
GENERALISED TAYLOR’S FORMULA WITH ESTIMATES OF
THE REMAINDER

P. CERONE

Abstract. Generalised Taylor’s formulae are obtained utilising an integral

remainder in which the kernel is comprised of a product of two polynomials,
each of which satisfy the Appell condition w′

k = wk−1. Bounds are obtained

in terms of the Lebesgue norms. Prior results are shown to be recaptured as

special cases of the current development. Perturbed Taylor’s formulae are also
investigated with this general setting complete with bounds.

1. Introduction

A number of authors have recently obtained generalisations of the traditional
Taylor series expansion of a function f (x) about a point a assuming sufficient
differentiability. Estimates of bounds on the remainder have also been procured.

Before proceeding further let us introduce some notation. We shall term polyno-
mials of degree k, Wk as Appell type and say Wk ∈ A if they satisfy the condition

(1.1) W ′
k = ξkWk−1 (t) , W0 (t) = 1, t ∈ R.

These are so named since Appell studied (1.1) with ξk = k in 1880 (see [1]).
Polynomials satisfying (1.1) with ξk = 1 have been termed harmonic polynomials
in Matić et al. [7] however a simple scaling will demonstrate that these are Appell.

The following results we obtained by Matić et al. [7] where Pn (t) satisfy (1.1)
with ξk = 1.
Theorem 1. Let {Pn}n∈N be a sequence of polynomials, that satisfy

(1.2) P ′
n (t) = Pn−1 (t) , P0 (t) = 1, t ∈ R, n ∈ N, n ≥ 1.

Further, let I ⊂ R be a closed interval and a ∈ I. If f : I → R is any function such
that for some n ∈ N, f (n) is absolutely continuous, then for any x ∈ I

(1.3) f (x) = Tn (f ; a, x) + Rn (f ; a, x)

where

(1.4) Tn (f ; a, x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk (x) f (k) (x)− Pk (a) f (k) (a)

]
,

(1.5) Rn (f ; a, x) = (−1)n
∫ x

a

Pn (t) f (n+1) (t) dt.

They also pointed out the following bounds for the remainder Rn (f, ·, ·).
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Corollary 1. With the above assumptions, we have the estimations

|Rn (f ; a, x)|(1.6)

≤


‖Pn‖∞

∥∥f (n+1)
∥∥

1
provided f (n+1) ∈ L1 [a, x] ,

‖Pn‖q

∥∥f (n+1)
∥∥

p
provided f (n+1) ∈ Lp [a, x] , p > 1, 1

p + 1
q = 1,

‖Pn‖1
∥∥f (n+1)

∥∥
∞ provided f (n+1) ∈ L∞ [a, x] ,

where x ≥ a and ‖·‖s (1 ≤ s ≤ ∞) are the usual s−Lebesgue norms. That is,

‖g‖s :=
(∫ x

a

|g (t)|s dt

) 1
s

, s ∈ [1,∞)

and

‖g‖∞ := ess sup
t∈[a,x]

|g (t)| .

We introduce superscripts for T (f ; a, x) and Rn (f ; a, x) as given in (1.4) and
(1.5) respectively to reflect the particular polynomial Pn (t) involved. Let

(1.7) P cλ
n (t) =

(t− θ (λ))n

n!
, θ (λ) = λa + (1− λ) x, λ ∈ [0, 1] ,

(1.8) PB
n (t) =

(x− a)n

n!
Bn

(
t− a

x− a

)
,

and

(1.9) PE
n (t) =

(x− a)n

n!
En

(
t− a

x− a

)
represent polynomials involving; a convex combination of the end points, Bernoulli
polynomials and Euler polynomials respectively.

With the polynomials (1.7) – (1.9) then from (1.4) and (1.5)

T cλ
n (f ; a, x)(1.10)

= f (a) +
n∑

k=1

(−1)k+1 (x− a)k

k!

