A DOUBLE INEQUALITY FOR REMAINDER OF POWER SERIES OF TANGENT FUNCTION

CHAO-PING CHEN AND FENG QI

Abstract. By mathematical induction, an identity and a double inequality for remainder of power series of tangent function are established.

1. Introduction

It is well known that Bernoulli numbers B_i are defined [11] by

$$
\frac{x}{e^x - 1} = 1 - \frac{1}{2} x + \sum_{i=1}^{\infty} \frac{(-1)^i B_i}{(2i)!} x^{2i-1}, \quad |x| < 2\pi.
$$

(1)

About Bernoulli numbers, some new results can be found in [1, 3, 5].

The tangent and cotangent can be expanded into power series with coefficients involving Bernoulli numbers as follows [11, p. 5]:

$$
\tan x = \sum_{i=1}^{\infty} \frac{2^{2i}(2^{2i} - 1) B_i}{(2i)!} x^{2i-1}, \quad |x| < \frac{\pi}{2};
$$

(2)

$$
\cot x = \frac{1}{x} - \sum_{i=1}^{\infty} \frac{2^{2i} B_i}{(2i)!} x^{2i-1}, \quad |x| < \pi.
$$

(3)

Introduce two notations $S_n(x)$ and $r_n(x)$ by

$$
S_n(x) = \sum_{i=1}^{\infty} \frac{2^{2i}(2^{2i} - 1) B_i}{(2i)!} x^{2i-1},
$$

(4)

$$
r_n(x) = \tan x - S_n(x)
$$

(5)
for $0 < x < \frac{\pi}{2}$. Then $\tan x = \lim_{n \to \infty} S_n(x)$. We call $r_n(x)$ the remainder of power series for tangent function.

For elementary functions $\sin x$, $\cos x$, and e^x, there are much literature on estimates of their remainder. For examples, see [6, 7, 9]. The methods used in [6, 7, 9] have been applied to construct inequalities of elliptic integrals. See [8, 10]. Some inequalities involving $\tan x$ were researched by the second author and others in [2].

In this article, we will establish a double inequality for remainder $r_n(x)$ of power series for $\tan x$. That is

Theorem 1. For $x \in (0, \frac{\pi}{2})$ and $n \in \mathbb{N}$, we have

$$\frac{2^{2n+1}(2^{2n+1} - 1)B_{n+1}x^{2n}}{(2n+2)!} \tan x < \tan x - S_n(x) < \left(\frac{2}{\pi}\right)^{2n} x^{2n} \tan x. \tag{6}$$

Remark 1. If taking $n = 1$ in (6), we have for $x \in (0, 1)$

$$\frac{\pi}{2} \cdot \frac{x}{1 - \frac{x^2}{17} x^2} < \tan \frac{\pi x}{2} < \frac{\pi}{2} \cdot \frac{x}{1 - x^2}. \tag{7}$$

For $0 < x < \sqrt{3 - \frac{24}{\pi^2}}$, the left inequality in (7) is better than the left inequality in the following Becker-Stark inequality [4, p. 351]:

$$\frac{4}{\pi} \cdot \frac{x}{1 - x^2} < \tan \frac{\pi x}{2} < \frac{\pi}{2} \cdot \frac{x}{1 - x^2}, \quad x \in (0, 1). \tag{8}$$

If taking $n = 2$ in (6), we obtain

$$x + \frac{1}{3} x^3 + \frac{2}{15} x^4 \tan x < \tan x < x + \frac{1}{3} x^3 + \left(\frac{2}{\pi}\right)^4 x^4 \tan x, \quad x \in \left(0, \frac{\pi}{2}\right). \tag{9}$$

The constants $\frac{2}{15}$ and $\left(\frac{2}{\pi}\right)^4$ in (9) are best possible.

For $x \in (0, \frac{\pi}{6})$, the Djokvič inequality states [4, p. 350] that

$$x + \frac{1}{3} x^3 < \tan x < x + \frac{4}{9} x^3. \tag{10}$$

Since

$$\frac{1}{3} + \left(\frac{2}{\pi}\right)^4 x \tan x < \frac{1}{3} + \left(\frac{2}{\pi}\right)^4 \cdot \frac{\pi}{6} \cdot \frac{1}{\sqrt{3}} < \frac{4}{9},$$

thus, the inequality in (9) is better than those in (10).
2. Proof of Theorem

Let

\[h_n(x) = \frac{\tan x - S_n(x)}{x^{2n} \tan x} \]

(11)

for \(n \in \mathbb{N} \). Then we have the following lemma.

