INTEGRAL INEQUALITIES FOR n—TIMES DIFFERENTIABLE
MAPPINGS, WITH MULTIPLE BRANCHES, ON THE L, NORM

A. SOFO

ABSTRACT. Integral inequalities of Ostrowski type are developed for n—times
differentiable mappings, with multiple branches, on the L, (1 < p < o0)
norm. Some particular inequalities are also investigated, which include explicit
bounds for perturbed trapezoid, midpoint, Simpson’s, Newton-Cotes and left
and right rectangle rules. The results obtained provide sharper bounds than
those obtained by Dragomir [6] and Cerone, Dragomir and Roumeliotis [3].

1. INTRODUCTION

In 1938 Ostrowski [20] obtained a bound for the absolute value of the difference
of a function to its average over a finite interval. The theorem is as follows.

Theorem 1. Let f : [a,b] — R be a differentiable mapping on [a,b] and let |f' (t)| <
M for allt € (a,b), then the following bound is valid

1 b
b—a/ f@)dt
for all x € [a,b].

The constant % is sharp in the sense that it cannot be replaced by a smaller one.

(1) ’f(x) <(b-a) 1 |2+

Dragomir and Wang [14, 15, [16] extended the result (1.1) and applied the ex-
tended result to numerical quadrature rules and to the estimation of error bounds
for some special means. Also, Sofo and Dragomir [22] extended the result (I1.1) in
the L, norm.

Dragomir [9, 10, [11] further extended the result (1.1) to incorporate mappings
of bounded variation, Lipschitzian and monotonic mappings.

Cerone, Dragomir and Roumeliotis [4] as well as Dedi¢, Mati¢ and Pecari¢ [5]
and Pearce, Pecarié, Ujevié and Varosanec [21] further extended the result (1.1) by
considering n—times differentiable mappings on an interior point « € [a, b].

In particular, Cerone and Dragomir [1] proved the following result.
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2 A. SOFO

Theorem 2. Let f : [a,b] — R be a mapping such that F=1 s absolutely contin-
uous on [a,b]. Then for all x € [a,b] the following bound is valid:

b = — )T 4 (=1) (2 — )’ ,
» /a“”dtzg((b ) ?j(ﬁ)ﬂ( ) >f<j>(x)

1
n o ng+1 o ng+1 q

< BRI ((x a)""t 4 (b— ) )

- nl ng+1

if p>1, pt4+qgt=1and f™ €L,lab],

b b\ 7
:( o (t)‘ dt) :

Dragomir [6] also generalised the Ostrowski inequality for k points, z1,..., 2%
and obtained the following theorem.

where

H £
P

Theorem 3. Let I, ;= a =29 < 21 < ... < Tp_1 < z = b be a division of the
interval [a,b], a; (i =0,....,k+1) be “k+ 27 points so that g = a, a; € [x;—1, ;]
(i=1,...,k) and apy1 =b. If f : [a,b] — R is absolutely continuous on [a,b], then
we have the inequality

(1.3)

x)dr — Z (qit1 —aq) f (i)

1
q

||f || = +1 q+1
< — { aip1 — )T+ (@ig1 — @ig1) }

q+1 =0

< T
(g+ 1)«

=0

11, [Z W]“ _ v e-a)t s,
1 (¢+1)¢

where h; := xiy1 —x; (1=0,..,k—1), v(h) := max{h;|i =0,...,k — 1},
L p~'+q¢ ' =1 and ||, is the usual Ly [a,b] norm.

The main aim of this paper is to develop a theorem of integral inequalities for
n—times differentiable mappings which will subsume and extend the results and in
the process obtain better bounds than those of (1.1)), (1.2) and (1.3).

We begin the process by obtaining the following integral equalities.

2. INTEGRAL IDENTITIES
Theorem 4. Let I : a = xg < 1 < -+ < zp_1 < T = b be a division of the
interval [a,b] and a; (i =0,...,k+ 1) be k+2’ points so that ag = a, o; € [x;—1, 4]
(i=1,...,k) and cajyr = b. If f : [a,b] — R is a mapping such that f=1 is
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absolutely continuous on [a,b], then for all x; € [a,b] we have the identity:

E
—

j

{ Tit1 — ai+1)j FIY (244)

(2.1) /f dtzn:

s
Il
=)

— (2 — )’ fUTD (!Ez)}
/KM 1o (0 dt,

where the Peano kernel

(t—a1)"
n L ) te [CL,$1)

t—«

( ol 2) R tE[SCl,l'g)

(2.2) K, (t) =

t— ap_

( a,k . , € [Tp_2,Tk1)
.

t_

( O'ék) 5 te[l'k lab]v
n.

n and k are natural numbers, n > 1, k> 1 and £ (z) = f (z).

Proof. The proof is by mathematical induction. For n = 1, from (2.1)) we have the
equality

b k—1 ) )
(2.3) / f)dt = Z {(%‘H —aig1) f(ig1) = (xi —ig1)” f (xi)}

0
b
j/KMWWMﬁ,

where
(t—aq), t€la,x1)

(t*O&g), te [56171’2)

(t—ag—1), t€[rr_2,Tp_1)

(t—ak), t e [.”L'kfl,b].
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To prove (2.3)), we integrate by parts as follows

Kk (t) f'(t)dt

T

k-1 Ti+1 k-1 ) Ti+1
> [Tacawroa=X |e-aw sl - [ o
i=0 v ¥ i=0 T
k—1 k—1 Tit1
=Y oo — ) £ @) — (@ =) F@)] =3 [ (o)
i=0 i=0 Y ¥i

b b
/ f(t)dt+/ Ky (t) f () dt
k—1
=3 [(@ir1 — ait1) f (@is1) = (@5 — cign) £ (25)]
1=0

Hence (2.3) is proved.
Assume that (2.1)) holds for ‘n’ and let us prove it for ‘n 4+ 1’. We need to prove
the equality

k— 1n+1

(2.4) / f(t dt+zz

=0 j=1

{ Tip1 — 1)’ U (2i40)

— (@ — aigr)’ 7Y (Ii)}
b
= 0™ [ K (O£ (@),

where from (2.2)

W’ t € la, 1)

%7 t € [x1,x2)
K1k (1) =

W, t € [xp—1,0].

