
MULTIDIMENSIONAL INTEGRATION VIA TRAPEZOIDAL
AND THREE POINT GENERATORS

P. CERONE

Abstract. Multidimensional integrals are expressed in terms of lower dimen-

sional integrals and function evaluations. An iterative process is used where
a trapezoidal and three point identities are used as generators for higher di-

mensional identities. Bounds are obtained utilising the resulting identities. It

is demonstrated that earlier Ostrowski type results are obtained as particular
instances of the current work.

1. Introduction

We firstly present one-dimensional identities which may be used as generators
for higher dimensional results.

For f : [a, b] → R we define the Ostrowski and Trapezoidal functionals by

(1.1) S (f ; c, x, d) := f (x)−M (f ; c, d)

and

(1.2) T (f ; c, x, d) :=
(

x− c

d− c

)
f (c) +

(
d− x

d− c

)
f (d)−M (f ; c, d) ,

respectively, where

(1.3) M (f ; c, d) :=
1

d− c

∫ d

c

f (u) du, the integral mean.

We note that

(1.4) (b− a)S
(

f ; a,
a + b

2
, b

)
= (b− a) f

(
a + b

2

)
−
∫ b

a

f (u) du

and

(1.5) (b− a) T

(
f ; a,

a + b

2
, b

)
=

b− a

2
[f (a) + f (b)]−

∫ b

a

f (u) du,

recapturing the midpoint and trapezoidal rules for the evaluation of the integrals.
With this in mind, the most common task is to obtain bounds on the above func-
tionals. This task is perhaps best accomplished from identities involving the func-
tionals. The following identities may be easily shown to hold for f of bounded
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2 P. CERONE

variation, by an integration by parts argument of the Riemann-Stieltjes integrals
and so

(1.6) S (f ; c, x, d) =
∫ d

c

p (x, t, c, d) df (t) , p (x, t, c, d) =


t− c

d− c
, t ∈ [c, x]

t− d

d− c
, t ∈ (x, d]

and

(1.7) T (f ; c, x, d) =
∫ d

c

q (x, t, c, d) df (t) , q (x, t, c, d) =
t− x

d− c
, x, t ∈ [c, d] .

The book [15] is devoted to Ostrowski type results involving (1.1) and numerous
generalisations. See also [1], [16], [19] and [21].

Further, define the three point functional T (f ; a, α, x, β, b) which involves the
difference between the integral mean and, a weighted a combination of a function
evaluated at the end points and an interior point. Namely, for a ≤ α < x < β ≤ b,

T (f ; a, α, x, β, b) :=
(

α− a

b− a

)
f (a) +

(
β − α

b− a

)
f (x)(1.8)

+
(

b− β

b− a

)
f (b)−M (f ; a, b) .

Cerone and Dragomir [7] showed that for f of bounded variation, the identity

(1.9) T (f ; a, α, x, β, b) =
∫ b

a

r (x, t) df (t) , r (x, t) =


t− α

b− a
, t ∈ [a, x]

t− β

b− a
, t ∈ (x, b]

is valid. They effectively demonstrated that the Ostrowski functional and the trape-
zoid functional could be recaptured as particular instances. Specifically, from (1.8)
and (1.9)

S (f ; a, x, b) = T (f ; a, a, x, b, b)

and
T (f ; a, x, b) = T (f ; a, x, x, x, b) ,

where S (f ; a, x, b) and T (f ; a, x, b) are defined by (1.1) and (1.2) and satisfy iden-
tities (1.6) and (1.7) respectively.

It should be noted at this stage that

(b− a) T

(
f ; a,

5a + b

6
,
a + b

2
,
a + 5b

6
, b

)
=

b− a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
−
∫ b

a

f (x) dx

is the Simpson functional.
Further, if f (t) is assumed to be absolutely continuous for t over its respective

interval, then df (t) = f ′ (t) dt and the Riemann-Stieltjes integrals in (1.8) and (1.9)
are equivalent to Riemann integrals.

Pachpatte [22] obtains, with the following notation, a trapezoidal type result for
double integrals.
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He lets R denote the set of real numbers and R+ = [0,∞) and uses the no-
tation ∆ = [a, b] × [c, d] for a, b, c, d in R+. If f (x, y) is a differentiable function
defined on ∆, then its partial derivatives are denoted by D1f (x, y) = ∂

∂xf (x, y),
D2f (x, y) = ∂

∂y f (x, y) , D2D1f (x, y) = ∂2

∂y∂xf (x, y) . He denotes by F (∆) the class
of continuous functions f : ∆ → R for which D1f (x, y), D2f (x, y), D2D1f (x, y)
exist and are continuous on ∆.

