
A GRÜSS TYPE INEQUALITY FOR ISOTONIC LINEAR
FUNCTIONALS AND APPLICATIONS

S.S. DRAGOMIR

Abstract. An inequality for a normalised isotonic linear functional of Grüss

type and particular cases for integrals and norms are established. Applications
in obtaining a counterpart for the Cauchy-Buniakowski-Schwartz inequality for

functionals and Jessen’s inequality for convex functions are also given.

1. Introduction

Let L be a linear class of real-valued functions g : E → R having the properties
(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R;
(L2) 1 ∈ L, i.e., if f (t) = 1, t ∈ E, then f ∈ L.

An isotonic linear functional A : L → R is a functional satisfying
(A1) A (αf + βg) = αA (f) + βA (g) for all f, g ∈ L and α, β ∈ R;
(A2) If f ∈ L and f ≥ 0, then A (f) ≥ 0.

The mapping A is said to be normalised if
(A3) A (1) = 1.

Usual examples of isotonic linear functionals that are normalised are the following
ones

A (f) =
1

µ (X)

∫
X

f (x) dµ (x) if µ (X) < ∞

or

Aw (f) :=
1∫

X
w (x) dµ (x)

∫
X

w (x) f (x) dµ (x) ,

where w (x) ≥ 0,
∫

X
w (x) dµ (x) > 0, X is a measurable space and µ a positive

measure on X.
In particular, for x̄ = (x1, . . . , xn) , w̄ := (w1, . . . , wn) ∈ Rn with wi ≥ 0,

Wn :=
∑n

i=1 wi > 0, we have

A (x̄) :=
1
n

n∑
i=1

xi

and

Aw̄ (x̄) :=
1

Wn

n∑
i=1

wixi,

are normalised isotonic functionals on Rn.
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In 1988, D. Andrica and C. Badea [1], proved the following generalisation of the
Grüss inequality for isotonic linear functionals.

Theorem 1. If f, g ∈ L so that fg ∈ L and m ≤ f ≤ M, n ≤ g ≤ N where
m,M,n,N are given real numbers, then for any normalised isotonic linear func-
tional A : L → R one has the inequality

(1.1) |A (fg)−A (f) A (g)| ≤ 1
4

(M −m) (N − n) .

The constant 1
4 in (1.1) is best possible in the sense that it cannot be replaced by a

smaller constant.

In this paper we point out a refinement of the Grüss inequality (1.1) for isotonic
linear functionals. Applications for the Cauchy-Buniakowski-Schwartz and Jessen’s
inequality are also provided.

2. A Grüss Type Inequality

The following result holds.

Theorem 2. Let f, g ∈ L be such that fg ∈ L and assume that there exists the real
numbers n and N so that

(2.1) n ≤ g ≤ N.

Then for any normalised isotonic linear functional A : L → R for which |f −A (f) · 1| ∈
L one has the inequality

(2.2) |A (fg)−A (f)A (g)| ≤ 1
2

(N − n) A (|f −A (f) · 1|) .

The constant 1
2 in (2.2) is best possible in the sense that it cannot be replaced by a

smaller constant.

Proof. Using the linearity property of A, we have

A

[
(f −A (f) · 1)

(
g − n + N

2
· 1
)]

(2.3)

= A [(f −A (f) · 1) g]− n + N

2
A [f −A (f) · 1]

= A (fg)−A (f) A (g)− n + N

2
[A (f)−A (f) ·A (1)]

= A (fg)−A (f) A (g)

since, by the normality property of A, A (1) = 1.
From (2.1) we may easily deduce that

(2.4)
∣∣∣∣g − n + N

2
· 1
∣∣∣∣ ≤ M − n

2
· 1.

It is known that if h ∈ L so that |h| ∈ L, then, by the monotonicity and linearity
of A, one has

(2.5) |A (h)| ≤ A (|h|) .
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Using this property, the monotonicity property of A and condition (2.4), we deduce∣∣∣∣A [(f −A (f) · 1)
(

g − n + N

2
· 1
)]∣∣∣∣(2.6)

≤ A

(∣∣∣∣(f −A (f) · 1)
(

g − n + N

2
· 1
)∣∣∣∣)

≤ N − n

2
A (|f −A (f) · 1|) .

Utilising (2.3) and (2.6) we deduce the desired result (2.2).
To prove the sharpness of the constant 1

2 , we assume that (2.2) holds with a
constant c > 0 for A = 1

b−a

∫ b

a
, L = L [a, b] (the Lebesgue space of integrable

functions on [a, b]) and g satisfying the condition (2.1) on the interval [a, b] , i.e.,
one has the inequality

(2.7)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ c (N − n) · 1

b− a

∫ b

a

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (y) dy

∣∣∣∣∣ dx.