Consider

£ =)™
[ Rusnat s @an= 55 [ 0 o

(n+1)!
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and upon integrating by parts we have
b

Tit1

i

— i [Wf(n) (t)

- /xwrl (t — Oéz+1) f(n) (1) d ‘|

-1 n+1 n+1
ZT; — Q4 Z; Q5
B { e F (i) = o)

n!

o)

/Knk 0 £ (¢) dt

Upon rearrangement we may write

/Knk () 1) (2) dt

B (Tip1 — i)™ (n) (... _M ™M) (g
= ; T 7 (i) (nt1) I (i)

b
[ Ko £ @y

Now substitute f; K1 (t) £ (t) dt from the induction hypothesis (2.1) such that

(1" [ f(t)dt
k—1 n 7

+ (=" > (_jll) {(fﬂzﬂ — 1)’ 9TV (i)
=0 |j=1 ’

k—1 S yn+l = i)
= {(%H alﬁ) £ (%+1)%Jc(n) (mz)}

b
[ Ko ) £ @)
a
Collecting the second and third terms and rearranging, we can state

k— 1n+1

/ f(t dt+ZZ

1=0 j=1

{ Tit1 — air1)’ FUTD (2i41)
— (@i = ai)’ FO7V ()}
b
= (-1 / Kni1n (8) 0D (1) dt,

which is identical to (2.4]), hence Theorem 4] is proved. I

The following corollary gives a slightly different representation of Theorem /4,
which will be useful in the following work.
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Corollary 1. From Theorem|{), the equality (2.1) may be represented as

b LY/ k ] . .
(25> / f (t) dt + Z ( ]];) [ {(Iz — Oli)] — (l‘l — Ozi_;_l)j} f(jil) (IZ)]
@ ’ i=0

j=1
-1)" / ’ Ko () f™) (1) dt

Proof. From (2.1)) consider the second term and rewrite it as

k—1
(2.6) S1+S3:= Z {= @it1 — ait1) f(@ig1) + (@i — i) f(20)}
=0
e Y i (G-
+ ; Z; 7 {(ffiﬂ —aiy1) [T (@ig1)
— (@i — 1)’ fUTY (%)H :
Now
k-1
Si = (a—a1)f(a)+ Y (@ —aip1) f ()
=1
k-2
+ 3 A= @ip1 — aig1) f (i)} — (b— o) £ ()
=0
= (a—ai)f +Z z; — aip1) f ()
k-1
+Z {—(zi— o) f(2i)} = (b—au) f(b)
. k-1
= — (1 —a)f(a)— 4 (i1 — o) f(25) = (b— o) f (D).
Also,

k—2 n
Sy = { { Tiy1 — i)’ fUTY (Ii+1)}]

3 iy 90 )

j=2
é%%* (e
BB e w-00o)]
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= ' (_]1') (b — ak)j f(j*l) (b) — Z (_‘]1') (CL _ Oq)j f(jfl) (a)
k=1 n j ‘ | |
* ‘ [ (_jl;) {(% —a;) — (z; — ai+1)j} FG=D (961')] .
=1 | j=2
From (2.6)
k—1
T {(b ap) f (0) + (1 —a) f (a) + _ (i1 — al)f($1)}
+ 3 (_]1') {(b — Oék)j f(j—l) (b) — (a — Oél)j f(j—l) (a)}
k—1 n (_1)] i ; oot
+ 2127 {(xi ;) — (zi — @it1) }f (z:)

=
k-1
D { - ) = ) U () + (b g fOY <b>] ‘

Keeping in mind that ¢y = a, ag = a, z, = b and ag1 = b we may write

k
S1+85 = - Z (ip1 — ;) f ()
1=0

Y li{(m_w—(m-—w Yo @«)1
5! i i~ Qg ‘

j=2 i=0
(=L j i\ rGi-1)

= Y (e ey a0 @)
j=1 ’ i=0

And substituting S+ 52 into the second term of (2.1)) we obtain the identity (2.5).

If we now assume that the points of the division Iy are fixed, we obtain the
following corollary.

Corollary 2. Let I, :a =29 < 21 < -+ < Tp_1 < xx = b be a division of the
interval [a,b]. If f : [a,b] — R is as defined in Theorem |4, then we have the equality

b n k ) o )
en) [ 1Od+ Y g | {17} <xi>]
a j=1 © Li=0

b
— (1 / Koo (6) £ (8) i,
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where h; == x;41 —x;, h—1 :=0 and hy := 0.

Proof. Choose

a+ T X1 + X9
@y = a, o1 = 2 , Qg = 2 ) )
_ Tk—2+ Tk  Tp—1 T Tk .
ap_1 = — 5 ap = — s and agq1 =0b.

From Corollary (1, the term

k-1
(b — o) f(b) + (1 — a) +Z i1 —a;) f(2)
i=1

L\DM—*

k-1
{hof + Z (hi +hi1) f(xs) + he— f (b)} ;

the term

Putting the last three terms in (2.5) we obtain

b k—1
[ rwa-; {hof @+ 3 (kb)) + hk_lf(w}

30 C0 97 ) - 1 R )

R o

a Kok () 1 (1) dt
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Collecting the inner three terms of the last expression, we have

b Ny
/ f(t)dt+z(.é3
a j=1 :

k

ST W = )R I @)
i=0

J

b
= ()" [ Kan 05 0,
a
which is equivalent to the identity (2.7).

The case of equidistant partitioning is important in practice, and with this in
mind we obtain the following corollary.

Corollary 3. Let

(2.8) Ik:xi:a—l—i(b;a), i=0,...,k

be an equidistant partitioning of [a,b], then we have the equality

(2.9) /abf(t) dt + il (b;k“)jjl! — 60D (q)

k-1

3 {1 =1} £ @ + (1) Y (b)]

i=1
b
=(-1)" / Ko, (t) £ (t) dt.
a
It is of some interest to note that the second term of (2.9) involves only even
derivatives at all interior points x;, i =1,...,k — 1.
Proof. Using (2.8) we note that

b—a b—a
7 hi—1 = (T — Tp—1) = o

b— b—
¢ and hlf]_ =T —Tj—1 = a

hy = x1—x9=

hi = Tip1— x5 =

and substituting into (2.7) we have

[romess b () o S (50

s (B )} 7970 G o (P2 Y o <b>]

which simplifies to (2.9) after some minor manipulation. i

The following Taylor-like formula with integral remainder also holds.
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Corollary 4. Let g : [a,y] — R be a mapping such that g™ is absolutely continuous
on [a,y]. Then for all z; € [a,y] we have the identity

(210) g =gl =3 |>

or

n j k ) ) ‘
(211) g(y) =g(a)— Z (_1) [Z {(% —a;) = (i — ai+1)]} g (%)]

The proof of (2.10) and (2.11) follows directly from (2.1) and (2.5) respectively
upon choosing b =y and f = ¢'.

3. INTEGRAL INEQUALITIES

In this section we utilise the equalities of Section 2/ and develop inequalities
for the representation of the integral of a function with respect to its derivatives
at a multiple number of points within some interval. In particular, we develop
inequalities which depend on the L,, space.

Theorem 5. Let I, :a =29 < 21 < - < xp_1 < xx = b be a division of the
interval [a,b] and o;; (i = 0,...,k+ 1) be k427 points so that ap = a, o; € [T-1, T;]
(i=1,...,k) and a1 = b. If f : [a,b] — R is a mapping such that f=1 is
absolutely continuous on [a,b], then for all x; € [a,b] we have the inequality:

[Xk: {(xi — ;) — (@ — Oti+1)j} Fa-1 (l‘i)]

b no 1\
(3.1) /f(t)dt+z( 1!)

