A GRUSS TYPE INEQUALITY FOR ISOTONIC LINEAR
FUNCTIONALS AND APPLICATIONS

S.S. DRAGOMIR

ABSTRACT. An inequality for a normalised isotonic linear functional of Griiss
type and particular cases for integrals and norms are established. Applications
in obtaining a counterpart for the Cauchy-Buniakowski-Schwartz inequality for
functionals and Jessen’s inequality for convex functions are also given.

1. INTRODUCTION

Let L be a linear class of real-valued functions g : £ — R having the properties
(L1) f,g € Limply (af + fg) € L for all a, 5 € R;

(L2) 1€ L,ie,if f(t)=1,t € E, then f € L.

An isotonic linear functional A : L — R is a functional satisfying

(A1) A(af+ B89) = aA(f) + BA(g) for all f,g € L and o, € R;
(A2) If f € L and f >0, then A (f) > 0.

The mapping A is said to be normalised if

(A3) A(1)=1.

Usual examples of isotonic linear functionals that are normalised are the following
ones

or

A(f)=ﬁ/xf(x)du(w) i (X) < 0o
1

Auw (f) :me/xw(@f(x)du(l“),

where w (z) > 0, [y w(z)du(z) > 0, X is a measurable space and p a positive
measure on X.

In particular, for z = (z1,...,2,), w = (w1,...,w,) € R™ with w; > 0,
W, == >, w; >0, we have

and

are normalised isotonic functionals on R™.
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In 1988, D. Andrica and C. Badea [1], proved the following generalisation of the
Griiss inequality for isotonic linear functionals.

Theorem 1. If f,.g € L so that fg € L and m < f < M, n < g < N where
m,M,n, N are given real numbers, then for any normalised isotonic linear func-
tional A: L — R one has the inequality

1
(1.1) [A(fg) = AN Alg)l < 7 (M =m) (N —n).
The constant i in (1.1) is best possible in the sense that it cannot be replaced by a
smaller constant.

In this paper we point out a refinement of the Griiss inequality (1.1) for isotonic
linear functionals. Applications for the Cauchy-Buniakowski-Schwartz and Jessen’s
inequality are also provided.

2. A GRrUSS TYPE INEQUALITY

The following result holds.

Theorem 2. Let f,g € L be such that fg € L and assume that there exists the real
numbers n and N so that

(2.1) n<g<N.

Then for any normalised isotonic linear functional A : L — R for which |f — A(f) - 1] €
L one has the inequality

(2.2) [A(fg) —A(f) A9l < 5 (N=n) A(lf = A(f)-1]).

The constant % in (2.2) is best possible in the sense that it cannot be replaced by a
smaller constant.

Proof. Using the linearity property of A, we have

(23) alr-am (o= "5 1)
— A -AN g - N A a1
= AGg) - AN AW - ") - A aq)

A(fg) —A(f)Alg)

since, by the normality property of A, A(1) = 1.
From (2.1) we may easily deduce that

n+ N
2

(2.4) ’g - 1‘ <

It is known that if h € L so that |h| € L, then, by the monotonicity and linearity
of A, one has

(2.5) [A(h)] < A([h]).
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Using this property, the monotonicity property of A and condition (2.4), we deduce

(26) ]A[(f—A(f)-n(g—”;N-l)H
< A(\<f—A<f>-1>(g-";N.1)\)
< SRA(f-AG) D),

Utilising (2.3) and (2.6) we deduce the desired result (2.2).

To prove the sharpness of the constant %, we assume that (2.2) holds with a

constant ¢ > 0 for A = - [ ® L = Lla,b] (the Lebesgue space of integrable

a )
functions on [a,b]) and g satisfying the condition (2.1) on the interval [a, ], i.e.,
one has the inequality

b_lafabﬂx)g(x)dxb_la/:f<sc>dz~bia/abg<x>dx

1 b
SC(N—H)'H/

If we choose g = f and f : [a,b] — R,

(2.7)

b
@ -5 [ 1w

—1 if z € [a, 2]

f (@)=
1 if ze (42,0
then
10 1 ’
b_a/af2(a:)dx—<b_a/a f(a:)dx) = 1,
e [ rwaje =
m=—-1, M = 1.

and by (2.7) we deduce ¢ > 1. 1I

The following corollaries are natural consequences of the above result.