If we choose g = f and f : [a, b] → R,

f (x) =

 −1 if x ∈
[
a, a+b

2

]
1 if x ∈

(
a+b
2 , b

]
then

1
b− a

∫ b

a

f2 (x) dx−

(
1

b− a

∫ b

a

f (x) dx

)2

= 1,

1
b− a

∫ b

a

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (y) dy

∣∣∣∣∣ dx = 1,

m = − 1, M = 1.

and by (2.7) we deduce c ≥ 1
2 .

The following corollaries are natural consequences of the above result.

Corollary 1. Let f ∈ L be such that f2 ∈ L and there exists the real numbers
m,M so that

(2.8) m ≤ f ≤ M.

Then for any A : L → R a normalised isotonic linear functional so that |f −A (f) · 1| ∈
L one has the inequality

(2.9) 0 ≤ A
(
f2
)
− [A (f)]2 ≤ 1

2
(M −m) A (|f −A (f) · 1|) .

The constant 1
2 is sharp.
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Corollary 2. Let f, g ∈ L so that fg ∈ L and f satisfy (2.8) while g satisfies
(2.1). Then for any normalised isotonic linear functional A : L → R so that
|f −A (f) · 1| , |g −A (g) · 1| ∈ L one has the inequality:

(2.10) |A (fg)−A (f)A (g)|

≤ 1
2

[(M −m) (N − n)]
1
2 [A (|f −A (f) · 1|) A (|g −A (g) · 1|)]

1
2 .

The constant 1
2 is sharp.

Remark 1. Using Hölder’s inequality for isotonic linear functionals, we may state
the following inequalities as well

|A (fg)−A (f) A (g)|

≤ 1
2

(N − n) A (|f −A (f) · 1|) if |f −A (f) · 1| ∈ L,

≤ 1
2

(N − n) [A (|f −A (f) · 1|p)]
1
p if |f −A (f) · 1|p ∈ L, p > 1

≤ sup
t∈E

|f (t)−A (f)| ;

provided f, g ∈ L and fg ∈ L while g satisfies the condition (2.1).
If f and g fulfill the conditions (2.8) and (2.1), then we have the following

refinement of the Grüss inequality (1.1)

|A (fg)−A (f) A (g)| ≤ 1
2

(N − n) A (|f −A (f) · 1|)(2.11)

≤ 1
2

(N − n)
[
A
(
f2
)
− [A (f)]2

] 1
2

≤ 1
4

(M −m) (N − n) .

The constants 1
2 , 1

2 and 1
4 are sharp in (2.11).

The following weighted version of Theorem 2 also holds.
Theorem 3. Let f, g, h ∈ L be such that h ≥ 0, fh, gh, fgh ∈ L and there exists
the real constants n, N so that (2.1) holds. Then for any B : L → R an isotonic
linear functional so that B (h) > 0, h

∣∣∣f − 1
B(h) · 1

∣∣∣ ∈ L one has the inequality:

(2.12)
∣∣∣∣B (fgh)

B (h)
− B (fh)

B (h)
· B (gh)

B (h)

∣∣∣∣
≤ 1

2
(N − n)

1
B (h)

B

[
h

∣∣∣∣f − 1
B (h)

B (hf) · 1
∣∣∣∣] .

The constant 1
2 is best possible.

Proof. Apply Theorem 1 for the functional Ah : L → R,

Ah (f) :=
1

B (h)
B (hf) ,

that is a normalised isotonic linear functional on L.

Similar corollaries may be stated from the weighted inequality (2.12), but we
omit the details.
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3. Applications for Integral and Discrete Inequalities

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ−algebra of parts
of Ω and a countably additive and positive measure µ on A with values in R∪{∞} .

For a µ−measurable function w : Ω → R with w (x) ≥ 0 for µ−a.e. x ∈ Ω,
assume

∫
Ω

w (x) dµ (x) > 0. Consider the Lebesgue space Lw (Ω, µ) := {f : Ω →
R, f is measurable on

∫
Ω

w (x) |f (x)| dµ (x) < ∞}.
If f, g : Ω → R are µ−measurable functions and f, g, fg ∈ Lw (Ω, µ) , then we

may consider the Čebyšev functional

Tw (f, g) :=
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x) f (x) g (x) dµ (x)

− 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) f (x) dµ (x)

× 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) g (x) dµ (x) .