J

j=1 i=0
f(n) k—1 q
'|(| +”f)1 > {(aiJrl — )" 4 (@i — ai+1)nq+1}
n.(ngq * Li=0
1
(n — q
< < Hf )Hp . Iczlh?q+1
nl(ng+1)* [i=
[EA M S Sl o1
_T(m) v (h) if f"eLlylab],p>1 and p~'+q " =1,
where

1

b P
L (/ f(”)(t)’pdt> ,

hi @ =x;41—x; and
v(h) : =max{h]i=0,....,k—1}.

H Q)
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Proof. From Corollary 1l we may write

b noo aNg k ) ‘ 4
62 || rwa+> S [}j{m—anﬂ—(xi—amw}f(f-”(a:i)]
a J=1

J: =0

)

b
- |<—1)” / Kox (1) £ () dt

and utilising Holder’s integral inequality

1

b b q
‘<—1>” [ K ® 7 @t < |5 [ JaL Wdt] -
a p a
Hence
b k-1 Ti41 |t — ngq
z+1|
/a |Kn,k (t)|q dt = ZO |:/»L (n!)q dt]
k—1 Qi1 (CM‘+1 _ t)"‘] Ti41 (t _ aqu)nq
_ Z / v 7 dt _|_/ 7: - dt
i=0 Z; <n> Qj41 (n)
k—1
1 n n
= T {(ai+1 —2)"" + (i1 — @iga) qH}
(n))? (ng +1)7 55
and thus

1
a

b
/ K g ()7 dt
a

1 k—1 q
) (g + 1) (Z {(aiJrl — )" 4 (i1 — sz‘+1)nq+1}>

(n))? (nq + 1)% i=0

Hence, from (3.2), the first part of the inequality (3.1) is proved. The second line
follows by noting that

k—1 k-1

ng+1 ng+1 nqg+1
E {(Oéi+1 — ;) + (Tig1 — aiq1) } < E hy",
i=0 i=0

since for 0 < B < A < C it is well known that
(3.3) (A-B)""' (- <(Cc-B)".
Also, we know that

k—1 % k—1
(Z h?”l) <" (h) (Z m) = (b—a)s v (1),
i=0

=0

Q=

where v (h) := max {h;|i =0, ...,k — 1} and therefore the third line of the inequal-
ity (3.1) follows, hence Theorem [5 is proved. I

When the points of the division [} are fixed, we obtain the following inequality.
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Corollary 5. Let f and I}, be defined as in Corollary 2, then

b "o(—1) [&E , o _
CONTNIOEE 3e= [Z{—hﬁ+<—1>th+1}f<f-1><xi>]

i=0
1l (2 )
< Lo (S
nl(ng+1)7 \iZg
for fM € L,[a,b], p>1and p~* + ¢ ' = 1.
Proof. From Corollary 2/ we choose
a+ x1
ay = a, (1 = B Y ey
Tp—2 + Tk—1 Tk—1 1+ Tk
Qp_1 = BT ap = — and agy1 =b.

Now utilising the first line of the inequality (3.1), we may evaluate

k—1 . . k—1 B\ "
ZZ:; {(aiJrl =)+ (T — ig1) } = ;2 (2)
and therefore the inequality (3.4) follows. I

For the equidistant partitioning case we have the following inequality.
Corollary 6. Let f be as defined in Theorem[4 and let Ij, be defined by (2.8). Then

(3.5) /abf(t)dHi <b2_k“)j !

il

k—1
x [f(“) @+ 3 {1 = 1} £ (@) + (-1 $0Y (b)] |

71,

T b—a ity
~nl(ng+1)7 (2k)" ( )

for f(™M € L,[a,b], p>1andp~ ' +q = 1.
Proof. We may utilise (2.9) and from (3.1), note that

b;a and hiZJUH_l—xi:b_J

in which case (3.5) follows. 1

ho =21 — 0 =

The following inequalities for Taylor-like expansions also hold.

Corollary 7. Let g be defined as in Corollary 4. Then we have the inequality

n 7 k ] . _
(3.6) 9(y) —g(a)+ Z (7-1) [Z {(/Iz' — i) — (2 — az‘+1)]} gV (%)]

|
j=1 J: i=0
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Hg(n-i-l)H k—1 q
—_—r (Z {(ozi+1 — xi)n(IH + (Tig1 — Oéi+1)nq+1}>

n! (rn’q+ ]‘)E 1=0
if gt € L,(a,b], p>1and pl4qg =1,

_ (/y g(n+1) (t)‘P dt)p
p a

Proof. Follows directly from (2.11) and using the norm as in (3.1)). I

for all z; € [a,y] where

Hg(n+1)

When the points of the division ), are fixed we obtain the following.

Corollary 8. Let g be defined as in Corollary 4| and Iy, : a = x¢g < 21 < -+ <
Tp—1 < g =y be a division of the interval [a,y]. Then we have the inequality

n

k
)90+ 3 oty |3 {4 (i} <xi>]
j=1 i=0
(n+1)
e, (Zh)

n!(ng +1) Won
if gt e Lyla,yl, p>landp ' 4+q¢ ' =1
Proof. The proof follows directly from using (2.7).
For the equidistant partitioning case we have:

Corollary 9. Let g be defined as in Corollary 4| and

Ik:xiza—l—i-(y;a), i=0,...,k

be an equidistant partitioning of |a,y|, then we have the inequality:

a\’ 1
)
x[ on +k 1{ 1}g<j>(xi)+(—1)jg(j)(y)]

=1
s,

~ nl(ng+1)9 a (2k)"

@0 o —s@+3 (Y

(y — a)"‘ﬁ if Lyla,y], p>landp* +q ' =1
Proof. The proof follows directly upon using (2.9) with f' =g and b=y. 1

4. GRUSS TYPE INEQUALITIES

The Griiss inequality [17], is well known in the literature. It is an integral
inequality which establishes a connection between the integral of a product of two
functions and the product of the integrals of the two functions.
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Theorem 6. Let h,g : [a,b] — R be two integrable functions such that ¢ < h(z) <
D and v < g(x) <T for all x € [a,b], ¢, P,y and T are constants. Then we have

(1) (T (hg)] < (@~ 6) (T —7),
where
b
(4.2) T (h,g) : :bia/ h(x)g(z)dx
1

b 1 b
b—a/a h(m)dm-m ) g(z)dx

and the inequality (4.1) is sharp, in the sense that the constant % cannot be replaced
by a smaller one.

For a simple proof of this fact as well as generalisations, discrete variants, ex-
tensions and associated material, see [I9]. The Griiss inequality is also utilised in
the papers [7, [8, [13] and the references contained therein.

A premature Griiss inequality is the following.

Theorem 7. Let f and g be integrable functions defined on [a,b] and let v <
g(x) <T for all x € [a,b]. Then

Nl

(43) 7 (h)l < 5 (T (7. 1)E

where T (f, f) is as defined in (4.2).

Theorem [7 was proved in 1999 by Matié, Pecari¢ and Ujevié¢ [18] and it provides
a sharper bound than the Griiss inequality (4.1). The term premature is used to
highlight the fact that the result (4.3)) is obtained by not fully completing the proof
of the Griiss inequality. The premature Griiss inequality is completed if one of the
functions, f or g, is explicitly known.