[
λkf (k) (x) + (−1)k+1 (1− λ)k

f (k) (a)
]
,

TB
n (f ; a, x) = f (a) +

x− a

2
[f ′ (x) + f ′ (a)](1.11)

−
[n
2 ]∑

k=1

(x− a)2k

(2k)!
B2k

[
f (2k) (x)− f (2k) (a)

]
,

TE
n (f ; a, x)(1.12)

= f (a) + 2
[n+1

2 ]∑
k=1

(x− a)2k−1 (4k − 1
)

(2k)!
B2k

[
f (2k−1) (x) + f (2k−1) (a)

]
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and

Rcλ
n (f ; a, x) =

(−1)n+1

n!

∫ x

a

(t− θ (λ))n
f (n+1) (t) dt,(1.13)

θ (λ) = λa + (1− λ) x, λ ∈ [0, 1] ,

(1.14) RB
n (f ; a, x) = (−1)n+1 (x− a)n

n!

∫ x

a

Bn

(
t− a

x− a

)
f (n+1) (t) dt,

(1.15) RE
n (f ; a, x) = (−1)n+1 (x− a)n

n!

∫ x

a

En

(
t− a

x− a

)
f (n+1) (t) dt,

where Bn (·) are the Bernoulli polynomials, Bn = Bn (0) the Bernoulli numbers
and En (·) the Euler polynomials.

The above expressions (1.10) – (1.15) were obtained by Matić et al. [7] for the
Bernoulli and Euler polynomials but only for the equivalent of λ = 0 and 1

2 in (1.7).
Cerone and Dragomir [4] obtained the following theorem which follows directly

from Corollary 1 with P cλ
n (t) as given by (1.7) and using (1.10) and (1.13).

Theorem 2. Assume that f is as in Theorem 1, then we have

|f (x)− T cλ
n (f ; a, x)|(1.16)

= |Rcλ
n (f ; a, x)|

≤



1
n! (x− a)n [ 1

2 +
∣∣λ− 1

2

∣∣]n ∥∥f (n+1)
∥∥

1
if f (n+1) ∈ L1 [a, x] ;

1

n!(nq+1)
1
q

(x− a)n+ 1
q

[
(1− λ)nq+1 + λnq+1

] 1
q ∥∥f (n+1)

∥∥
p

if f (n+1) ∈ Lp [a, x] , p > 1, 1
p + 1

q = 1;

1
(n+1)! (x− a)n+1

[
(1− λ)n+1 + λn+1

] ∥∥f (n+1)
∥∥
∞ ,

if f (n+1) ∈ L∞ [a, x] .

It was also noted that since h1 (λ) =
[
1
2 +

∣∣λ− 1
2

∣∣]n , h2 (λ) =
[
(1− λ)nq+1 + λnq+1

] 1
q

and h3 (λ) = (1− λ)n+1 + λn+1 are convex and symmetrical about 1
2 , then

inf
λ∈[0,1]

hi (λ) = hi

(
1
2

)
, i = 1, 2, 3.
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Hence the best inequality possible in the sense of providing the tightest bound is∣∣∣f (x)− T
c 1

2
n (f ; a, x)

∣∣∣(1.17)

≤



1
2nn!

(x− a)n ∥∥f (n+1)
∥∥

1
;

1

n! (nq + 1)
1
q 2n

(x− a)n+ 1
q
∥∥f (n+1)

∥∥
p
,

if f (n+1) ∈ Lp [a, x] , p > 1, 1
p + 1

q = 1;

1
(n + 1)!2n

(x− a)n+1 ∥∥f (n+1)
∥∥
∞ , if f (n+1) ∈ L∞ [a, x] .

Taking λ = 0 in (1.16) produces the classical Taylor series expansion in terms
of the Lp [a, x] , p ≥ 1, Lebesgue norms for the bounds (see for example, Dragomir
[6]). That is, ∣∣∣∣∣f (x)−

[
f (a) +

n∑
k=1

(x− a)k

k!
f (k) (a)

]∣∣∣∣∣(1.18)

≤



(x− a)n

n!

∥∥f (n+1)
∥∥

1
, f (n+1) ∈ L1 [a, x] ;

(x− a)n+ 1
q

n! (nq + 1)
1
q

∥∥f (n+1)
∥∥

p
, f (n+1) ∈ Lp [a, x] ,

p > 1, 1
p + 1

q = 1;
(x− a)n+1

(n + 1)!