Theorem 1. If f ∈ F (∆), then∣∣∣∣∣
∫ b

a

∫ d

c

f (s, t) dtds− 1
2

[
(d− c)

∫ b

a

[f (s, c) + f (s, d)] ds(1.10)

+ (b− a)
∫ d

c

[f (a, t) + f (b, t)] dt

]

+
1
4

(b− a) (d− c) [f (a, c) + f (a, d) + f (b, c) + f (b, d)]
∣∣∣∣

≤ 1
4

(b− a) (d− c)
∫ b

a

∫ d

c

|D2D1f (s, t)| dtds.

Using a similar argument, Pachpatte [23] obtains a trapezoidal type result for a
triple integral involving function evaluation on the boundary, single integrals and
double integrals. The error is again as in (1.10) obtained only for the first partial
derivatives over ∆ ∈ L1 [∆] .

In the current work, the generalised trapezoidal and three point identities (1.6)
– (1.7) and (1.8) – (1.9) for absolutely continuous functions are used as generators
to produce identities involving multidimensional integrals in terms of lower dimen-
sional integrals and function evaluations. These are used to procure bounds for

∂nf
∂t1...∂t1

∈ Lp [In] , 1 ≤ p ≤ ∞, where In = [a1, b1]× · · · × [an, bn] .
The methodology of Cerone [5] is used for the current work. That work turns out

to be a particular case of the three point development in Section 3 of the current
paper. The generalised trapezoidal results of Section 2 are also specialisations of
the three point results of Section 2.

2. Identities from an Iterative Approach and their Bounds

The following theorem obtained by Cerone [5] uses an iterative approach to
extend the Ostrowski functional identity to multidimensions. Firstly, we will require
some notation.

Let In =
∏n

i=1 [ai, bi] = [a1, b1]× [a2, b2]× · · · × [an, bn] . Further, let f : In → R
and define operators Fi (f) and λi (f) by

(2.1) Fi (f) := f (t1, . . . , ti−1, xi, ti+1, . . . , tn) where xi ∈ [ai, bi]

and

(2.2) λi (f) :=
1
di

∫ bi

ai

f (t1, . . . , ti−1, ti, ti+1, . . . , tn) dti.

That is, Fi (f) evaluates f (·) in the ith variable at xi ∈ [ai, bi] and λi (f) is the in-
tegral mean of f (·) in the ith variable. Assuming that f (·) is absolutely continuous
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in the ith variable ti ∈ [ai, bi] , we have

(2.3) Li (f) =
1
di

∫ bi

ai

pi (xi, ti)
∂f

∂ti
dti = (Fi − λi) (f) ,

for i = 1, 2, . . . , n, where

(2.4)
pi (xi, ti)

di
=


ti − ai

bi − ai
, ti ∈ [ai, xi]

ti − bi

bi − ai
, ti ∈ (xi, bi] ,

and di = bi − ai.
Thus (2.3) – (2.4) is ostensibly equivalent to the Montgomery identity for

f (t1, . . . , ti−1, ti,ti+1, . . . , tn) absolutely continuous for ti ∈ [ai, bi] .
Theorem 2. Let f : In → R be absolutely continuous in such a manner that the
partial derivatives of order one with respect to every variable exist. Then

En (f)(2.5)

= f (x1, x2, . . . , xn)−
n∑

i=1

1
di

∫ bi

ai

f (x1, x2, . . . , xi−1, ti, xi+1, . . . , xn) dti

+
n∑

i<j

1
didj

∫ bj

aj

∫ bi

ai

f (x1, . . . , xi−1, ti, xi+1, . . . , tj , . . . , xn) dtidtj

− · · · · · · · · · − (−1)n

Dn

∫ bn

an

· · ·
∫ bi

ai

f (t1, . . . , tn) dt1 . . . dtn

:= τn

(
a
∼
, x

∼
, b

∼

)
,

where

(2.6) En (f) =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

pi (xi, ti)
∂nf

∂tn . . . ∂t1
dt1 . . . dtn,

pi (xi, ti) is given by (2.4), and

(2.7) Dn =
n∏

i=1

di, di = bi − ai.