We now give the following theorem based on the premature Griiss inequality
(4.3).

Theorem 8. Let I, :a =29 < 21 < - < Tp_1 < xx = b be a division of the
interval [a,b], o; (1 =0,...,k+1) be k41’ points such that ag = a, o; € [x;—1, ;]
(i=1,...,k) and ag, = b. If f : [a,b] — R is absolutely continuous and n time
differentiable on [a,b], then assuming that the n derivative f : (a,b) — R satisfies
the condition

m< f" <M forallz € (a,b),
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we have the inequality

(4.4) ‘ / F@t)dt+ (- ”Z

=1

YE{(@) (’; o) 1)

- (5 Jil?”);@)

ST ) eeen]
oy (5

2> <2":1>(3i)%1+< v

(s &) B @) o)) ]

7=

M—m
<
- 2

M”

where
hi @ =wxi41—x; and
Tip1 + x5 .
(52‘ : :ai+1—?, 2207...71{7—1.

Proof. We utilise (4.2) and (4.3)), multiply through by (b — a) and choose h (t) :=
K, 1 (t) as defined by (2.2) and g (t) := f™ (¢), t € [a,b] such that

ke ( dtf—/f’” dt/KM t)dt

r b b 273
< TV |:(ba)/ K2, (t)dt — (/ Ko (t) dt) }
Now we may evaluate

b
/ SO (1) dt = F0D (B) — 0 (a)

(4.5)

and

/Knk t)dt = Z/ ai+1)ndt

= r Z {($z+1 i)+ (i - xi)nH} '
T i=0
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Using the definitions of h; and §; we have

Ii+1*ai+1:§*5i
and
h;
Qipl = T = 5 +0i
such that
k—1 n+1 n+1
1 h; h;
@ i_o{(z“”) +(g o) }
B 1 k—1 [n+1 n+1 ( 6)r h; n+l—r
 (n+1)! prdll fowrd r ! 2
n+1 n+l—r
n+1\ .. (h
S
B 1 ’H@"“"fnﬂ 20\ 4 1y
 (n+1)! —~\2 o r hi
Also,

Tit1 tf S 2n
Gy /Kﬁk t) dt = Z/ O‘“ A 2 VA

2 { Tip1 — Qig1) ety (g1 — Ii)2n+1}

k‘
>_-

(2n—|—1

i=0
k—1 2n+1 b, 2n+1
e 22{(5) (50"
1 k—1

(2n + 1) (n!)?

R ()[R () ) o]

From identity (2.1), we may write

=0

k—1
x [Z {(%’H —aip1)! F97 (wign) = (@igr — i) fU7Y (xi)}]
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and from the left hand side of (4.5) we obtain

G o = [ swas )Zuw
» rZ { (5 - 51») P () - (g + 5i)j 161 (xi)H
(L) S ()
QTG e

after substituting for Gj.
From the right hand side of (4.5) we substitute for G; and G2 so that

Gy :(b—a)/abK;k(t)dt—(/bKn,k(t)dt>2
- e (5 S 0

3 2;) i+ (—1)?}]

‘(( 11)!1 (};) lli(n:1>(fi)r{”(‘”r}bz'

Hence,

M—-—m

5 (Gt

|Gs| <

and Theorem 8 has been proved. 1

Corollary 10. Let f, I, and oy be defined as in Theorem |8 and further define

Tit1 + X4

(46) 0= Q41 — 9

foralli=0,...,k—1 such that

(4.7) 1] < %min{hm =1,...,k}.
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The following inequality applies.

/f dt + (— Z

[Z{() (’;6) O (@4) (’; ~>jf(j” m)H

(f(n<;)( )) nfj—l )’“Zl’ilar (};>n+1r G

i=0 r=0

S5 e v

M |
=0 r=0

The proof follows directly from (4.4) upon the substitution of (4.6) and some
minor simplification.

M—m
<
- 2

2
=0 r=0

(2n+1

Remark 1. If for any division I, : a = z9g < 1 < -+ < xp_1 < T = b of the
interval [a,b], we choose § =0 in (4.6), we have the inequality

w [* a1
@0 | [ rma >
k—1

XZ( ){ 17 fU7Y (a; 1)—f(j_1)(93i)}

1=0
f(n 1) f(rL 1)( ) k—1 h; n+1
2( b—a ) (n+1)! )2(2)

M—-—m
- 2

1

S S (ST

The proof follows directly from (4.8).

Remark 2. Let f™ be defined as in Theorem |8 and consider an equidistant par-
titioning Ey, of the interval [a,b], where

h—
Ek:—xi—aJri( a>7 1=0,...,k.
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The following inequality applies

b n AN
(410) (=0 [ Fydt+ (1) 1'<b )
b

(Pt ) (%)

nk b—a\"!
< (M=m)- .
s (M-m)- o 2n+1( Qk)

Proof. The proof follows upon noting that h; = ;41 — x; = (Z’_T“), 1=0,....,k. 1

5. SOME PARTICULAR INTEGRAL INEQUALITIES

In this subsection we point out some special cases of the integral inequalities
in Section 3l In doing so, we shall recover, subsume and extend the results of a
number of previous published papers [2] 3].

We shall recover the left and right rectangle inequalities, the perturbed trapezoid
inequality, the midpoint and Simpson’s inequalities and the Newton-Cotes three
eighths inequality, and a Boole type inequality.

In the case when n = 1, for the kernel Ky (¢) of (2.3), the inequality (3.1),
reduces to the results obtained by Dragomir [6] for the cases when f : [a,b] — R is
absolutely continuous and f’ belongs to the L, [a, b] space.

Similarly, for n = 1, Dragomir [12] extended Theorem /5 for the case when
fla,b] — R is a function of bounded variation on [a, b].

For the two branch Peano kernel,

1

n (t_a)na te [CL,(E)

(5.1) Ko () =

)

1

n! (tﬁb)na tE(l’,b}

the inequality (3.1) reduces to the result (1.2) obtained by Cerone and Dragomir
[1] and [2]. A number of other particular cases are now investigated.
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Theorem 9. Let f : [a,b] — R be an absolutely continuous mapping on [a,b] and
a<x1<b, a<a; <z <ay<b Then we have

b noo o aN\T . _
(5:2) /f(t)dt+z( 1!) [~ (@—a1) f97Y (a)

J

{@ — a0 = w1 = a2’ } 7 @) + (b - aa) £V ()]

Q=

i
S H Hp ((041 - a)nq+1 + (xl - al)nq+1 + (012 o xl)nq+1 + (b o a2)nq+1)
n!(ng+1)

Q=

Hf(n)Hp ng+1 nqg+1 %
SW((Ila) +(b—x1) )
Hf(n)Hp ntl (n) -1 -1 _
<—F=(b—a)""e, fWeLyab,p>landp  +q =1
n!(ng+1)9

Proof. Consider the division a = zg < 1 < 22 = b and the numbers ag = a,
a1 € [a,21), ag € (z1,b] and ag = b.
From the left hand side of (3.1) we obtain

i (1)j i {(1177 - Olv;)j - (Il - ai+1)j} f(jfl) (l”v)

+(b—a) UV B)].
From the right hand side of (3.1) we obtain

I, [ ) RE
71’1 Z {(ai+1 — ;) oy (Tit1 — ait1) QH}
nl(ng+1)7 |5
Hf(n)Hp ng+1 ng+1 ng+1 ng+1 L
I — ((041*0) +(z1— )" + (a2 — )"+ (b— ) )
nl(ng+1)a

and hence the first line of the inequality (5.2) follows.