Corollary 1. Let f € L be such that f?> € L and there exists the real numbers
m, M so that

(2.8) m < f <M.

Then for any A : L — R a normalised isotonic linear functional so that |f — A(f) - 1] €
L one has the inequality

(2.9) 0<A(f?) =A< 5 (M —m)A(If - A(f)-1]).

N |

The constant % is sharp.
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Corollary 2. Let f,g € L so that fg € L and f satisfy (2.8) while g satisfies
(2.1). Then for any normalised isotonic linear functional A : L — R so that
lf —A(f)-1], |g — A(g) - 1| € L one has the inequality:

(2.10) |A(fg) = A(f) A(9)]
1

< 1O —m) (N =) [A(If = A() - 1) A(lg — Alg) - 1))*.
The constant % s sharp.

Remark 1. Using Holder’s inequality for isotonic linear functionals, we may state
the following inequalities as well

|A(fg) — A(f) A(9)l

< SIN-mA(f-A()A) i 1F-AG) 1L,
< LN-wAQ AN AP i 1f- A 1P L p>1

2
< sup|f(t) —A(f)l;
teE

provided f,g € L and fg € L while g satisfies the condition (2.1).

If f and ¢ fulfill the conditions (2.8) and (2.1), then we have the following
refinement of the Griiss inequality (1.1)

(211)  JA(g) - A(NAW) < 3 (N-mA(f-A(f)-1)
< s -m A -’
1
<

Z(M—m)(N—n).

1,2 and 1 are sharp in (2.11).
The following weighted version of Theorem 2 also holds.

Theorem 3. Let f,g,h € L be such that h > 0, fh, gh, fgh € L and there exists
the real constants n, N so that (2.1) holds. Then for any B : L — R an isotonic

linear functional so that B (h) > 0, h ‘f - % . 1‘ € L one has the inequality:

The constants %, 1

B(fgh) B(fh) Blgh)
@12 B0y " BMm) B(h)‘

The constant % is best possible.

Proof. Apply Theorem 1 for the functional Ay, : L — R,
1
A = ——B

that is a normalised isotonic linear functional on L. i

Similar corollaries may be stated from the weighted inequality (2.12), but we
omit the details.
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3. APPLICATIONS FOR INTEGRAL AND DISCRETE INEQUALITIES

Let (2, A, 1) be a measurable space consisting of a set €, a o—algebra of parts
of  and a countably additive and positive measure p on A with values in RU{oco} .

For a p—measurable function w : @ — R with w(z) > 0 for p—a.e. = € Q,
assume [, w (z)dp (x) > 0. Consider the Lebesgue space Ly, (2, 1) == {f : Q@ —
R, f is measurable on [, w (z)|f ()| dp (x) < co}.

If f,g: Q2 — R are p—measurable functions and f, g, fg € L, (Q, 1), then we
may consider the Cebysev functional

1
Toh.9) = T, @9 ) dn )
1
AT el RICHELID
1
R RET e | w@ao@dn
We may also consider the functional
1
D) @ du (@)
1
< [ 0@ |10~ iy w0 ) o)
Applying Theorem 2 for the normalised isotonic linear functional
1
A(f) = Ww(x)/gw(l")f(m)dﬂ(x),

A L, (Q,u) — R, we may recapture the following result due to Cerone and
Dragomir [2]. Note that the proof of this result in [2] is different to the one in
Theorem 2.

Theorem 4. Let w, f,g : @ — R be p—measurable functions with w > 0 p—a.e.

on  and fQ w(z)dwu (x) > 0. If f,9,fg € Ly, (Q, 1) and there exists the constants
n, N so that

(3.1) —o<n<g(x)<N<oo forp-ae x€X,
then we have the inequality

1
(3.2) |Tw(fyg)|§§(N_n)Dw(f)-

The constant % 18 sharp in the sense that it cannot be replaced by a smaller constant.