Theorem 3. Let the conditions of Theorem 2 continue to hold. Then

(2.8)
∣∣∣τn

(
a
∼
, x

∼
, b

∼

)∣∣∣

(2.9) ≤



n∏
i=1

Pi (1)
∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
∞

,
∂nf

∂tn . . . ∂t1
∈ L∞ [In] ;

(
n∏

i=1

Pi (q)

) 1
q ∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
p

,
∂nf

∂tn . . . ∂t1
∈ Lp [In] ,

p > 1, 1
p + 1

q = 1;
n∏

i=1

θi

∥∥∥∥ ∂nf

∂tn . . . ∂t1

∥∥∥∥
1

,
∂nf

∂tn . . . ∂t1
∈ L1 [In] ,
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where τn

(
a
∼
, x

∼
, b

∼

)
is as defined by (2.5),

(2.10) (q + 1) Pi (q) = (xi − ai)
q+1 + (bi − xi)

q+1
,

(2.11) θi =
bi − ai

2
+
∣∣∣∣xi −

ai + bi

2

∣∣∣∣ .
Remark 1. It was stated in Cerone [5] that the expression for τn

(
a
∼
, x

∼
, b

∼

)
may be

written in a less explicit form which is perhaps more appealing. Namely,

(2.12) τn

(
a
∼
, x

∼
, b

∼

)
= f (x1, x2, . . . , xn) +

n−1∑
k=1

(−1)k
∑

k
Mk + (−1)nMn,

where Mk represents the integral means in k variables with the remainder being

evaluated at their respective interior point and
∑

k Mk is a sum over all
(

n
k

)
,

k−dimensional integral means. Here

Mn =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

f (t1, . . . , tn) dt1 . . . dtn

and∑
1
M1 =

1
d1

∫ b1

a1

f (t1, x2, . . . , xn) dt1 +
1
d2

∫ b2

a2

f (x1, t2, x3, . . . , xn) dt2

+ · · ·+ 1
dn

∫ bn

an

f (x1, x2, . . . , xn−1, tn) dtn.

It should be noted that (2.12) may be written as

(2.13) τn

(
a
∼
, x

∼
, b

∼

)
=

n∑
k=0

(−1)k
∑

k
Mk

if we define the degenerate 0−th integral mean M0 = f (x1, x2, . . . , xn) .
The work of Cerone [3] used the Ostrowski functional (1.1) as a seed or gener-

ator for extension to higher dimensions using the Montgomery identity. We may
prove, in an equivalent manner, utilising the generalised trapezoidal identity (1.7)
with (1.2) as the generator of a higher dimensional result. We will restrict the cur-
rent work to absolutely continuous functions so that the Riemann integral identity
corresponding to (1.7) will be used. Let f : In → R and define the operator

Gi (f) :=
Ai

di
f (t1, . . . , ti−1, ai, ti+1, . . . , tn)(2.14)

+
Bi

di
f (t1, . . . , ti−1, bi, ti+1, . . . , tn) ,

where

(2.15) Ai = xi − ai, Bi = bi − xi, di = bi − ai.

Here diGi (f) represents the generalised trapezoid in the ith variable giving the
standard trapezoid when xi = ai+bi

2 .
We note that Ai + Bi = di and if we extend the notation to

Ãi (xi) = xi − ai, and B̃i (xi) = bi − xi,
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then we see that

Ãi (xi) =

 0, xi = ai

di, xi = bi

and B̃i (xi) =

 di, xi = ai

0, xi = bi

.

Now, for f (·) absolutely continuous in the ith variable ti ∈ [ai, bi] we have

(2.16) Mi (f) =
1
di

∫ bi

ai

qi (xi, ti)
∂f

∂ti
dti = (Gi − λi) (f) , i = 1, 2, . . . , n,

where Gi (f) and λi (f) are as given by (2.14) – (2.15) and (2.2) respectively and,

(2.17)
qi (xi, ti)

di
=

ti − xi

bi − ai
, xi, ti ∈ [ai, bi] .

Let c(0) = (c1, c2, . . . , cn) , where ci = ai or bi in the ith position for i =
1, 2, . . . , n. Also, let σ0

(
c(0)
)

be the set of all such vectors which consists of 2n

possibilities. Further, let

(2.18) χk =
n∏

j=1

(k) Cj

dj
, k = 0, 1, . . . , n,

where Cj = Aj or Bj with the exception that k of the Cj = dj and so Cj

dj
= 1.

In a similar fashion, let c(k) be a vector taking on the fixed values ai or bi in
the ith position except for k of the positions which are variable, t•. Let Mk be
k−dimensional integral means for f

(
c(k)
)
. Here c(k) ∈ σk

(
c(k)
)

the set of all such
elements, of which there are

(
n
k

)
2n−k,

With the above notation in place, the following theorem holds.
Theorem 4. Let f : In → R be absolutely continuous and be such that all partial
derivatives of order one in each of the variables exist. Then

Rn (f) =
∑

0
χ0f

(
c(0)
)
−
∑

1
χ1M1 +

∑
2
χ2M2(2.19)

− · · · − (−1)n−1
∑

n−1
χn−1Mn−1 + (−1)nMn

:= ρn

(
a
∼
, x

∼
, b

∼

)
,

where, χk is as defined in (2.18), Mk is the k−dimensional integral mean for
f
(
c(k)
)
, specifically, Mn = 1

Dn

∫ bn

an
· · ·
∫ b1

a1
f (t1, t2, . . . , tn) dt1 . . . dtn and

∑
k is a

sum involving each of the elements of σk

(
c(k)
)

of which there are
(

n
k

)
2n−k terms.