We may also consider the functional

Dw (f) :=
1∫

Ω
w (x) dµ (x)

×
∫

Ω

w (x)
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
∣∣∣∣ dµ (x) .

Applying Theorem 2 for the normalised isotonic linear functional

A (f) :=
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x) f (x) dµ (x) ,

A : Lw (Ω, µ) → R, we may recapture the following result due to Cerone and
Dragomir [2]. Note that the proof of this result in [2] is different to the one in
Theorem 2.
Theorem 4. Let w, f, g : Ω → R be µ−measurable functions with w ≥ 0 µ−a.e.
on Ω and

∫
Ω

w (x) dµ (x) > 0. If f, g, fg ∈ Lw (Ω, µ) and there exists the constants
n, N so that

(3.1) −∞ < n ≤ g (x) ≤ N < ∞ for µ-a.e. x ∈ Ω,

then we have the inequality

(3.2) |Tw (f, g)| ≤ 1
2

(N − n)Dw (f) .

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller constant.

Remark 2. If Ω = [a, b] and w (x) = 1 in Theorem 4, then we recapture the result
obtained in [3]

(3.3)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ 1

2
(N − n) · 1

b− a

∫ b

a

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (y) dy

∣∣∣∣∣ dx

provided n ≤ g (x) ≤ N for a.e. x ∈ [a, b] .
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Note that the proof in Theorem 2 is different to the one in [3], using only the
linearity and monotonicity properties of the functional A. We should also remark
that in [3] the authors did not show the sharpness of the constant 1

2 .
Now, if we consider the normalised isotonic linear functional

(3.4) Aw̄ (x̄) :=
1

Wn

n∑
i=1

wixi,

Aw̄ : Rn → R, where wi ≥ 0
(
i = 1, n

)
and Wn :=

∑n
i=1 wi > 0, the by Theorem 2

we may obtain the following discrete inequality obtained by Cerone and Dragomir
in [2].

Theorem 5. Let ā = (a1, . . . , an) , b̄ = (b1, . . . , bn) ∈ R be such that there exists
the constants b, B ∈ R so that

(3.5) b ≤ bi ≤ B for each i ∈ {1, . . . , n} .

Then one has the inequality

(3.6)

∣∣∣∣∣ 1
Wn

n∑
i=1

wiaibi −
1

Wn

n∑
i=1

wiai ·
1

Wn

n∑
i=1

wibi

∣∣∣∣∣
≤ 1

2
(B − b)

1
Wn

n∑
i=1

wi

∣∣∣∣∣∣ai −
1

Wn

n∑
j=1

wjaj

∣∣∣∣∣∣ .
The constant 1

2 is sharp in (3.6).

4. A Counterpart of the (CBS)-Inequality

The following inequality is known in the literature as the Cauchy-Buniakowski-
Schwartz’s inequality for isotonic linear functionals or the (CBS)-inequality, for
short,

(4.1) [A (fg)]2 ≤ A
(
f2
)
A
(
g2
)
,

provided f, g : E → R are with the property that fg, f2, g2 ∈ L and A : L → R is
any isotonic linear functional.

Making use of the Grüss inequality (2.12), we may prove the following counter-
part of the (CBS)-inequality for isotonic linear functionals.

Theorem 6. Let k, l : E → R be such that k2, l2, kl ∈ L and there exists the real
constants γ, Γ ∈ R so that

(4.2) γ ≤ k

l
≤ Γ.

Then for any isotonic linear functional A : L → R so that |l|
∣∣A (l2) k −A (kl) l

∣∣ ∈
L, one has the inequality:

0 ≤ A
(
k2
)
A
(
l2
)
− [A (kl)]2

≤ 1
2

(Γ− γ) A
[
|l|
∣∣A (l2) k −A (kl) l

∣∣] .
The constant 1

2 is sharp.
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Proof. We choose in (2.12) f = g = k
l , h = l2 and B = A to get

0 ≤
A
(
k2
)

A (l2)
− [A (kl)]2

[A (l2)]2

≤ 1
2

(Γ− γ)
1

A (l2)
A

[
l2
∣∣∣∣kl − 1

A (l2)
A (kl)

∣∣∣∣] ,

provided A
(
l2
)
6= 0, which is equivalent to

0 ≤ A
(
k2
)
A
(
l2
)
− [A (kl)]2

≤ 1
2

(Γ− γ)A
(
l2
)
A

[∣∣∣∣kl − l2

A (l2)
A (kl)

∣∣∣∣] ,

which is clearly equivalent to (4.3).