∥∥f (n+1)
∥∥
∞ , f (n+1) ∈ L∞ [a, x] .

Recently in [5] Dragomir introduced a perturbed Taylor’s formula using the
Grüss inequality for the Chebychev functional. Matić et al. [3] obtained generalised
Taylor’s formulae involving expansions in terms of general polynomials satisfying
(1.2) producing in particular Theorem 1 and Corollary 1 above. They also examined
perturbed versions of (1.3), namely

f (x) = Tn (f ; a, x)(1.19)

+ (−1)n [Pn+1 (x)− Pn+1 (a)]
[
f (n); a, x

]
+ ρn (f ; a, x) ,

where

(1.20)
[
f (n); a, x

]
:=

f (n) (x)− f (n) (a)
x− a

, the divided difference,

(1.21) ρn (f ; a, x) is the remainder.

Dragomir [5] developed an estimate of the remainder using the Grüss inequality
for Pn (t) = (t−x)n

n! , Matić et al. [7] used a premature or pre-Grüss argument to pro-

cure bounds on ρ
c 1

2
n (f ; a, x), ρc0

n (f ; a, x), ρcB
n (f ; a, x) and ρcE

n (f ; a, x) . Dragomir
[6] obtained tighter bounds for the same polynomial generators of the perturbed
Taylor series for f (n+1) ∈ L2 (I) with x, a ∈ I ⊆ R. In the paper [4], Cerone and



GENERALISED TAYLOR’S FORMULA 5

Dragomir procured bounds on ρn (f ; a, x) in terms of ∆−seminorms resulting from
the Chebychev functional and Korkine’s identity which are used to produce (1.18).

In two recent papers, Cerone [2] and [3] developed quadrature rules utilizing
Peano kernels comprised of the product of polynomials satisfying the Appell con-
dition (1.2).

It is the intention that in the current paper the results of Matić et al. [7], as
exemplified in Theorem 1 and Corollary 1, be extended to polynomials that in
themselves do not satisfy (1.2) but are comprised of products of polynomials that
do. That is, develop the results of Cerone [2], [3] to obtain generalised Taylor
series involving different polynomials complete with an estimate of bounds for the
remainder. Perturbed Taylor series will also be analysed.

2. Results from Product Appell Polynomials

We commence by developing an identity.
Lemma 1. Let pk, qk ∈ A for k ∈ N and so are sequences of Appell polynomials
satisfying (1.2).
Further, let I be a closed interval and a ∈ I then if f : I → R is such that f (n) is
absolutely continuous on I, the following identity holds for any x ∈ I

(2.1) f (x) = τn (f ; a, x) + Rn (f ; a, x) ,

where

τn (f ; a, x) = f (a) +
1(
n
m

) n∑
k=1

(−1)k+1
[
K(k)

n (x) f (n−k) (x)(2.2)

+ (−1)k+1 −K(k)
n (a) f (n−k) (a)

]
,

(2.3) Rn (f ; a, x) =
(−1)n(

n
m

) ∫ x

a

Kn (t) f (n+1) (t) dt

with

(2.4) Kn (t) = pn−m (t) qm (t) , t ∈ [a, x]

and

(2.5) K(k)
n (t) =

U∑
j=L

(
k

j

)
pn−m−j (t) qj−k+m (t) ,

(2.6) U = min {k, n−m} , L = max {0, k −m} .

Proof. Consider

(−1)n
∫ x

a

Kn (t) f (n+1) (t) dt

then repeated integration by parts gives

(−1)n
∫ x

a

Kn (t) f (n+1) (t) dt(2.7)

=
n−1∑
k=0

(−1)k
K(k)

n (t) f (n−k) (t)

∣∣∣∣∣
x

a

+
∫ x

a

K(n)
n (t) f ′ (t) dt.
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Now, using the Leibnitz rule for differentiation of a product gives from (2.2)

(2.8) K(k)
n (t) =

k∑
j=0

(
k

j

)
dj

dtj
pn−m (t)

dk−j

dtk−j
qm (t) .