Further,

(2.20) Rn (f) =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

qi (xi, ti)
∂nf

∂tn · · · ∂t1
dt1 · · · dtn,

and qi (xi, ti) is given by (2.17), Dn by (2.7). Here, ci is equal to either ai or bi in
which case Ci = Ai or Bi.

Proof. Let Rr (f) be defined by

(2.21) Rr (f) :=

(
r∏

i=1

Mi

)
(f) ,
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then from the left identity in (2.16), Rn (f) is as given by (2.20). Now,

(2.22) Rr (f) = Mr (Rr−1 (f)) , for r = 1, 2, . . . , n,

where R0 (f) = f .
Thus, from (2.21)

R1 (f) = M1 (f) = (G1 − λ1) (f) ,

which is the generalised trapezoidal identity for t1, x1 ∈ [a1, b1]

R1 (f) =
1
d1

∫ b1

a1

q1 (x1, t1)
∂f

∂t1
(t1, t2, . . . , tn) dt1(2.23)

=
A1

d1
f (a1, t2, . . . , tn) +

B1

d1
f (b1, t2, . . . , tn)

− 1
d1

∫ b1

a1

f (t1, t2, . . . , tn) dt1

contains three entities; two function evaluations and one integral. Further,

R2 (f) = M2 (R1 (f)) = (G2 − λ2) (R1 (f))
= G2 (R1 (f))− λ2 (R1 (f))

=
A2

d2
R1 (f)

∣∣∣∣
t2=a2

+
B2

d2
R1 (f)

∣∣∣∣
t2=b2

− 1
d2

∫ b2

a2

R1 (f) dt2

contains nine entities. Thus,

R2 (f) =
A2

d2

{
A1

d1
f (a1, a2, t3, . . . , tn) +

B1

d1
f (b1, a2, t3, . . . , tn)(2.24)

− 1
d1

∫ b1

a1

f (t1, a2, t3, . . . , tn) dt1

}

+
B2

d2

{
A1

d1
f (a1, b2, t3, . . . , tn) +

B1

d1
f (b1, b2, t3, . . . , tn)

− 1
d1

∫ b1

a1

f (t1, b2, t3, . . . , tn) dt1

}

− 1
d2

∫ b2

a2

{
A1

d1
f (a1, t2, . . . , tn) +

B1

d1
f (b1, t2, t3, . . . , tn)

− 1
d1

∫ b1

a1

f (t1, t2, . . . , tn) dt1

}
dt2
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=
A2

d2

A1

d1
f (a1, a2, t3, . . . , tn) +

A2

d2

B1

d1
f (b1, a2, t3, . . . , tn)

+
B2

d2

A1

d1
f (a1, b2, t3, . . . , tn) +

B2

d2

B1

d1
f (b1, b2, t3, . . . , tn)

−A2

d2
· 1
d1

∫ b1

a1

f (t1, a2, t3, . . . , tn) dt1 −
B2

d2
· 1
d1

∫ b1

a1

f (t1, b2, t3, . . . , tn) dt1

−A1

d1
· 1
d2

∫ b2

a2

f (a1, t2, . . . , tn) dt2 −
B1

d1
· 1
d2

∫ b2

a2

f (b1, t2, t3, . . . , tn) dt2

+
1

d2d1

∫ b2

a2

∫ b1

a1

f (t1, t2, . . . , tn) dt1dt2.

From the 32 entities of R2 (f) there are 22 function evaluations, 2×2 single integrals
and one double integral

R3 (f) = M3 (R2 (f)) = (G3 − λ3) (R2 (f))
= G3 (R2 (f))− λ3 (R2 (f))

=
A3

d3
R2 (f)

∣∣∣∣
t3=a3

+
B3

d3
R2 (f)

∣∣∣∣
t3=b3

− 1
d3

∫ b3

a3

R2 (f) dt3.

This will produce 32 entities with
(

3
0

)
23 function evaluations,

(
3
1

)
22 single integrals,(

3
2

)
21 double integrals and

(
3
0

)
20 triple integrals. The 2 occurs since evaluation is

at either the ai or the bi.
Continuing in this manner we obtain the result as stated where there are 3n

entities for Rn (f), with
(

n
0

)
2n function evaluations only,

(
n
1

)
2n−1 single integrals,(

n
2

)
2n−2 double integrals, ... ,

(
n

n−1

)
2, (n− 1)th integrals and one n-dimensional

integral.