The following integral inequality holds.
Corollary 3. Let w, f, g : Ω → R be a µ−measurable function with w ≥ 0 µ-a.e. on
Ω. If f, g ∈ L2

w (Ω, µ) :=
{
f : Ω → R,

∫
Ω

w (y) f2 (y) dµ (y) < ∞
}

and there exists
γ, Γ so that

(4.3) −∞ < γ ≤ f

g
≤ Γ < ∞ for µ-a.e. x ∈ Ω,

then one has the inequality:

0 ≤
∫

Ω

w (x) f2 (x) dµ (x)
∫

Ω

w (x) g2 (x) dµ (x)(4.4)

−
[∫

Ω

w (x) f (x) g (x) dµ (x)
]2

≤ 1
2

(Γ− γ)
∫

Ω

w (x) |g (x)|
∣∣∣∣(∫

Ω

w (y) g2 (y) dµ (y)
)

f (x)

− g (x)
∫

Ω

w (y) f (y) g (y) dµ (y)
∣∣∣∣ dµ (x)

=
1
2

(Γ− γ)
∫

Ω

w (x) |g (x)|
∣∣∣∣∫

Ω

w (y) g (y)
∣∣∣∣ f (x) g (x)

f (y) g (y)

∣∣∣∣ dµ (y)
∣∣∣∣ dµ (x) .

The constant 1
2 is sharp.

Remark 3. In particular, if f, g ∈ L2 (Ω, µ) and the condition (4.3) holds, then

0 ≤
∫

Ω

f2 (x) dµ (x)
∫

Ω

g2 (x) dµ (x)−
[∫

Ω

f (x) g (x) dµ (x)
]2

(4.5)

≤ 1
2

(Γ− γ)
∫

Ω

|g (x)|
∣∣∣∣∫

Ω

g (y)
∣∣∣∣ f (x) g (x)

f (y) g (y)

∣∣∣∣ dµ (y)
∣∣∣∣ dµ (x) .

The constant 1
2 is sharp.

The following discrete inequality also holds.
Corollary 4. Let ā = (a1, . . . , an) , b̄ = (b1, . . . , bn) and w̄ = (w1, . . . , wn) be the
sequences of real numbers so that wi ≥ 0 (i = 1, . . . , n) , Wn :=

∑n
i=1 wi > 0 and

(4.6) γ ≤ ai

bi
≤ Γ for each i ∈ {1, . . . , n} .
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Then one has the inequality

0 ≤
n∑

i=1

wia
2
i

n∑
i=1

wib
2
i −

(
n∑

i=1

wiaibi

)2

(4.7)

≤ 1
2

(Γ− γ)
n∑

i=1

wibi

∣∣∣∣∣∣
n∑

j=1

wjbj

∣∣∣∣ ai bi

aj bj

∣∣∣∣
∣∣∣∣∣∣ .

The constant 1
2 is sharp.

Remark 4. If ā, b̄ satisfy (4.6), then one has the inequality

0 ≤
n∑

i=1

a2
i

n∑
i=1

b2
i −

(
n∑

i=1

aibi

)2

(4.8)

≤ 1
2

(Γ− γ)
n∑

i=1

bi

∣∣∣∣∣∣
n∑

j=1

bj

∣∣∣∣ ai bi

aj bj

∣∣∣∣
∣∣∣∣∣∣ .

The constant 1
2 is sharp.

5. A Converse for Jessen’s Inequality

In [4], the author has proved the following converse of Jessen’s inequality for
normalized isotonic linear functionals.
Theorem 7. Let Φ : (α, β) ⊆ R → R be a differentiable convex function on (α, β) ,
f : E → (α, β) so that Φ ◦ f, f, Φ′ ◦ f, (Φ′ ◦ f) · f ∈ L. If A : L → R is an isotonic
linear and normalised functional, then

0 ≤ A (Φ ◦ f)− Φ (A (f))(5.1)
≤ A [(Φ′ ◦ f) · f ]−A (f) A (Φ′ ◦ f)

≤ 1
4

[Φ′ (β)− Φ′ (α)] (β − α) (if α, β are finite).

We can state the following result improving the inequality (5.1).
Theorem 8. Let Φ : [α, β] → R with −∞ < α < β < ∞, and f,A are as in
Theorem 7, then one has the inequality

0 ≤ A (Φ ◦ f)− Φ (A (f))(5.2)
≤ A [(Φ′ ◦ f) · f ]−A (f)A (Φ′ ◦ f)

≤ 1
2

[Φ′ (β)− Φ′ (α)]A (|f −A (f) · 1|) ,

provided |f −A (f) · 1| ∈ L.