Using the relation (3.3)) we obtain the second line of (5.2) and subsequently the
third line of (5.2), hence the proof is finished.

Notice that if we choose a; = a and as = b in Theorem 9 we obtain the inequality

(L.2). n

The following proposition embodies a number of results, including the Ostrowski
inequality, error estimates for the midpoint and Simpson’s quadrature rules and the
three-eighths Newton-Cotes quadrature rule including its generalisation.

Proposition 1. Let f be defined as in Theorem |9 and let a < 1 < b, and a <
W <z < w < b for m a natural number, m > 2, then we have the
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inequality

(5.3) |Pm,

/f dt+z [(b—a> {f(] D (b) — (=1)7 fG-D (a)}

{(-a- bgf)ﬂ (o umm) b

RSO
o ()Y

if f™ e Lyfa,b], p>1 and pt 4+ ¢t =1.

Proof. From Theorem |9 we note that

-1 -1
al:(m Ja+b and a2:a+(m )b
m m
so that
(b—a) b—a
a—a; = — ,b—ag = )
m m
b— b—
T — o = xl—a—( a> and xl—a2:< a)—(b—xl).
m m

From the left hand side of (5.2) we have

—(a—ar) f970 (@) + {(&1 — ) = (a1 = a2)' } fU7) (@)
+(b— Oéz)j FI7Y ()

_ (br—na> {f(J 1) (b) — f(j—l)(a)}
+{(x Ca (”;f”))j (") - (b—w‘l))j}f(j‘” (1).

From the right hand side of (5.2)),

(g — a)an + (21 — Ozl)anrl + (g — ml)an +(b— O{Q)anrl

b—a\™! b—a)\\" b—a\\™"!
= 2 +lz1—a— +(b—x1 —
m m m

and the inequality (5.3) follows, hence the proof is complete. I

The following corollary points out that the optimum of Proposition [1l occurs at

T, = % = “7“’ in which case we have:



22 A. SOFO

Corollary 11. Let f be defined as in Proposition!1 and let x1 = “—H’ in which case

we have the inequality

(5.4) ’pm!n (a‘;bﬂ
/ f( dt+z [(br—na> {f(j—l) (b) = (=1)7 fGD) (a)}
+ (W)j@_( 1y )ﬂj 1 <a-2i-b)
V() ()7 (- ) )

if f™el,labl, p>1andpt+q =1

The proof follows directly from (5.3) upon substituting z; = ‘”‘b

A number of other corollaries follow naturally from Proposmon 1'and Corollary
11 and will now be investigated.

The following two corollaries generalise the Simpson inequality and follow di-
rectly from (5.3) and (5.4) for m = 6.

Corollary 12. Let the conditions of Corollary 11 hold and put m = 6. Then we
have the inequality

(55) |P6,n‘

/f dt+z [( _a> {f(J D (b) — (1) fU-D (a)}
+ {<x1 _ 5a6+b> - (wl _ a—g5b>3} FG-D) (ml
= ‘(’::;nyf); (2 (b g a)”‘lﬂ N <x1 - 5a(;i— b)nq+1

b ng+1\ ¢
+<—z1+a+5) 7f(")ELp[a,b],p>1andpil—l-q*lzl,

6

which is the generalised error estimate for the Simpson quadrature rule.
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Corollary 13. Let the conditions of Corollary 11 hold and put m = 6,. Then at
the midpoint x1 = “7“’ we have the inequality

e c20)
t/ f( ﬂfk}j [(b‘a> {F9790) = (=1 97 (@)}
+ (b;a)j(1—(—1V)f””>(“;b) '

PO 5 NE by
<t p(nq+1) ( . ) (14 2natt)s

e Lyla,b], p>1andp* +q =1

(5.6)

Corollary 14. Let f be defined as in Corollary 11 and let m = 4, then we have
the inequality

()
- /abf(t)dt—kjil (_]1,)j (b_a>j

o) (- ) ()]

Il o N fray
- nl ng+1 4 ’

™ e Lyla,bl, p>1landpt +¢ ' =1

(5.7)

Theorem 10. Let f : [a,b] — R be an absolutely continuous mapping on [a,b] and
leta<xz <x9<bandaj €[a,21), ag € [x1,22) and ag € [x2,b]. Then we have
the inequality

(5.8) / f(t
+ ((xl — ) = (21 — az)j) F97 ()
+ ((e2 = 02)’ = (22— ag)’) F970) (@2) + (b= g 1U) ()|

(n)
< 7||f Hp i ((041 — )" (21— )"+ (g — @)™
n!(ng+1)9

+ (372 _ az)nq-l-l + (043 _ x2)nq+1 + (b _ Oég)nq+1> q ’

e Lyla,b], p>1 and p~t+ ¢ 1 = 1.

Y [-e-a 1970 @

|=
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Proof. Consider the division a = 29 < 21 < 22 = b, a1 € [a,21), az € [x1,T2),

as € [x9,b], g = a, xg = a, x3 = b and put oy = b. From the left hand side of
(3.1) we obtain

From the right hand side of (3.1) we obtain

(n) 2 %
Lupl Z {(ai+1 _ xi)anrl + (Tip1 — ai+1)nq+1}
nl(ng+1)7 =0
o ||f(n)Hp nqg+1 ng+1 ng+1
= m ((041—0,) —l—((El—Oél) +(OZ2—.T1)

Q=

+ (.'1/'2 _ a2>nq+1 + (a3 _ m2)nq+1 + (b _ ag)"’“]'f‘l)

and hence the inequality (5.8) follows and Theorem [10/is proved. R

Corollary 15. Let f be defined as in Theorem 10 and consider the division
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for m a natural number, m > 2. Then we have the inequality

b n o1y o
= / fyae+> (e j1') [f (a—ay)’ fU7Y (a)
a j=1 °

e R e It

+ { (W;—W’ - a2>j - (W’ - ag)j} FO (a2)

+ (b= agf 10 )|
7‘“(”) l <(a1 —a)" <(m —Dath a1>nq+1

(5.9) |Qmn

IN

m
( (m — 1)a—|—b>m’ﬂrl <a+(m— 1)b >nq+1
ay— —— +|—————
m m
1

+(m—1)b\""! n

e Lyla,b],p>1landp* +q¢ =1

(m—1)a+b

at+(m—1)b
m m

Proof. Choose in Theorem [10, z; = , and o = , hence the

theorem is proved. i

Remark 3. For particular choices of the parameters m and n, Corollary 15 con-
tains a generalisation of the three-eighths rule of Newton and Cotes.