Corollary 1. Let the conditions of Theorem 4 continue to hold. Then

R̃n (f) =
1
2n

∑
0
f
(
c(0)
)

(2.25)

− 1
2n−1

∑
1
M1 + · · ·+ (−1)n−1

2

∑
n−1

Mn−1

+
(−1)n

Dn

∫ bn

an

· · ·
∫ b1

a1

f (t1, t2, . . . , tn) dt1 . . . dtn,

where ci is either ai or bi for i = 1, 2, . . . , n and

R̃n (f) =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

qi (γi, ti)
∂nf

∂tn · · · ∂t1
dt1 · · · dtn,

γi = ai+bi

2 .

Proof. The proof is obvious. On placing xi = γi = ai+bi

2 we get Ai = Bi = bi−ai

2 =
di

2 .

Remark 2. Taking n = 1 in (2.2) gives

(2.26)
1
d1

∫ b1

a1

q1 (x1, t1) f ′ (t1) dt1 =
A1

d1
f (a1) +

B1

d1
f (b1)−

1
d1

∫ b1

a1

f (t1) dt1
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and so

1
d1

∫ b1

a1

q1

(
a1 + b1

2
, t1

)
f ′ (t1) dt1 =

1
2

[f (a1) + f (b1)]−
1
d1

∫ b1

a1

f (t1) dt1,

the trapezoidal identity involving the first derivative.
If n = 2, then from (2.24) and dropping the third to nth dimensions gives,

R2 (f) =
A2

d2
· A1

d1
f (a1, a2) +

A2

d2
· B1

d1
f (b1, a2)(2.27)

+
B2

d2
· A1

d1
f (a1, b2) +

B2

d2
· B1

d1
f (b1, b2)

−A2

d2
· 1
d1

∫ b1

a1

f (t1, a2) dt1 −
B2

d2
· 1
d1

∫ b1

a1

f (t1, b2) dt1

−A1

d1
· 1
d2

∫ b2

a2

f (a1, t2) dt2 −
B1

d1
· 1
d2

∫ b2

a2

f (b1, t2) dt2

+
1

d2d1

∫ b1

a1

∫ b2

a2

f (t1, t2) dt1dt2.

We now obtain bounds for ρn

(
a
∼
, x

∼
, b

∼

)
as defined in (2.19) for ∂nf

∂tn...∂t1
∈ Lp [In],

1 ≤ p ≤ ∞ with the usual the Lebesgue norms, where for h : In → R then

‖h‖p :=

(∫ bn

an

· · ·
∫ b1

a1

|h (t1, t2, . . . , tn)|p dt1 . . . dtn

) 1
p

,(2.28)

1 ≤ p < ∞, for h ∈ Lp [In] ,

and

(2.29) ‖h‖∞ := ess sup
t
∼
∈

[
a
∼

, b
∼

] |h (t1, t2, . . . , tn)| , for h ∈ L∞ [In] .

Theorem 5. Let the conditions of Theorem 4 persist. Then,

Dn

∣∣∣ρn

(
a
∼
, x

∼
, b

∼

)∣∣∣(2.30)

≤



n∏
i=1

Qi (1)
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
∞

,
∂nf

∂tn · · · ∂t1
∈ L∞ [In] ;

(
n∏

i=1

Qi (q)

) 1
q ∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
p

,
∂nf

∂tn · · · ∂t1
∈ Lp [In] ,

p > 1, 1
p + 1

q = 1
n∏

i=1

φi

∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

,
∂nf

∂tn · · · ∂t1
∈ L1 [In] ;

where ρn

(
a
∼
, x

∼
, b

∼

)
is as defined by (2.19),

(q + 1)Qi (q) = Aq+1
i + Bq+1

i ,(2.31)

φi =
di

2
+ |xi − γi| .(2.32)
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Proof. From (2.19) and (2.20) we have∣∣∣ρn

(
a
∼
, x

∼
, b

∼

)∣∣∣(2.33)

= |Rn (f)| ≤ 1
Dn

∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

qi (xi, ti)
∂nf

∂tn · · · ∂t1

∣∣∣∣∣ dt1 · · · dtn.

Now, for ∂nf
∂tn...∂t1

∈ L∞ [In] , then

|Rn (f)| ≤
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
∞

∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

qi (xi, ti)

∣∣∣∣∣ dt1 · · · dtn(2.34)

=
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
∞

n∏
i=1

∫ bi

ai

|qi (xi, ti)| dti

=
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
∞

n∏
i=1

[∫ xi

ai

(ti − ai) dti +
∫ bi

xi

(bi − ti) dti

]

=
1
2n

n∏
i=1

[
A2

i + B2
i

] ∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
∞

.