Further, since pn−m (·) and qm (·) are Appell polynomials satisfying (1.2), then,

W
(j)
k (t) =

 Wk−j (t) , j ≤ k

0, j > k

and so from (2.8)

(2.9) K(k)
n (t) =

min{k,n−m}∑
j=max{0,k−m}

(
k

j

)
pn−m−j (t) qj−k+m (t) .

Also, for k = m we deduce from (2.9) that j = n−m since the subscripts of p and
q are non negative giving

(2.10) K(n)
n (t) =

( n

m

)
.

Using (2.9) and (2.10) in (2.8) readily produces the desired result (2.3) after minor
manipulation.

Remark 1. If we take m = 0 then Kn (t) = pn (t) and the generalised Taylor’s
formula, (1.3) – (1.5), of Matić et al. [7] is recaptured. If we further take pn (t) =
P c0

n (t) = (t−x)n

n! then the classical Taylor’s formula results. Further, if pn (t) =
P cλ

n (t) , PB
n (t) or PE

n (t) , as defined by (1.7) – (1.9), then the results (1.10) –
(1.15) are obtained and so recapturing existing work.
Theorem 3. Let f satisfy the assumptions of Lemma 1. Then the following esti-
mations holds:

|f (x)− τn (f ; a, x)|(2.11)
= |Rn (f ; a, x)|

≤



Qn (1, x)
∥∥f (n+1)

∥∥
∞ , f (n+1) ∈ L∞ [a, x] ;

Qn (q, x)
∥∥f (n+1)

∥∥
p
, f (n+1) ∈ Lp [a, x] ,

p > 1, 1
p + 1

q = 1;
1

( n
m ) sup

t∈[a,x]

|Kn (t)|
∥∥f (n+1)

∥∥
1
, f (n+1) ∈ L1 [a, x] ,

where

Qn (r, x) =
1(
n
m

) (∫ x

a

|Kn (t)|r dt

) 1
r

,

with Kn (t) as defined by (2.4).

Proof. The estimations are a simple consequence of Hölder’s inequalities and prop-
erties of the integral and absolute value.

Remark 2. The results of Lemma 1 and Theorem 3 are quite general being capable
of recapturing prior generalised Taylor formulae as particular cases of the current
work. Theorem 3 provides bounds on the remainder Rn (f ; a, x) defined in terms
of Kn (t) which is comprised of the product of Appell polynomials satisfying the
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conditions (1.2). The bounds provided by (2.11) may be evaluated either analytically
using the properties of the specific polynomials in question or else numerically.

The following corollary gives an example for a particular nth degree polynomial.
Corollary 2. Let the conditions of Lemma 1 hold. The following result is then
valid. Namely, for θ ∈ [a, x]

|f (x)− τ∗n (f ; a, x)|(2.12)
= |R∗

n (f ; a, x)|

≤



Q∗
n (1, x)

∥∥f (n+1)
∥∥
∞ , f (n+1) ∈ L∞ [a, x] ;

Q∗
n (q, x)

∥∥f (n+1)
∥∥

p
, f (n+1) ∈ Lp [a, x] , p > 1, 1

p + 1
q = 1;

(x− a)n−m

n!2m

[
x− a + 2

∣∣∣∣θ − a + x

2

∣∣∣∣]m ∥∥f (n+1)
∥∥

1
,

f (n+1) ∈ L1 [a, x] ,

where

τ∗n (f ; a, x)(2.13)

= f (a) +
1(
n
m

) n∑
k=1

(−1)k+1
[
κ(k)

n (x) f (n−k) (x)− κ(k)
n (a) f (n−k) (a)

]
,

(2.14) κn (t) =
(t− x)n−m

(n−m)!
· (t− θ)m

m!
, θ ∈ [a, x] ,

(2.15) κ(k)
n (t) =

U∑
j=L

(
k

j

)
(t− x)n−m−j

(n−m− j)!
· (t− θ)j−k+m

(j − k + m)!
,

with U = min {k, n−m}, L = max {0, k −m}.
Further,

(2.16) n!Q∗
n (r, x)

=



[
(x− a)rn+1

rn + 1

] 1
r

, θ = x

(x− θ)rn+1

[
χ

(
r (n−m) , rm,

θ − a

x− a

)
+B (r (n−m) + 1, rm + 1)

)] 1
r

, θ ∈ [a, x)

,

with

χ (α, β, X) =
∫ X

0

(u + 1)α
uβdu

and

B (α, β) =
∫ 1

0

(1− u)α−1
uβ−1du,

the Euler beta function.
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Proof. For Kn (t) of (2.4) given by κn (t) of (2.14) we have from (2.1) the identity
in (2.12) with τ∗n (f ; a, x) as given by (2.13).

