the best known being the
AM-GM inequality) are treated in details in many books such as those by G. Hardy,
J. E. Littlewood and G. Polya [4] and A. W. Marshall and I. Olkin [6]. However
we have to mention that the present paper is based on an idea initiated by Newton
[7] and his disciple Maclaurin [5] (and accomplished later by J. J. Sylvester [?]),
It is the fact that the roots of an algebraic equation are real may be expressed in
terms of inequalities for the coefficients of the equations, i.e., in terms of elementary
symmetric functions. See Theorem B below.

2. Proof of Theorem A

The well-known result upon establishing the nature of the roots of a second de-
gree trinomial with real coefficients by the sign of the discriminant, can be extended
for third degree algebraic equations.

Lemma 1. Let a1, a2, a3 ∈ R. The roots x1, x2, x3 of the equation

x3 − a1x
2 + a2x− a3 = 0

are real numbers if and only if the following inequality holds

D = (x1 − x2)
2 (x2 − x3)

2 (x3 − x1)
2 ≥ 0.

The quantity D appearing in the statement of Lemma 1 is called the discriminant
(of the polynomial x3 − a1x

2 + a2x − a3 ). The connection with Theorem A is
immediate, once we see that

D = det

 1 1 1
x1 x2 x3

x2
1 x2

2 x2
3

 ·

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 =

= det

 3
∑

xk

∑
x2

k∑
xk

∑
x2

k

∑
x3

k∑
x2

k

∑
x3

k

∑
x4

k

 =

= 18a1a2a3 + a2
1a

2
2 − 4a3

1a3 − 4a3
2 − 27a2

3

the last equality being motivated by Viète relations.
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Proof of Lemma 1. If the roots x1, x2, x3 are real, it is then clear that D ≥ 0;
moreover, D = 0 if and only if x1 = x2 = x3.

If the equation has not all roots real, then necessarily two are complex conjugate
and the third is real, for instance

x1 = a + bi, x2 = a− bi, x3 = c

where a, b, c ∈ R and b 6= 0. In such a case,

D = −b2[(a− c)2 + b2] < 0. �

For algebraic equations of degree ≥ 4, the notion of discriminant is no longer
sufficient to describe the nature of the roots. See the case of a 4th degree equation
with two pairs of complex conjugate roots. The role is taken by the discriminant
families. In this way, the generalization of Theorem A is actually the following
result due to by J. J. Sylvester [11], [12]:

Theorem B. For each integer n ≥ 1 there is a set of at most n − 1 polynomials
with integer coefficients

Rn,1(x1, ..., xn), ... , Rn,k(n)(x1, ..., xn)

having the property that the polynomials with real coefficients,

P (x) = xn − a1x
n−1 + ... + (−1)nan,

that have real roots are precisely those for which

Rn,1(a1, ..., an) ≥ 0, ... , Rn,k(n)(a1, ..., an) ≥ 0 .

The algorithmic procedure shown by the proof of this result, allows us to choose
the Rn,j

′s as determinants extracted from the Sylvester matrix associated to P (x);
particularly, R1(x1, ..., xn) is the discriminant of order n. See [1]. Unfortunately
the inequalities we get are excessively long because the numbers of terms of a
discriminant grows very fast with its order. For instance, the 8th order discriminant
has no less than 26095 terms! See [9].

For n = 4, a simple proof of Theorem B can be found in [8].

3. The analytic approach of Theorem A. Newton’s inequalities.

A well-known consequence of the Rolle theorem (due to C. Maclaurin [5] and
mentioned also by the mathematical analysis textbooks) asserts that if a polynomial
has only real roots, then its derivative also has only real roots.

Lemma 2. Let a1, a2, a3 ∈ R. The necessary and sufficient condition for the roots
x1, x2, x3 of the equation

(E) x3 − a1x
2 + a2x− a3 = 0

to be real is that

18a1a2a3 + a2
1a

2
2 − 4a3

1a3 − 4a3
2 − 27a2

3 ≥ 0.

Proof. The roots of the equation (E) are real if and only if the roots of the reduced
equation

y3 − py + q = 0
(which is obtained by the change of variable x = y + a1/3), are real. Notice that

p =
1
3
a2
1 − a2 and q =

1
3

a1a2 − a3 −
2
27

a3
1 .
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Then, Rolle’s technique shows that the reduced equation has only real roots if
and only if (p

3

)3

≥
(q

2

)2

.

Replacing p and q in terms of a1, a2, a3 we get the stated condition. �
If the polynomial x3 − a1x

2 + a2x − a3 has only real roots, then its derivative
3x2 − 2a1x + a2 also has this property. Therefore a2

1 ≥ 3a2.
By applying the same procedure to the equation obtained with the change of

variable y = 1/x, we get the inequality a2
2 ≥ 3a1a3. The inequalities

(N) a2
1 ≥ 3a2 and a2

2 ≥ 3a1a3

have been noticed for the first time by Newton [7] and bear his name. Maclaurin
[5], to whom the above approach is due, has noticed that they yield

(a1/3)3 ≥ a3

equivalently, (
x + y + z

3

)3

≥ xyz,

when x, y, z ≥ 0. This fact represents the AM−GM inequality for families of three
real numbers. Following the above idea, he proved the AM −GM inequality in the
general case, settling also with the equality case. A century later, A.-L. Cauchy
gave his well-known proof by induction for this inequality. See [4].

Example. According to the discussion above, the condition in Lemma 2 implies
Newton inequalities (N). Is the converse true ? The answer is negative. For,
consider the equation

x3 − 8.9x2 + 26x− 24 = 0,

In this case a1 = 8.9, a2 = 26, a3 = 24. This equation has (approximatively) the
roots

x1 = 1. 8587, x2 = 3. 5207− 0. 71933i, x3 = 3. 5207 + 0. 71933i.

It is interesting to observe that it represents a ”small” perturbation of a ”well
behaved” equation,

x3 − 9x2 + 26x− 24 = (x− 2)(x− 3)(x− 4) = 0.

Newton inequalities still work here because

a2
1 − 3a2 = (8.9)2 − 3 · 26 = 1. 21 and a2

2 − 3a1a3 = (26)2 − 3 · 8.9 · 24 = 35. 2

but, due to the presence of the complex roots, the condition of Lemma 2 is no more
verified.
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