Thus, combining (2.33) and (2.34) gives the first inequality in (2.30).
Further, using the Hölder inequality for multiple integrals, we have from (2.33)

for ∂nf
∂tn...∂t1

∈ Lp [In] , 1 < p < ∞,

(2.35) Dn |Rn (f)| ≤
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
p

(∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

qi (xi, ti)

∣∣∣∣∣
q

dt1 · · · dtn

) 1
q

.

Here, on using (2.17), we have∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

qi (xi, ti)

∣∣∣∣∣
q

dt1 · · · dtn

=
n∏

i=1

∫ bi

ai

|pi (xi, ti)|q dti =
n∏

i=1

[∫ xi

ai

(ti − ai)
q
dti +

∫ bi

xi

(bi − ti)
q
dti

]

=
1

(q + 1)n

n∏
i=1

[
Aq+1

i + Bq+1
i

]
and so the second inequality in (2.30) holds on utilising (2.33) and noting (2.31).

The final inequality in (2.30) is obtained from (2.34) for ∂nf
∂tn...∂t1

∈ L1 [In] giving
from (2.33)

Dn |Rn (f)| ≤ sup
t
∼
∈

[
a
∼

, b
∼

]
∣∣∣∣∣

n∏
i=1

qi (xi, ti)

∣∣∣∣∣
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

=
n∏

i=1

sup
ti∈[ai,bi]

|qi (xi, ti)|
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

=
n∏

i=1

max {Ai, Bi}
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

.
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Noting that

max {X, Y } =
X + Y

2
+
|X − Y |

2
gives the final result.

Remark 3. It should be noted that the bounds given on
∣∣∣τn

(
a
∼
, x

∼
, b

∼

)∣∣∣ by (2.8) are

exactly the same bounds as those given by (2.30) for
∣∣∣ρn

(
a
∼
, x

∼
, b

∼

)∣∣∣ . It was shown

by Cerone [6] that the bounds in terms of the Lebesgue norms on |S (f ; c, x, d)| and
|T (f ; c, x, d)| , as defined in (1.1) and (1.2), are the same. Since the identities for
these two functionals were used as generators for the multidimensional extension,
the equality of the two sets of bounds (2.8) and (2.30) should not come as a great
surprise. Finally we notice, due to convexity of the bounds in (2.30), that the
sharpest bounds occur at xi = γi = ai+bi

2 .

3. Three Point Identities and their Bounds

For f (·) absolutely continuous, then from (1.8) – (1.9)

(3.1) T (f ; a, α, x, β, b) =
∫ b

a

r (x, t) f ′ (t) dt,

with

(3.2) r (x, t) =


t− α

b− a
, t ∈ [a, x]

t− β

b− a
, t ∈ (x, b]

.

However, it may be noticed that

(3.3) T (f ; a, α, x, β, b) = T (f ; a, α, x) + T (f ;x, β, b)

and

(3.4) r (x, t) =

 q (α, t) , t ∈ [a, x]

q (β, t) , t ∈ (x, b]

where q (x, t) = t−x
b−a , t, x ∈ [a, b] .

Thus we have the identity

Ψn

(
a
∼
, α

∼
, x

∼
, β

∼
, b

∼

)
(3.5)

:= ρn

(
a
∼
, α

∼
, x

∼

)
+ ρn

(
x
∼
, β

∼
, b

∼

)
=

1
Dn

∫ xn

an

· · ·
∫ x1

a1

n∏
i=1

(ti − αi)
∂nf

∂tn · · · ∂t1
dt1 · · · dtn

+
1

Dn

∫ bn

xn

· · ·
∫ b1

x1

n∏
i=1

(ti − βi)
∂nf

∂tn · · · ∂t1
dt1 · · · dtn

=
∫ bn

an

· · ·
∫ b1

a1

n∏
i=1

ri (xi, ti)
∂nf

∂tn · · · ∂t1
dt1 · · · dtn
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where

(3.6)
ri (xi, ti)

di
=


ti − αi

di
, ti ∈ [ai, xi]

ti − βi

di
, ti ∈ (xi, bi]

.

It is important to obtain an identity for the three point rule since the bounds are
tighter than using the bounds of the two trapezoidal rules as this would entail using

the triangle inequality. We notice that Ψn

(
a
∼
, α

∼
, x

∼
, β

∼
, b

∼

)
in (3.5) is not expressed

explicitly. This may be accomplished by returning to (2.19) or else we may use the
generator methodology utilised to obtain the results in Section 2.