The following corollary is a consequence of Corollary 15l

Corollary 16. Let f be defined as in Theorem 10 and choose ag = ‘%H’ = %,

then we have the inequality

b N 1\ o
(5.10) ‘an| = / f(t) dH_Z ( jll) {_ (a—a)’ 99 (a)
e s T R

. { (n=20=ay a3>j} £ ()

+ (b—ag)’ U7 )|
7Hf(") Hp ((041 — a)"q+1 + ((m —Da+b — a1>nq+1

n! (nq—|—1)% m

IN

(m_z))"q+1 N <a3 _a+(m-— 1)b>”q+1

2m m

+2 ((b ~a)

1
+ (b— ag)nﬁl) Y fWelylab], p>landp gt =1
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Proof. If we put ap = “E2 = 21422 into (5.9), we obtain the inequality (5.10) and

the corollary is proved. i

The following corollary contains an optimum estimate for the inequality (5.10).

Corollary 17. Let f be defined as in Theorem 10 and make the choices

a; = (3m_4>a+<4_m)b and
2m 2m

4—m 3m—4

a3 = (2m >a+< om )b

then we have the best estimate

(5.11) Qumom
- /abf(t)dt+zn: (jll)j
X [(W)J {f(j—l) (b) — (~1)7 fG=1) (a)}
(B2 o ) (10 4170 )|

21| £(n) _ n+i 1
< I H”l (b a) q ((4—m)”"“+2(m_2)”q“)q,
n!(ng+1)7 \ 2m

fm e Lyla,b], p>1andpt +q ' =1.

atb _ z1+wo at(m=1)b
- 2 m

Proof. Using the choice as = 222

: T, = (m—1)a+b
m
may calculate

and zo = we

)

(1 —a) = L0 )
and
(1 —a1) = (a2 —z1)= (22— a2) = (a3 — 72)
_ (m—2)(b—a).
2m

Substituting in the inequality (5.10) we obtain the proof of (5.11)). B
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Remark 4. For m = 3, we have the best estimation of (5.11) such that

512) s

I
=
[=al
K’ﬁ
—~
N3
U
By
_l’_
(]
|
—_
S~—
<

X X
— I/~
| >
| IS
— N—
— S
o “&
= \
. —-
>|—t —~
g =
N |
)
ST
[N
+ —
> —
~__
-
+ <
= L
. ~
L =
~— ~—
7N
e +
L\:)+ 7N
) >
—_ o
~__ S
~__
[ o

B QHf(n)Hp 3 i b\t
- n! ng + 1 6 ’

PR Lyla,b], p>1 and p~t 4+ ¢ 1 =1.

Proof. From the right hand side of (5.11)), consider the mapping

4 N n+1 o 2 n+1
Mm,n = = +2 =
2m 2m

then

2(n+1) 2 1\" 1 1\"
M =" T _(Z_Z =
=2 (Cs) G
and M,, , attains its optimum when

1
ma

M| —
N —

2
m

in which case m = 3. Substituting m = 3 into (5.11), we obtain (5.12) and the
corollary is proved. NI

The next corollary encapsulates the generalised Newton-Cotes inequality.

Corollary 18. Let f be defined as in Theorem 10 and choose

o 2a +b . _a+2b N _a+b
1 - 3 ) 2 — 3 ) 2 — 2 )
o (r=1atb e, =2t =Db

r
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Then forr a natural number, v > 3, we have the inequality

(5:13)  [Thnl

2| £ A\t H
< H ||p1 <b a> (6nq+1 + (2T (T o 3))nq+1 + nq—i—l) q 7
n!(ng+1)7 \ 67
f™ e Lyfab,p>1andpt+q¢ =1
Proof. From Theorem [10, we put z; = 2“;'17, T2 = LH},%; Qg = a%_b, o = (r—1r)a+b

and as = w. Then (5.13) follows. &

Remark 5. The optimum estimate of the inequality (5.13) occurs when r = 6.
from (5.13) consider the mapping

1 r—3\""" 1
M = Tor <3> g

the M;n =—(n+1)rm 24 (”ng) (l - l)n and M, , attains its optimum when

T 3 T
% = % — %, in which case r = 6. In this case, we obtain the inequality (5.12).

Corollary 19. Let f be defined as in Theorem [10) and choose m = 8 such that

o] = 7‘1T+b, g = “T'H’ and az = %7}’ with T, = QaTer and To = %2” Then we have
the inequality
(5.14) |Ts .|
b n J J
-1 b—a . S
[ rwar S [( =) (10 17 1 @)
a ]:1 *

+(%5 ) ((i)j - <—1>j> (F970 (a2) — (-2 0=V W)] ’

= 2 Hf(n)HP (b — a)’”é (3nq+1 4 qnatl 5nq+1)%
n!(ng + 1)% 6 7

fm e Lya,b], p>1andp ™t +¢ ' =1

Proof. From Theorem [10/ we put
_2a+b . _a+2b N _Ta+b _a+T7b
- 3 ) 2 = 3 ) 1= S )

a3 =
and ap = %P and the inequality (5.14) is obtained. I

I

When n = 1 we obtain from (5.14) the ‘three-eighths rule’ of Newton-Cotes.
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Remark 6. From (5.15) with r = 3 we have

b no N
Tl =|[ FOa@r+Y

J

)3 [(b;CL)j (f(j—1> (b) — (—1) fU-D (a))

e (58) (- g <x1>}] |

2[|F1l, (b—a
1

nl(ng+1)a 6

f™ e Lyab,p>landp t+q¢ =1

n+l 1
) eyt

The following theorem encapsulates Boole’s rule.

Theorem 11. Let f : [a,b] — R be an absolutely continuous mapping on [a,d]
and let a < 21 < 13 < x3 < b and oy € [a, 21y, ag € [11,72), a3 € [x2,73) and
oy € [x3,b]. Then we have the inequality

b Y o
(5.15) fyde+y 5 [_ (a—ar) f97D (q)

IA

f(n)
Hiupl ((0‘1 —a)" " 4 (21— )"+ (0 — 2y
n!(ng+1)a

+ (w2 — 012)nq+1 + (ag — x2)
+ (o — 23)" T 4 (b - a4)"q+1) E
if f™ eLyfab), p>1andp ™ +q ' =1

Proof. Follows directly from (3.1) with the points ag = g = a, 4 = a5 = b and

the division a = zg < 1 < 22 < 23 = b, 1 € [a, 2y, a2 € [71,22), a3 € [T2,73)
and a4 € [x3,0]. 11

The following inequality arises from Theorem [11.

Corollary 20. Let f be defined as in Theorem 10 and choose c; = 11{‘;”, as =
11la+7b __ Ta+11b __ a+11b _ Ta+2b _ 2a+7b _ x1+x3 _ a+b
18 , O3 = 18 ; Qg = 12 y L1 = 9 ; L3 = 9 ande* 123* 2
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then we can state:

) - (252) - v (252))
. (b;a)j{l_(_l)j}f(j—l) (‘T’) ‘

(n) n+i
- QHf ||p1 (b—a) +3 (3nq+1+4nq+1_~_5nq+1+6nq+1)%
- nl(ng+1)7

b

if f™ e Lyab], p>1andpt+q¢ 1 =1.
6. APPLICATIONS FOR NUMERICAL INTEGRATION

In this section we utilise the particular inequalities of the previous sections and
apply them to numerical integration.