The bounds are obtained utilising (2.11).
For f (n+1) ∈ L1 [a, x] then we require to determine from the third inequality in

(2.11), with Kn (t) = κn (t) defined in (2.14). Namely,
1(
n
m

) sup
t∈[a,x]

|κn (t)| =
1(
n
m

) sup
t∈[a,x]

|t− x|n−m |t− θ|m

=
1(
n
m

) sup
t∈[a,x]

(x− t)n−m |t− θ|m

=
(x− a)n−m

n!
[max {θ − a, x− θ}]m ,

which produces the third inequality of (2.12) on using the result 2max {A,B} =
A + B + |A−B|.

Now, for f (n+1) ∈ Lp [a, x], 1 ≤ p < ∞ then from (2.11) with Kn (t) given by
κn (t) of (2.14)

Q∗
n (r, x) =

1(
n
m

) (∫ x

a

|κn (t)|r dt

) 1
r

(2.17)

=
1
n!

(∫ x

a

(x− t)r(n−m) |t− θ|rm
dt

) 1
r

.

Firstly, if θ = x then

(2.18) Q∗
n (r, x) =

1
n!

(∫ x

a

(x− t)rn
dt

) 1
r

=
1
n!

[
(x− a)rn+1

rn + 1

] 1
r

.

For θ ∈ [a, x) then from (2.16),

Q∗
n (r, x)(2.19)

=
1
n!

[∫ θ

a

(x− t)r(n−m) (θ − t)rm
dt +

∫ x

θ

(x− t)r(n−m) (t− θ)rm
dt

] 1
r

: =
1
n!

[I (a, θ, x) + J (a, θ, x)]
1
r .

Now, taking u = θ − t then

I (a, θ, x) =
∫ θ−a

0

(u + x− θ)r(n−m)
urmdu

which, with a further substitution of u = (x− θ) v gives

(2.20) I (a, θ, x) = (x− θ)rn+1
∫ θ−a

x−a

0

(v + 1)r(n−m)
vrmdv.

Further, the substitution (x− θ) w = t− θ produces from (2.17)

(2.21) J (a, θ, x) = (x− θ)rn+1
∫ 1

0

(1− w)r(n−m)
wrmdw.

Combining (2.17) – (2.21) produces (2.16) and thus completing the proof of the
theorem.
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Remark 3. Different choices of m,n and θ recapture earlier results. If m = n then
κn (t) of (2.14) becomes P cλ

n (t) given by (1.7) and the resulting Taylor expansion
and bounds are procured. Taking θ = x in (2.15) gives P c0

n (t) from (1.7) producing
agreement between the results (1.18) and (2.11).

The tightest bounds from (2.11) are obtained if we take θ = a+x
2 . The following

corollary then holds.

Corollary 3. Let the conditions of Lemma 1 and Corollary 2 hold, then∣∣∣∣∣f (x)−

[
f (a) +

1(
n
m

) n∑
k=1

(−1)k+1
[
κ̃(k)

n (x) f (n−k) (x)− κ̃(k)
n (a) f (n−k) (a)

]]∣∣∣∣∣
≤



B1 (x)
∥∥f (n+1)

∥∥
∞ , f (n+1) ∈ L∞ [a, x] ;

Bq (x)
∥∥f (n+1)