Let f : In → R and define the operator

Hi (f) :=
ν

(a)
i

di
f (t1, . . . , ti−1, ai, ti+1, . . . , tn)(3.7)

+
ν

(x)
i

di
f (t1, . . . , ti−1, xi, ti+1, . . . , tn)

+
ν

(b)
i

di
f (t1, . . . , ti−1, bi, ti+1, . . . , tn) ,

where,

(3.8) ν
(a)
i = αi − ai, ν

(x)
i = βi − αi, ν

(b)
i = bi − βi, di = bi − ai.

Then, from (3.1) – (3.2) for f (·) absolutely continuous in the ith variable ti ∈ [ai, bi]
we have

(3.9) Ni (t) =
1
di

∫ bi

ai

ri (xi, ti)
∂f

∂ti
dti = (Hi − λi) (f) , i = 1, 2, . . . , n.

where Hi (f) and λi (f) are as given by (3.7) – (3.8) and (2.2) respectively.
If we now follow the work of the previous section and let c(0) = (c1, c2, . . . , cn),

where now ci = ai, xi or bi in the ith partition for i = 1, 2, . . . , n. Then σ0

(
c(0)
)

which is the set of all such vectors consists of 3n possibilities. Further, let χn be
as in (2.18) where now, Cj = ν

(a)
j or ν

(x)
j or ν

(b)
j are as defined by (3.8) with the

exception that k of the Cj = dj and so Cj

dj
= 1.

Further, c(k) is a vector taking on fixed values of either ai, xi or bi in the ith posi-
tion except for k of the positions which are variable, t•. Let Mk be k−dimensional
integral means for f

(
c(k)
)
, then the following theorem holds.

Theorem 6. Let f : In → R be absolutely continuous and be such that all partial
derivatives of order one in each of the variables exist. Then

Bn (f) =
∑

0
χ0f

(
c(0)
)
−
∑

1
χ1M1 +

∑
2
χ2M2(3.10)

− · · · − (−1)n−1
∑

n−1
χn−1Mn−1 + (−1)nMn

:= Ψn

(
a
∼
, α

∼
, x

∼
, β

∼
, b

∼

)
,
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where

(3.11) χk =
n∏

j=1

(k) Cj

dj
, k = 0, 1, . . . , n,

with Cj = ν
(a)
j , ν

(x)
j or ν

(b)
j as defined in (3.8) except for k of the Cj = dj giving

Cj

dj
= 1, Mk is the k−dimensional integral mean of f

(
c(k)
)

and specifically,

Mn =
1

Dn

∫ bn

an

· · ·
∫ b1

a1

f
(
c(n)

)
dt1 . . . dtn, c(n) = (t1, t2, . . . , tn) .

Finally,
∑

k is a sum over all
(

n
k

)
3n−k terms and Bn (f) is as defined in (3.5).

Proof. Similar to that of Theorem 4 except that for each variable ti there are now
three possible choices for evaluation of either ai, xi, or bi.

The following theorem gives bounds for the Ψn

(
a
∼
, α

∼
, x

∼
, β

∼
, b

∼

)
as given in either

(3.10) or (3.5).
Theorem 7. Let the conditions of Theorem 6 continue to hold. Then,

Dn

∣∣∣∣Ψn

(
a
∼
, α

∼
, x

∼
, β

∼
, b

∼

)∣∣∣∣(3.12)

≤



n∏
i=1

Si (1)
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
∞

,
∂nf

∂tn · · · ∂t1
∈ L∞ [In] ;

(
n∏

i=1

Si (q)

) 1
q ∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
p

,
∂nf

∂tn · · · ∂t1
∈ L∞ [In] ,

p > 1, 1
p + 1

q = 1
n∏

i=1

ζi

∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

,
∂nf

∂tn · · · ∂t1
∈ L1 [In] ;

where ‖h‖p, 1 ≤ p < ∞ and ‖h‖∞ are defined by (2.28) and (2.29), Ψn

(
a
∼
, α

∼
, x

∼
, β

∼
, b

∼

)
is defined by (3.5) or, explicitly, by (3.10),

(3.13) (q + 1) Si (q) = (αi − ai)
q+1 + (xi − αi)

q+1 + (βi − xi)
q+1 + (bi − βi)

q+1
,

ζi =
1
2

{
bi − ai

2
+
∣∣∣∣αi −

ai + xi

2

∣∣∣∣+ ∣∣∣∣βi −
xi + bi

2

∣∣∣∣(3.14)

+
∣∣∣∣xi −

ai + bi

2
+
∣∣∣∣αi −

ai + xi

2

∣∣∣∣− ∣∣∣∣βi −
xi + bi

2

∣∣∣∣∣∣∣∣} .