Consider the partitioning of the interval [a,b] given by A,, : a = g < 21 <

- < Tyl < Ty = b, put by = x —x; (1=0,...,m—1) and put v (h) :=
max (h;[i = 0,...,m — 1). The following theorem holds.

Theorem 12. Let f : [a,b] — R be absolutely continuous on [a,b], k > 1 and
m > 1. Then we have the composite quadrature formula

b
(6.1) / ) dt = Ap Dy £) + Ric (A, )
where
(6.2) A (B ) = T (A, ) — Ug (A ).

68)  TelBn )= ) (h) = [F9 @) 4+ (17 97 (@)

x rzl {(=17 =1} g0 ((’f - ) 4 + mm)]

is a perturbed quadrature formula. The remainder Ry (A, f) satisfies the estima-
tion

5] (ml >$
6.5 Ry (A, < P YA
(6.5) | By (B f)] oL (F (g + 1)3 @) ;

iff(") € Lyfa,b],p>1 and pt4+¢1 =1,

where v (h) := max (h;|i =0,...,m —1).
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Proof. We shall apply Corollary 6] on the interval [z;,2;41], (i=0,...,m —1).
Thus we obtain

/ f(t)dt+ Z (z@g) % = F97 (@) + (1) fU7) (@)
kil {(_1)j _ 1} -1 ((k -r) x]z+ miﬂ)} ‘

r=1
1 , yn+l ( R PN )’1’
< 1 7 - 4 E t dt
T nl(2k)" (k (ng + 1)) (o1 = ) / 5 )

Summing over ¢ from 0 to m — 1 and using the generalised triangle inequality, we
have

+

m—1 Tig1 n ) ki ] ,
S [T roae 3 (5) 5 [ @ ) 0 )
=0 Ti Jj=1
k-1
j o [((BE=r)x; + 1z
- T_1{<—1>J—1}f<ﬂ ”( T )H
1 m—1 Tit1 » %
< . het () (¢ dt)
ol (2k)" (k(ng+1))7 o (/;cl / ()‘
Now,
b m—1 n i J 1 . ) _
(6.6) Fd+ 33 (2k> 5[99 @+ (1 10 (i)
@ i=0 j=1 ’
moln hl J ]. kol j (jfl) (k*’f')xi+7'$i+1
CER () E o (e
< Ry (AWHf)

Using the discrete Holder inequality, we have, from

n! (2k)" (;(mH-l : (Z hn+ (/ i+1 £ (t)‘pdt)p>
! (2h)" <k1<nq+ 1)e (2 (W;)q) E [mz ((/

1=0
ng+1 : (n)
(k(nq+1>> (Zh +> 1,

and the theorem is therefore proved. i

IN

£ (1) ’p dt) ;) p] '

The following corollary holds.
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Corollary 21. Let f be defined as above, then we have the equality

b
(6.7) / F(O)dt = —Ty (A, ) — Us (A, f) + R (A, f)
where
m—1 n hz J ) ) ‘

Us (A, f) is the perturbed midpoint quadrature rule, containing only even deriva-
tives

m—1

Us (B, f) = i(?)j;{(—l)"—l}f“l) <I+2x+1)

and the remainder, Ry (A, f) satisfies the estimation
(n) m—1 H
U ('
n!(2(ng+ 1)) 4™ \ i
iff™ e Lyfabl,p>1landp ' +q " =1.

Rz (Am, f)]

IN

Corollary 22. Let f and A,, be defined as above. Then we have the equality

b
(6.8) / F () dt = T3 (A ) — Us (A ) + R (A, f)

where
m—1 n ) j . ] .
T @)= X 3 () 5 [21970 @)+ (1) 1970 )]
— = !

and

1
i=0 j=1 J: 6
x | £@=1 (2mz ';xzﬂ) 4+ fU=D <xZ +§x”1>}

and the remainder satisfies the bound

ms = n!(3(nq+1))%6” —~ i )

iff(”) € Lp[a,b],p>1cmdp_1—|—q_1:1_

Theorem 13. Let f and A, be defined as above and suppose that §; € [x;, Ti11

(i=0,...,m—1). Then we have the quadrature formula:
b m—1 n j
-1 i
69 [roa = X3 S 6wy o0 @)
a — = J

— (1 (i1 = &) fUT) (@is) } + R (§ A, f)
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and the remainder, R (&, A, f) satisfies the inequality

(6.10) |R (&, A, f)]
17| (m—l » B )31
0 & — )" 4 (i1 — €)M :
n!l(ng+ 1)« iz:; (( ! o ) )

if f™eLyfab), p>1andp +¢ ' =1

Proof. From Theorem 5l we put ag = a, o = a, 1 =b, as = b and oy = a € [a, }]
such that

/bf(t)dt+§n:(_ s
a j=1

o S @+ = a) 150 )
= R(EAm.f).

Over the interval [x;, z;41] (i =0,...,m — 1), we have

t) dt + i: (
T, Jj=1

— (1) (& — ) £ ()]

Ti+1

1)/ o
1,) [(ﬂfz‘+1 — &) fUY (wiga)

= R(§An, f)
and therefore, using the generalised triangle inequality
IR (&, A, f)
m—1 [Pl m—1 n j
Z / (t)dt + Z Z ]| [ Tiv1 — &) f9D (@i41)
=0 =0 j=1

T

1 (6 - ) 197 )|

! 5 o ™ ()] )11) ng+1 ng+1 I
(g +1)% d i~ L Z; ;
= nl(ng+ 1) ; </x ! (t)‘ t {(5 ) + (@ip1 — &) }

We now utilise the discrete Holder inequality and obtain

1 m—1

mqm;{(@‘m"q*”(% are ) ([ ol )

(m 1{ _ J,‘l nq+1 + ($i+1 - gi)nq+1}> q
=0
£ (t)‘p dt) ;>p] '

m—1 Tit1
2 (U
i=0 Ti
1 m—1

— > (€ =20 + (@i - €)™
n!(ng + 1)« i=0

The theorem is thus proved. i

Q=

IN

m»-.

(anrl

q

(n)

p
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The following corollary is a consequence of Theorem (13l

Corollary 23. Let f and A,, be as defined above. The following estimates apply.

