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Abstract. In this article, the convergence of the sequence

3

√
a +

3
√

a + · · ·+ 3√a︸ ︷︷ ︸
n

is proved, and some inequalities involving this sequence are established for

a > 0. As by-product, two identities involving irrational numbers are obtained.

Two open problems are proposed.

1. Introduction

Let a > 0 and N be the set of natural numbers. Denote

Sn(a) =

√
a+

√
a+ · · ·+

√
a︸ ︷︷ ︸

n

, (1)

fn(a) =
a− Sn+1(a)
a− Sn(a)

. (2)

In 1993, J.-Ch. Kuang sought the lower and upper bounds of fn(a), and conjec-

tured that

fn(a) >
1
a2

(3)

for all n ∈ N. See [2, pp. 505–506 and p. 778].
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In 1999, as a reading note in [2], the second author raised the issue of the

convergence of Sn,t(a) and the bounds of fn,t(a), where, for a > 0 and t 6= 0,

Sn,t(a) =
t

√
a+ t

√
a+ · · ·+ t

√
a︸ ︷︷ ︸

n

, (4)

fn,t(a) =
a− Sn+1,t(a)
a− Sn,t(a)

. (5)

Recently, the conjecture made by by J.-Ch. Kuang was considered in [3], and

the following result obtained.

Theorem A. Let a > 0 and n ∈ N.

(1) For a ≥ 2, we have

1
a2

<
2
(
a+

√
a− a2

)
(
√
a− a)

(√
1 + 4a+ 2a+ 1

) < fn(a) < 1; (6)

(2) For 1 ≤ a < 2, there is a number n0 ∈ N such that

fn(a) > 1 ≥ 1
a2

(7)

holds for n > n0;

(3) For 0 < a < 1, we have

1 < fn(a) ≤
√
a+

√
a− a√

a− a
. (8)

In this article, motivated by the reading note in [2] and the paper [3], we give

an explicit solution to the problem involving the convergence of Sn,t(a) and the

bounds of fn,t(a) defined by (4) and (5) in the case of t = 3.

2. Convergence and Inequalities for Sn,t(a)

In this section, we first discuss the convergence of the sequence Sn,t(a), and then

obtain several inequalities for it.

Theorem 1. Let a > 0 and n ∈ N. The sequence {Sn,3(a)}∞n=1 is strictly increas-

ing.

(1) If 0 < a ≤ 2
3
√

3
, we have

lim
n→∞

Sn,3(a) =
2√
3

cos

(
1
3

arccos
3a
√

3
2

)
; (9)



INEQUALITIES INVOLVING THE SEQUENCE
3
√

a + 3
√

a + · · ·+ 3√a 3

(2) If a > 2
3
√

3
, we have

lim
n→∞

Sn,3(a) =
3

√
a

2
+

√
a2

4
− 1

27
+

3

√
a

2
−
√
a2

4
− 1

27
. (10)

Proof. By induction, it is easy to prove that the sequence {Sn,3(a)}∞n=1 is strictly in-

creasing for a > 0 and 3
√
a ≤ Sn,3(a) < 3

√
a+1, therefore, the sequence {Sn,3(a)}∞n=1

converges.

Suppose limn→∞ Sn,3(a) = x, then, from S3
n,3(a) = a + Sn−1,3(a), it can be

deduced that x3 − x− a = 0.

From Cardano’s formula [1] for the solution of a cubic equation of a single vari-

able, the proof of Theorem 1 follows. �

Using monotonicity of the sequence {Sn,3(a)}∞n=1 and Theorem 1, the following

inequalities are obtained.

Theorem 2. Let a > 0 and n ∈ N.

(1) If 0 < a ≤ 2
3
√

3
, then

a < 3
√
a ≤ Sn,3(a) ≤

2√
3

cos

(
1
3

arccos
3a
√

3
2

)
; (11)

(2) If 2
3
√

3
< a < 1, we have

a < 3
√
a ≤ Sn,3(a) <

3

√
a

2
+

√
a2

4
− 1

27
+

3

√
a

2
−
√
a2

4
− 1

27
; (12)

(3) If 1 ≤ a <
√

2, there exists a number n0 ∈ N such that

3
√
a ≤ Sn0,3(a) ≤ a < Sn,3(a) <

3

√
a

2
+

√
a2

4
− 1

27
+

3

√
a

2
−
√
a2

4
− 1

27
(13)

holds for n > n0;

(4) If a ≥
√

2, then

3
√
a ≤ Sn,3(a) <

3

√
a

2
+

√
a2

4
− 1

27
+

3

√
a

2
−
√
a2

4
− 1

27
≤ a. (14)

Proof. We verify the inequalities (13) and (14), the rest follow similarly.