Proof. Taking into account that α ≤ f ≤ β and Φ′ is monotonic on [α, β] , we have
Φ′ (α) ≤ Φ′ ◦ f ≤ Φ′ (β) . Applying Theorem 2, we deduce

A [(Φ′ ◦ f) · f ]−A (f) A (Φ′ ◦ f)

≤ 1
2

[Φ′ (β)− Φ′ (α)]A (|f −A (f) · 1|) ,

and the theorem is proved.

The following corollary addressing the integral case also holds.
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Corollary 5. Let Φ : [α, β] ⊂ R → R be a differentiable convex function on (α, β)
and f : Ω → [α, β] so that Φ ◦ f, f, Φ′ ◦ f, (Φ′ ◦ f) · f ∈ Lw (Ω, µ) , where w ≥ 0
µ-a.e. on Ω with

∫
Ω

w (x) dµ (x) > 0. Then we have the inequality:

0 ≤ 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) Φ (f (x)) dµ (x)(5.3)

− Φ
(

1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) f (x) dµ (x)
)

≤ 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) Φ′ (f (x)) f (x) dµ (x)

− 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) Φ′ (f (x)) dµ (x)

× 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) f (x) dµ (x)

≤ 1
2

[Φ′ (β)− Φ′ (α)]
1∫

Ω
w (x) dµ (x)

×
∫

Ω

w (x)
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
∣∣∣∣ dµ (x) .

Remark 5. If µ (Ω) < ∞ and Φ ◦ f, f, Φ′ ◦ f, (Φ′ ◦ f) · f ∈ L (Ω, µ) , then we have
the inequality:

0 ≤ 1
µ (Ω)

∫
Ω

Φ (f (x)) dµ (x)− Φ
(

1
µ (Ω)

∫
Ω

f (x) dµ (x)
)

(5.4)

≤ 1
µ (Ω)

∫
Ω

Φ′ (f (x)) f (x) dµ (x)

− 1
µ (Ω)

∫
Ω

Φ′ (f (x)) dµ (x) · 1
µ (Ω)

∫
Ω

f (x) dµ (x)

≤ 1
2

[Φ′ (β)− Φ′ (α)]
1

µ (Ω)

∫
Ω

∣∣∣∣f (x)− 1
µ (Ω)

∫
Ω

f (y) dµ (y)
∣∣∣∣ dµ (x) .

The case of functions of a real variable is embodied in the following inequality
that provides a counterpart for the Jensen’s integral inequality

0 ≤ 1
b− a

∫ b

a

Φ (f (x)) dx− Φ

(
1

b− a

∫ b

a

f (x) dx

)
(5.5)

≤ 1
b− a

∫ b

a

Φ′ (f (x)) f (x) dx

− 1
b− a

∫ b

a

Φ′ (f (x)) dx · 1
b− a

∫ b

a

f (x) dx

≤ 1
2

[Φ′ (β)− Φ′ (α)]
1

b− a

∫ b

a

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (y) dy

∣∣∣∣∣ dx.

The following discrete inequality is valid as well.

Corollary 6. Let Φ : [α, β] → R be a differentiable convex function on (α, β) . If
xi ∈ [α, β] and wi ≥ 0 (i = 1, . . . , n) with Wn > 0, then one has the counterpart of



10 S.S. DRAGOMIR

Jensen’s discrete inequality:

0 ≤ 1
Wn

n∑
i=1

wiΦ (xi)− Φ

(
1

Wn

n∑
i=1

wixi

)
(5.6)

≤ 1
Wn

n∑
i=1

wiΦ′ (xi) xi −
1

Wn

n∑
i=1

wiΦ′ (xi)
1

Wn

n∑
i=1

wixi

≤ 1
2

[Φ′ (β)− Φ′ (α)]
1

Wn

n∑
i=1

wi

∣∣∣∣∣∣xi −
1

Wn

n∑
j=1

wjxj

∣∣∣∣∣∣ .
Remark 6. In particular, we get the discrete inequality:

0 ≤ 1
n

n∑
i=1

Φ (xi)− Φ

(
1
n

n∑
i=1

xi

)
(5.7)

≤ 1
n

n∑
i=1

Φ′ (xi) xi −
1
n

n∑
i=1

Φ′ (xi)
1
n

n∑
i=1

xi

≤ 1
2

[Φ′ (β)− Φ′ (α)]
1
n

n∑
i=1

∣∣∣∣∣∣xi −
1
n

n∑
j=1

xj

∣∣∣∣∣∣ .
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