(i) The n*™ order left rectangle rule

b m—1 n (*hi)j (_71)
[ rwa=3 3 S0 @) 4 R (B ).

i=0 j=1 J

(ii) The n'™ order right rectangle rule

b m—1 n (h)j ]
/ Feyde=—"%" jzl F9Y @) + Re (A, ) -
a i=0 j=1 ’

(iii) The n'™ order trapezoidal rule

wa = Ty (—’;) {0 @) - (-1 59 i)}

e i=0 j=1 7!
+RT Amz f) )
where
1, ()
n' (nq+ 1)q 1=0
if f"eLylab,p>landpt+q =1
and

|Rr (A, f)] < 4||f(n)||P (nfh%+1>;

2mnl (ng+1)* \iso
if f0 e Lyla,b],p>1andpt +q¢ ' =1

Q|-

Theorem 14. Consider the interval x; < agl) <¢ < a(z) <xip1,1=0,...,m—1,

%

and let f and A, be defined as above. Then we have the equality

(6.11) OLED i (_.%)j {(xi—agi))jf(j_l) (z:)
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and the remainder satisfies the estimation

‘R (f,agl),a?),Am,f)’

m—1
nqg+1 ng+1
<« I (S0 )™ (- )
n!(ng+1)4

=0

1
nqg+1 nqg+1 q
+ (0%('2) - 51) + (17 +1— 01(2)) }) )

if f™eLyab],p>1landpt+q =1

The proof follows directly from Theorem[9/on the intervals [x;, z;4+1], (i = 0,...,m — 1).
The following Riemann type formula also holds.

Corollary 24. Let f and A, be defined as above and choose &; € [x;,zit1],
(¢=0,...,m—1). Then we have the equality

(6.12) / byt

m—1 n
{ & — Hfi)nﬂ —(& - $¢+1)n+1} f(j_l) (&)
=0 j=1
+ Rr (§, A, f)
and the remainder satisfies the estimation
|RR (Ea Amv f)'
I, (= ng1 not11) "
< T Z{(fi*fﬂi)q + (@41 — &)™ } ;
nl(ng+1)7 \i5
if f™W e Lyfa,b], p>1andp™t +¢ 1 =1.
The proof follows from (6.11)) where agl) = z; and 0452) =Ti41.

Remark 7. If in (6.12) we choose the midpoint 2, = x;11 + x; we obtain the
generalised midpoint quadrature formula

(6.13) /abf(t)dt = mX__; 3 (13*):“ <};>]

j=1

{1 - (-1)]} FE=D (W> + R (A, f)

2
and Ry (A, f) is bounded by

15, (& e
[Bat (B, )] < Soet)

n!(ng + 1) Won
if f) e Lyla,b], p>1andp ' +¢ =1
Corollary 25. Consider a set of points
& €

5Ii + Ti+1 T4 + 5$i+1
6 ’ 6

} (i=0,...,m—1)
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and let f and A, be defined as above. Then we have the equality

B mzl .n (_'1-)j K}g)] {(71)j FUTD (@) = fO70 ($i+1)}

- mrrm (o mtie +65”“)j} 1970 &)

+ Rs (A, f)

and the remainder, Rs (A, f) satisfies the bound

Hf(”)Hp = hi\" bri + w1 )"

n! (ng + 1)% =0
1
o (B —fi)"qﬂ}) y
6
if f™ e Lyfabl, p>1andp ' +q ' =1.

Remark 8. If in (6.14) we choose the midpoint &; = %Jm we obtain a gener-
alised Simpson formula:

[ron - EXEE(R) {er - em)
'>j {1 - (fl)j} FU-D <f‘7i+12+ f”)
and Ry (A, f) is bounded by

Hf(")H 2 1+2n+1 % m—1 § %
|RS(Am’f)| g Tl' ’ (nq+1 ) ;hiq+1 3

if £ e Lyla,b], p>1andp ™t +¢ =1

+ Rs (A, f)

The following is a consequence of Theorem [14.

Corollary 26. Consider the interval

Tiy1 + 4
Z; Sozl(»l) < Zitl T

9 SQEZ)§$i+1 (1:077m71)7
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and let f and A, be defined as above.
The following equality is obtained:-

(6.15) ft)dt= } Zn: (_,1'>j {(:vl - al(-i))j FU7Y (@)

) (Tt m (1) g (Tt T (2) g (—1) { Tit1 + Ti
{( 2 * ) 2 * f 2
o
- (xm - ai”) FuY (mi+1)} + Rp (agl),agz),Am,f) ;

where the remainder satisfies the bound

‘RB (az(-l),aEQ),Am,f)‘

n!(ng+1)¢

=0
1

z; 4o ng+1 ng+1 q
+ (0422) - +12> + («Ti+1 - 0‘9) }) :

The following remark applies to Corollary 26.
Remark 9. Ifin (6.15) we choose

agl) _ 3z zﬂ%-ﬂ and a§2) _ T +2$z’+1,

we have the formula:

= Z zn: (—1)3 (2)7 [(_1)1' f(j—l) () — f(j—l) (Zi11)

= e} (B R (8 ),

The remainder, Rp (An, ) satisfies the bound

(n) m—1 ng+1 %
=0

n! (ng + 1)%
£ € Lyl p>1andp~ 44~ = 1

The following theorem incorporates the Newton-Cotes formula.
Theorem 15. Consider the interval

z;<al” < <a® <e® <ol <y (1=0,...,m-1),
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and let A, and [ be defined as above. This consideration gives us the equality

(6.17) / " F oy

SE S [ al)
- (‘”m = agg))j FUY (@isa)
- {(fgl) — agl))j - (52(-1) — a§2)>j} fUY (Ez('l))
- {(552) - az@)j - (552) - af’))j} FO-1 (522))}

+ R (az('l)a 0422)’ a§3)7§§1)a§§2)a Amv f) .

The remainder satisfies the bound
|7 (o, 0,0 €V, 62, A, 1)

< va(n)Hp <mzl { (agn _ xi)mﬁ-l n (551) . a51))nq+1

n!(ng + 1)% =0

ng+1 ng+1 ng+1
el )™ () (o)
nqg+1 7
+ (%H - 041('3)) }) ' ,iff™M e Lyfab], p>1andpt+¢7 =1
The following is a consequence of Theorem [15.

Corollary 27. Let f and A, be defined as above and make the choices agl) =
7xi-;x1:+17 02(2) — %, a§3) — W#! 51(1) _ Qacl-i-% and 51(‘2) _ W#’
then we have the equality:

"‘RN(Amaf),
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where the remainder satisfies the bound

2] £ g+l o gng+l o sngtin L /m=1 o, |\ ng+l\ @
SHHPS fanatl 5 ZE |
n! ng+1 o\ 2
if f e Lyfab], p>1andp t+q ' =1
When n =1, we obtain from (6.18) the three-eighths rule of Newton-Cotes.

Q

7. CONCLUSION

This paper has subsumed, extended and generalised many previous Ostrowski
type results. Integral inequalities for n—times differentiable mappings have been
obtained by the use of a generalised Peano kernel. Some particular integral inequali-
ties, including the trapezoid, midpoint, Simpson and Newton-Cotes rules have been
obtained and further developed into composite quadrature rules.

Further work in this area may be undertaken by considering the Chebychev and
Lupag inequalities. Similarly, the following alternate Griiss type results may be
used to examine all the interior point rules of this paper.

Let o (h(z)) = h(z) — M (g) where

M(h)bia/bh(t)dt.

Then from (4.2)
T (h,g) = M (hg) — M (h) M (g) .-
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