Proof. From (3.10) and (3.5)∣∣∣∣Ψn

(
a
∼
, α

∼
, x

∼
, β

∼
, b

∼

)∣∣∣∣(3.15)

= |Bn (f)| ≤ 1
Dn

∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

ri (xi, ti)
∂nf

∂tn · · · ∂t1

∣∣∣∣∣ dt1 · · · dtn.
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Now, for ∂nf
∂tn...∂t1

∈ L∞ [In] then

(3.16) Dn |Bn (f)| ≤
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
∞

∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

ri (xi, ti)

∣∣∣∣∣ dt1 · · · dtn,

where ‖h‖∞ is defined by (2.29).
Here ∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

ri (xi, ti)

∣∣∣∣∣ dt1 · · · dtn =
n∏

i=1

∫ bi

ai

|ri (xi, ti)| dti,

where ∫ bi

ai

|ri (xi, ti)| dti

=
∫ αi

ai

(αi − ti) dti +
∫ xi

αi

(ti − αi) dti +
∫ βi

xi

(βi − ti) dti +
∫ bi

βi

(ti − βi) dti

=
1
2

[
(αi − ai)

2 + (xi − αi)
2 + (βi − xi)

2 + (bi − βi)
2
]
.

Substitution of the above results into (3.16) gives the first inequality in (3.12) with
Si (1) given from (3.13).

Moreover, using the Hölder inequality for multiple integrals we have, from (3.15)
for ∂nf

∂tn...∂t1
∈ Lp [In] , 1 < p < ∞,

(3.17) Dn |Bn (f)| ≤
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
p

(∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

ri (xi, ti)

∣∣∣∣∣
q

dt1 · · · dtn

) 1
q

,

where ∫ bn

an

· · ·
∫ b1

a1

∣∣∣∣∣
n∏

i=1

ri (xi, ti)

∣∣∣∣∣
q

dt1 · · · dtn

=
n∏

i=1

∫ bi

ai

|pi (xi, ti)|q dti

=
n∏

i=1

{∫ αi

ai

(αi − ti)
q
dti +

∫ xi

αi

(ti − αi)
q
dti

+
∫ βi

xi

(βi − ti)
q
dti +

∫ bi

βi

(ti − βi)
q
dti

}

=
1

(q + 1)n

n∏
i=1

[
(αi − ai)

q+1 + (xi − αi)
q+1 + (βi − xi)

q+1 + (bi − βi)
q+1
]
.

Substitution of the above calculations into (3.17) gives the second inequality in
(3.12) with Si (q) as given by (3.13).
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Finally, for ∂nf
∂tn...∂t1

∈ L1 [In] we have from (3.15)

Dn |Bn (f)| ≤ sup
t
∼
∈

[
a
∼

, b
∼

]
∣∣∣∣∣

n∏
i=1

ri (xi, ti)

∣∣∣∣∣
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

=
n∏

i=1

sup
ti∈[ai,bi]

|ri (xi, ti)|
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

=
n∏

i=1

max {αi − ai, xi − αi, βi − xi, bi − βi}
∥∥∥∥ ∂nf

∂tn · · · ∂t1

∥∥∥∥
1

.

Using the result that

max {X, Y } =
X + Y

2
+
|X − Y |

2
twice produces the final inequality in (3.12).

Remark 4. The bounds obtained above in Theorem 7 are the product of the bounds
for the one dimensional integral results. These were studied extensively in Cerone
and Dragomir [8]. It should further be noted that the three point results of the
current section recaptures the generalised trapezoidal results of the previous section
if we take αi = βi = xi. In addition, the Ostrowski type results of Cerone [5] are
recaptured if we take αi = ai and βi = bi.

If we take n = 2 then the results of Hanna et al. [18] are recaptured. Chapter
6 by Hanna in [15] treats double integrals while in Chapter 5 of the same book,
Barnett et al. produce related but different results for multiple integrals involving
only evaluation at an interior point.

Finally, we notice that the best choice of the αi, βi and the xi in (3.12) is at their
respective midpoints, providing the sharpest bound. That is, αi = ai+xi

2 , βi = xi+bi

2

and xi = ai+bi

2 , i = 1, 2, . . . , n.

4. Concluding Remarks

Perturbed rules using the Chebychev functional as determined by Cerone [5] for
multiple integrals obtained using an Ostrowski functional as a generator can also
be produced here for both the trapezoidal and three point developments. This,
however, will not be pursued further here. The procedure developed in [5] and
extended here may also be used to include higher order formulae involving the
behaviour of higher derivatives for its bounds. Multidimensional results based on
an m branched Peano kernel producing function evaluations at m + 1 points are
also possible using the methodology demonstrated in Section 3 for m = 2.Finally,
weighted rules are also possible using a weighted functional as a generator, however,
this may be restricted to product form weight functions in the multidimensional
result. These will also not be investigated further here.
Acknowledgement 1. The work for this paper was done while the author was on
sabbatical at La Trobe University, Bendigo.
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