∥∥
p
, f (n+1) ∈ Lp [a, x] ,

p > 1, 1
p + 1

q + 1;
(x−a)n

n!2m

∥∥f (n+1)
∥∥

1
, f (n+1) ∈ L1 [a, x] ,

where

κ̃(k)
n (x) =

(
k

n−m

)(
x− a

2

)n−k

,

κ̃(k)
n (a) =

U∑
j=L

(
k

j

)
(−1)n−k (x− θ)n−k

2j−k+m (n−m− j)! (j − k + m)!
,

with
U = min {k, n−m} , L = max {0, k −m}

and

B1 (x) =
(

x− a

2

)n+1
[
χ

(
n−m,m,

1
2

)
+

1
(n + 1)

(
n
m

)] ,

Bq (x) =
(

x− a

2

)n+ 1
q
[
χ

(
q (n−m) , qm,

1
2

)
+ B (q (n−m) , qm + 1)

] 1
q

.

Further, χ (α, β, X) and B (α, β) are as defined in Corollary 2.

Proof. Taking θ = a+x
2 in Corollary 2 produces the results stated after some minor

algebraic manipulation.

3. Perturbed Taylor’s Formula

Perturbed Taylor series may be obtained utilising the well known Chebychev
functional and its properties including identities and bounds. It has a very extensive
and long history, see for example [8, pp. 295-310].

For g, h : I → R which are both integrable as is their product, then

(3.1) T (g, h) = M (gh)−M (g)M (h)

is the well known Chebychev functional, where M (g) = 1
x−a

∫ x

a
g (t) dt is the inte-

gral mean and x > a.
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Further, a number of sharp bounds for |T (g, h)| exist, under various assumptions
about g and h, including (see [3] for example)

|T (g, h)|(3.2)

≤



[T (g, g)]
1
2 [T (h, h)]

1
2 , g, h ∈ L2 (I)

Au −Al

2
[T (g, g)]

1
2 , Al ≤ h (t) ≤ Au, t ∈ [a, x]

(
Au −Al

2

)(
Bu −Bl

2

)
, Bl ≤ g (t) ≤ Bu, t ∈ [a, x] (Grüss)

The bounds in (3.2) are from top to bottom in order of increasing coarseness.
They utilise the Korkine identity, namely

(3.3) T (g, h) :=
1

2 (x− a)2

∫ x

a

∫ x

a

(h (t)− h (s)) (g (t)− g (s)) dtds

for their development.
As mentioned in the introduction, the identity (1.19) was introduced by Dragomir

[5] for Pn (x) = (t−x)n

n! and bounds were obtained on the remainder utilising the
Grüss inequality, the third in (3.2). Matić et al. [5] capitalised on the fact that
[T (Pn, Pn)]

1
2 can be evaluated explicitly for particular polynomials Pn (t) and so

utilised the second inequality in (3.2), termed by them as the pre-Grüss inequality,
to obtain bounds.

It should be emphasised that (1.19) comes from (3.1) and (3.2) where

(3.4) ρn (f ; a, x) = (x− a)T
(
Pn, f (n+1)

)
.

Specifically, Matić et al. [7] obtain the bound

(3.5) |ρn (f ; a, x)| ≤ (x− a)

∣∣Γn+1 (x)− γn+1 (x)
∣∣

2

√
T (Pn, Pn),

where
γn+1 (x) := inf

t∈[a,x]
f (n+1) (t) , Γn+1 (x) = sup

t∈[a,x]

f (n+1) (t) .

For f (n+1) ∈ L2 (I) and x > a, Dragomir [6] obtained, using the first inequality in
(3.2) and (3.4),

(3.6) |ρn (f ; a, x)| ≤ (x− a) [T (Pn, Pn)]
1
2 σ
(
f (n+1); a, x

)
,

where

σ
(
f (n+1); a, x

)
=

[
T
(
f (n+1), f (n+1)

)] 1
2

(3.7)

: =
[

1
x− a

∥∥∥f (n+1)
∥∥∥2

2
−
([

f (n); a, x
])2
] 1

2

with[
f (n); a, x

]
= M

(
f (n+1)

)
=

1
x− a

∫ x

a

f (n+1) (t) dt =
f (n) (x)− f (n) (a)

x− a
.
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Let βn = [T (Pn, Pn)]
1
2 , then Matić et al. [7] showed that

βB
n = (x− a)n+1

(
|B2n|
(2n)!