Lemma 1. For \(x \in (0, \frac{\pi}{2}) \) and \(n \in \mathbb{N} \), we have

\[h_n(x) = \sum_{j=1}^{n} \frac{2^{2(n-j+1)}[2^{2(n-j+1)} - 1]B_{n-j+1}}{(2(n-j+1))!} \sum_{k=j}^{\infty} \frac{2^{2k}B_k}{(2k)!} x^{2k-1} \cdot \sum_{k=1}^{\infty} \frac{2^{2k}B_k}{(2k)!} x^{2(k-1)} \]

(12)

Proof. We shall prove this lemma by mathematical induction on \(n \).

For \(n = 1 \), we have

\[h_1(x) = \frac{\tan x - S_1(x)}{x^2 \tan x} = \frac{1}{x^2} - \frac{\cot x}{x} = \frac{1}{x^2} - \frac{1}{x} \left(\frac{1}{x} - \sum_{k=1}^{\infty} \frac{2^{2k}B_k}{(2k)!} x^{2k-1} \right) \]

\[= \sum_{k=1}^{\infty} \frac{2^{2k}B_k}{(2k)!} x^{2(k-1)} \],

the formula (12) holds for \(n = 1 \).

For \(n = 2 \), we have

\[h_2(x) = \frac{\tan x - S_2(x)}{x^4 \tan x} = \frac{1}{x^4} - \frac{\cot x}{x^3} - \frac{\cot x}{3x} \]

\[= \frac{1}{x^4} - \frac{1}{x^3} \left(\frac{1}{x} - \frac{1}{3x} - \sum_{k=1}^{\infty} \frac{2^{2k}B_k}{(2k)!} x^{2k-1} \right) \]

\[= \sum_{k=2}^{\infty} \frac{2^{2k}B_k}{(2k)!} x^{2(k-2)} + \sum_{k=1}^{\infty} \frac{2^{2k}B_k}{3 \cdot (2k)!} x^{2(k-1)} \],

the formula (12) holds for \(n = 2 \).

Assume formula (12) holds for \(n = m \). Then for \(n = m + 1 \), we have

\[h_{m+1} = \frac{\tan x - S_{m+1}(x)}{x^{2(m+1)} \tan x} = \frac{\tan x - S_m(x) - \frac{2^{2(m+1)}(2^{2(m+1)} - 1)B_{m+1}}{[2^{2(m+1)}]!} x^{2m+1}}{x^{2(m+1)} \tan x} \]
By induction, the proof of Lemma 1 is complete. □
Now we give a proof of Theorem 1.

Proof of Theorem 1. From (12), it is deduced that $h_n'(x) > 0$, and $h_n(x)$ is strictly increasing in $(0, \frac{\pi}{2})$. Easy computing yields

$$h_n(0 + 0) = \frac{2^{2n+2}(2^{2n+2} - 1)B_{n+1}}{(2n + 2)!},$$

$$h \left(\frac{\pi}{2} - 0 \right) = \left(\frac{2}{\pi} \right)^{2n}.$$

Therefore, we have

$$\frac{2^{2n+2}(2^{2n+2} - 1)B_{n+1}}{(2n + 2)!} < h_n(x) < \left(\frac{2}{\pi} \right)^{2n}.$$ \hspace{1cm} (17)

Inequalities in (17) are equivalent to the double inequality (6).

In [4, p. 421], the following inequalities are given

$$\frac{2}{\pi^{2n+4n}} < \frac{B_{2n}}{(2n)!} < \frac{2}{\pi^{2n(4n - 2)}}.$$ \hspace{1cm} (18)

Then we have

$$\frac{4^{n+1}(4^{n+1} - 1)B_{2n+2}}{(2n + 2)!} > \left(2 - \frac{1}{2^{2n+1}} \right) \left(\frac{2}{\pi} \right)^{2n+2}.$$ \hspace{1cm} (19)

The first inequality in (6) follows from (19).

The proof of Theorem 1 is complete. \hfill \Box

References

(Chen) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, China

(Qi) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, China

E-mail address: qifeng@jzit.edu.cn or qifeng618@jzit.edu.cn

URL: http://rgmia.vu.edu.au/qi.html