For x ≥ 2
3
√

3
, we introduce a function ψ(x) defined by

ψ(x) , g(x)− x ,
3

√
x

2
+

√
x2

4
− 1

27
+

3

√
x

2
−
√
x2

4
− 1

27
− x. (15)

We also claim that ψ(x) ≤ 0 if and only if x ≥
√

2.
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Direct calculation reveals that

g3(x) = g(x) + x. (16)

We have, then

g′(x) =
1

3g2(x)− 1
, g′′(x) = − 6g(x)

[3g2(x)− 1]3
. (17)

It is clear that both the terms of g(x) are positive for x ≥ 2
3
√

3
. Using the

arithmetic-geometric mean inequality yields that g(x) > 2
√

3
3 for x ≥ 2

3
√

3
. This

leads to 3g2(x)− 1 > 3 for x ≥ 2
3
√

3
. Therefore, the first derivative of g(x) satisfies

g′(x) > 0 and the second derivative g′′(x) < 0 for x ≥ 2
3
√

3
. This means that the

function g(x) is increasing and concave on
[

2
3
√

3
,∞
)
.

Straightforward computation yields

ψ

(
2

3
√

3

)
=

4
3
√

3
, lim

x→∞
ψ(x) = −∞. (18)

This implies that the curve y = g(x) and the straight line y = x intersect at a

unique point on
[

2
3
√

3
,∞
)
. Thus, there exists a unique point x0 ∈

(
2

3
√

3
,∞
)

such

that ψ(x) > 0 for x ∈
(

2
3
√

3
, x0

)
and ψ(x) < 0 for (x0,∞).

Since ψ
(√

2
)

= 0, consequently x0 =
√

2. The proof is complete. �

Remark 1. Now we provide another proof for the claim that ψ(x) ≤ 0 if and only

if x ≥
√

2.

Firstly, we prove that g(x) = x holds if and only if x =
√

2. Letting x =
√

2

in (16), we have g3
(√

2
)
− g

(√
2
)
−
√

2 = 0, which is equivalent to
[
g
(√

2
)
−

√
2
][
g2
(√

2
)

+
√

2 g
(√

2
)

+ 1
]

= 0, thus g
(√

2
)

=
√

2. Conversely, letting g(x) =

x ≥ 2
3
√

3
, then equation (16) reduces to x3 − 2x = 0, and so x =

√
2.

Secondly, we verify that g(x) < x is valid if and only if x >
√

2. If g(x) < x, then

equation (16) can be rewritten as x−g(x) = g3(x)−2g(x) = g(x)[g2(x)−2] > 0, then

x > g(x) >
√

2. Conversely, if x >
√

2, then g3(x)−g(x)−
√

2 > g3(x)−g(x)−x = 0,

which is equivalent to [g(x) −
√

2 ][g2(x) +
√

2 g(x) + 1] > 0, and so g(x) >
√

2.

Therefore, g(x) − x = 2g(x) − g3(x) = g(x)[2 − g2(x)] < 0, which means that

g(x) < x.

The proof is complete.

Corollary 1. The irrational number
√

2 can be expressed as

√
2 = 3

√
1√
2
− 5

3
√

6
+ 3

√
1√
2

+
5

3
√

6
, (19)
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which is equivalent to

3
√

3
√

3− 5 +
3
√

3
√

3 + 5 =
√

3 · 3
√

4 . (20)

Proof. Identity (20) follows from simplifying (19) directly.

Raising both sides of A = 3
√

3
√

3− 5 + 3
√

3
√

3 + 5 to the power of 3 shows that

A satisfies the cubic equation x3 − 3 3
√

2x− 6
√

3 = 0. By Cardano’s formula in [1],

it follows that A =
√

3 · 3
√

4 . The proof is complete. �

3. Inequalities for the Sequence fn,3(a)

From the monotonicity and inequalities for the sequence {Sn,3(a)}∞n=1, we will

derive some inequalities for the sequence {fn,3(a)}∞n=1.