Remark 2. If Q = [a,b] and w(x) =1 in Theorem 4, then we recapture the result
obtained in [3

]
b_la/abﬂx)g(x)dz—b_la/;f@)dx-b_la/abg(x)dz

1 b
f(l’)—m f(y)dy

a

(3.3)

dx

provided n < g (x) < N for a.e. x € [a,].
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Note that the proof in Theorem 2 is different to the one in [3], using only the
linearity and monotonicity properties of the functional A. We should also remark
that in [3] the authors did not show the sharpness of the constant %

Now, if we consider the normalised isotonic linear functional

(3.4) A (Z) = — Z w;T;,

Ag : R" — R, where w; > 0 (z = 1,771) and W, := >, w; > 0, the by Theorem 2
we may obtain the following discrete inequality obtained by Cerone and Dragomir
in [2].

Theorem 5. Let a = (a1,...,a,), b= (by,...,b,) € R be such that there exists
the constants b, B € R so that

(3.5) b<b; <B foreachiec{l,...,n}.

Then one has the inequality

(36) WL zn: wiaibi — WL zn: w;a; - WL zn: wlbl
"i=1 " i=1 "

The constant & is sharp in (3.6).

4. A COUNTERPART OF THE (CBS)-INEQUALITY

The following inequality is known in the literature as the Cauchy-Buniakowski-
Schwartz’s inequality for isotonic linear functionals or the (CBS)-inequality, for
short,

(4.1) [A(f* < A(f*) A,

provided f,g: E — R are with the property that fg, f2,g? € Land A: L — R is
any isotonic linear functional.

Making use of the Griiss inequality (2.12), we may prove the following counter-
part of the (CBS)-inequality for isotonic linear functionals.

Theorem 6. Let k,1 : E — R be such that k?,1?,kl € L and there exists the real
constants v,I' € R so that

(4.2) < = <T.

o~

Then for any isotonic linear functional
L, one has the inequality:

. L — R so that |I||[A(12) k — A (k)| €

0 <

(k%) A (%) = [A (WD)

< T -y)A[|AP) k- AKDI].

ST

The constant % is sharp.
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Proof. We choose in (2.12) f =g =%, h=1? and B = A to get

0 <

k 1

1AW

< ST A [P A (k)

2 A0
provided A (I?) # 0, which is equivalent to
A(K?) A(1%) = [A (kD)

|

0

IA

ST A(?) A Hkl - Al(gmA(’f”H ’

IA

which is clearly equivalent to (4.3). I

The following integral inequality holds.

Corollary 3. Letw, f, g : Q — R be a p—measurable function with w > 0 p-a.e. on
Q. If fge L2 (Qu) ={f:Q—=R, [qw(y) f*(y)du(y) < oo} and there exists
v, I' so that

(4.3) —o0 <y <

Q [~

<I'<oo forp-ae x€f

then one has the inequality:

@4 0< [ 0@ F@ i [ 0@ @)

Q
- [/Qw(fv)f(w)g(w)du(x)r

<

N —

- [w@ls@l|( [ 0me )@

9@ w6 W) dmy)]du(x)

_1 _ w(x x w f(x) g(x) *
30— [w@ @] [ <y>g<y>'f(y) v ‘du(y)’du()-

The constant % s sharp.
Remark 3. In particular, if f,g € L? (Q, i) and the condition (4.3) holds, then

(45) 0

IN

| P@ e [ ¢ @dut) - [ | 1@s@an (x)] 2

IN

5= [la@l| [aw| 1) 40 |an ] auo).

The constant % is sharp.
The following discrete inequality also holds.

Corollary 4. Let a = (ay,...,a,), b= (by,...,b,) and @ = (wy,...,w,) be the
sequences of real numbers so that w; >0 (i=1,...,n), W, :=> " w; >0 and

(4.6) 7§%§F for each i€ {1,...,n}.

?
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Then one has the inequality

e m 2
=1 =1 i=1

1 n n
=1 Jj=1

The constant % s sharp.
Remark 4. If a,b satisfy (4.6), then one has the inequality

a; bZ
Q. b; )

n

n n 2

i=1 i=1

n n

S L

i=1

a; b
a; b
The constant % s sharp.

5. A CONVERSE FOR JESSEN’S INEQUALITY

In [4], the author has proved the following converse of Jessen’s inequality for
normalized isotonic linear functionals.
Theorem 7. Let @ : (a, f) CR — R be a differentiable convex function on (o, 3),
fE—(a,p) sothat Do f, f,® of (P of)-fe L IfA:L — R is an isotonic

linear and normalised functional, then

(5.1) 0 < A(®of)-2(A(f))
< A[(@ o f)- fl-A(f)A(P o f)
< i[@’ (B) =@ ()] (B—«a) (if o, B are finite).

We can state the following result improving the inequality (5.1).

Theorem 8. Let @ : [o, ] — R with —c0 < o < f < 00, and f, A are as in
Theorem 7, then one has the inequality

(5.2) 0 < A(@of)—d(A(f)
< A[@of) S AN A@ o f)
< S(9) - @ (@] A(f —A() 1),

provided |f — A(f)-1| € L.

Proof. Taking into account that « < f < 8 and ®’ is monotonic on [a, 8], we have
P’ (a) <P’ o f <P’ (B). Applying Theorem 2, we deduce

Al(@ o f)- fl=A(f)A(P o f)

1

< S[@0) - (@] A(f = A(f)- 1)),

and the theorem is proved. i

The following corollary addressing the integral case also holds.
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Corollary 5. Let @ : [a, 8] C R — R be a differentiable convez function on («, [3)
and f: Q — [a, 8] so that<I>of7 fi®of, (Pof) f€ Ly (Qu), wherew >0
w-a.e. on Q with fQ x)dp (z) > 0. Then we have the inequality:

(@
(5.3) [ w@ e @)du@
1
)

f () dp (

)

z)®(f
x) dp () /szw
x) @' (f

d
QW

- F)du (o))
ngw(ft)dﬂ(fﬂ)/ﬂw( (z)) f (z) dp (z)

) )
( (z)
)

f(x)Mw/gzw(y)f(y)dﬂ(y)‘dﬂ(x)~

Remark 5. If u(Q) < oo and ®o f, f, ® of, (¥’ o f)-f € L(Qu), then we have
the inequality:

64 02— [0 )= (g [ £ @)
< ﬁ / dyt ()

u(lQ)/@/(f /f )i (z

1
<3 [®(5) - (a)]m/Qf —Q)/nyduy)

The case of functions of a real variable is embodied in the following inequality
that provides a counterpart for the Jensen’s integral inequality

ia/ab@(f(x))dx—q)(b_la/abf(:c)dx>

b
< [ VU@

—a

b b
_bia/ ' (f (x))dx bia/f(x)dx
b b
<50 O -v @ [ |15 [ 1w

The following discrete inequality is valid as well.

Corollary 6. Let @ : [a, 8] — R be a differentiable convex function on (a,3). If
z; € [, ]l andw; >0 (i =1,...,n) with W,, > 0, then one has the counterpart of

dp () .

(5.5) 0<

[\V]
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Jensen’s discrete inequality:

- 1

"~ wd (o) e L B () .
W ;wz@ () x4 W Zwlfb (z4) anwlxl

IA
|

IN

1 1 & 1 &
) (@ (8) — @ ()] W, ;wz‘ Ti — w, ;wﬂj
Remark 6. In particular, we get the discrete inequality:

1 — 1 <
5.7 0< = d(z)—d| = i
(5.7) _n; () ngx

1 n , 1 n , 1 n
1, , 1 & 1 &
<S[@B) - (@] = e - =Yy

n 4 n 4
i=1 j=1
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