Theorem 3. Let a > 0 and n ∈ N.

(1) When 0 < a < 1, we have

1 < fn,3(a) ≤
3
√
a+ 3

√
a− a

3
√
a− a

; (21)

(2) When 1 ≤ a <
√

2, there exists a number n0 ∈ N such that

fn,3(a) > 1 >
1
a
>

1
a2

(22)

holds for all n > n0;

(3) When a ≥
√

2, we have

1 > fn,3(a) >
1

a2 + aα+ α2

(
1 +

a3 − 2a
a− 3

√
a

)
, (23)

where

α =
3

√
a

2
+

√
a2

4
− 1

27
+

3

√
a

2
−
√
a2

4
− 1

27
. (24)

Proof. For 0 < a < 1, since the sequence {Sn,3(a)}∞n=1 is strictly increasing with

Sn,3(a) > a, then a − Sn+1,3(a) < a − Sn,3(a) < 0, and fn,3(a) = a−Sn+1,3(a)
a−Sn,3(a) > 1.
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By standard argument, it follows that

fn+1,3(a) =
a− Sn+2,3(a)
a− Sn+1,3(a)

=
1

a2 + aSn+2,3(a) + S2
n+2,3(a)

a3 − S3
n+2,3(a)

a− Sn+1,3(a)

=
1

a2 + aSn+2,3(a) + S2
n+2,3(a)

[
1 +

2a− a3

Sn+1,3(a)− a

]
<

1
a2 + aSn+1,3(a) + S2

n+1,3(a)

[
1 +

2a− a3

Sn,3(a)− a

]
=
a− Sn+1,3(a)
a− Sn,3(a)

= fn,3(a).

(25)

This implies that the sequence {fn,3(a)}∞n=1 is strictly decreasing, therefore

fn,3(a) ≤ f1,3(a) =
3
√
a+ 3

√
a− a

3
√
a− a

. (26)

For 1 ≤ a <
√

2, and (13), there exists a number n0 ∈ N such that a−Sn+1,3(a) <

a− Sn,3(a) < 0 holds for n > n0. Hence

fn,3(a) =
a− Sn+1,3(a)
a− Sn,3(a)

> 1 >
1
a
>

1
a2
, n > n0.

For n > n0, the formula (25) is also valid. Thus, the sequence {fn,3(a)}∞n=n0+1 is

strictly decreasing, and

1
a2

<
1
a
< 1 < fn,3(a) <

a− Sn0+2,3(a)
a− Sn0+1,3(a)

, n > n0. (27)

For a ≥
√

2, and (14), we have 0 < a− Sn+1,3(a) < a− Sn,3(a) for n ∈ N. Then

fn,3(a) = a−Sn+1,3(a)
a−Sn,3(a) < 1. From a combination of the following formula (28),

fn,3(a) =
a− Sn+1,3(a)
a− Sn,3(a)

=
1

a2 + aSn+1,3(a) + S2
n+1,3(a)

[
1 +

2a− a3

Sn,3(a)− a

]
, (28)

and the inequalities in (14), then (23) follows.

The proof is complete. �

4. Open Problems

It is natural to pose the following questions.

(1) Can we prove or disprove the convergence of the sequence {Sn,t(a)}∞n=1 for

a positive real number a and nonzero real number t 6= 0?
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(2) Can we establish sharp lower and upper sharp bounds for the sequence

{fn,t(a)}∞n=1 for a positive real number a and nonzero real number t 6= 0?
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ematics) (2000), no. 11, 21–22. (Chinese)

(Luo) Department of Broadcast-Television-Teaching, Jiaozuo University, Jiaozuo

City, Henan 454002, China

E-mail address: luoqm236@sohu.com

(Qi) Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City,

Henan 454000, China

E-mail address: qifeng@jzit.edu.cn or qifeng618@hotmail.com

URL: http://rgmia.vu.edu.au/qi.html

(Barnett) School of Communications and Informatics, Victoria University of Tech-

nology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail address: neil@matilda.vu.edu.au

URL: http://sci.vu.edu.au/staff/neilb.html

(Dragomir) School of Communications and Informatics, Victoria University of Tech-

nology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html