) 1
2

and

βE
n = 2 (x− a)n+1


(
4n+1 − 1

)
|B2m+2|

(2n + 2)!
−

[
2
(
2n+2 − 1

)
Bn+2

(n + 1)!

]2


1
2

.

where the polynomials PB
n (t) and PE

n (t) involving the Bernoulli and Euler poly-
nomials are present, respectively.

Consider now the polynomial P cλ
n (t) as defined in (1.7), then

βcλ
n = [T (P cλ

n , P cλ
n )]

1
2

and so from (3.1)

(3.8) [βcλ
n ]2 = M

(
(P cλ

n )2
)
− (M (P cλ

n ))2 .

Now, from (1.7),

n! (x− a)M (P cλ
n ) =

∫ x

a

(t− θ (λ))n
dt

=
∫ λ(x−a)

−(1−λ)(x−a)

undu,

(3.9) n! (x− a)M (P cλ
n ) =

[
λn+1 + (−1)n (1− λ)n+1

] (x− a)n+1

n + 1
.

Similarly,

(n!)2 (x− a)M
(
(P cλ

n )2
)

=
∫ x

a

(t− θ (λ))2n
dt(3.10)

=
[
λ2n+1 + (1− λ)2n+1

] (x− a)2n+1

2n + 1
.

Thus substitution of (3.9) and (3.10) into (3.8) gives, upon simplification

(3.11) βcλ
n =

(x− a)n

(n + 1)!
√

2n + 1
γ (λ) ,

where

γ2 (λ) = (n + 1)2
[
λ2n+1 + (1− λ)2n+1(3.12)

− (2n + 1)
[
λn+1 + (−1)n (1− λ)n+1

]2]
.

We note that γ (λ) is convex so that the tightest bound is obtained for λ = 1
2 . Also,

taking either λ = 0 or 1 gives

(3.13) βc0
n =

(x− a)n

(n + 1)!
√

2n + 1
= βc1

n .
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Further,

β
c 1

2
n =

(x− a)n

(n + 1)!
√

2n + 1
· 1
2n

[
n2 +

2n + 1
2

(1− (−1)n)
] 1

2

,

which may be written more succinctly as

(3.14) β
c 1

2
n =

(x− a)n

(n + 1)!
√

2n + 1
· 1
2n

 n, n even

n + 1, n odd.

The result (3.13) was obtained by Dragomir [5]. It was also obtained in Matić et

al. [7] as was an equivalent result for β
c 1

2
n . The expression (3.14) shows that the

bound is slightly tighter for n even than it is for n odd since n
n+1 < 1.

Thus we have the perturbed Taylor series expansion (1.19) with error ρn (f ; a, x)
bounded by (3.5) for γ (x) ≤ fn+1 (t) ≤ Γ (x) , t ∈ [a, x] and by (3.5) for f (n+1) ∈
L2 (I) . Here the bound is in terms of

(3.15) βn = [T (Pn, Pn)]
1
2

which is dependent on the particular polynomials used.
It should be noted that the Grüss inequality (the third in (3.2)) has not been

emphasised for two main reasons. Namely, it is coarser than the other two and,
for Pn (t) involving the Bernoulli and Euler polynomials the bounds are not useful.
However, for P cλ

n as given by (1.7), we have

φn (x) ≤ P cλ
n ≤ Φn (x) , t ∈ [a, x] ,

where

φn (x) = inf
t∈[a,x]

pn (t) =


0, n even

− (1− λ)n (x− a)n

n!
, n odd

and

Φn (x) = sup
t∈[a,x]

pn (t) =


(x− a)n

n!
[max {λ, 1− λ}]n , n even

λn (x− a)n

n!
, n odd.

Hence, from (3.15)

βcλ
n ≤ Φn (x)− φn (x)

2
=

(x− a)n

2n!


[
1
2

+
∣∣∣∣λ− 1

2

∣∣∣∣]n

, n even

λn + (1− λ)n
, n odd.

The following theorem gives perturbed Taylor formulae involving product Appell
polynomials.
Theorem 4. Let pk, qk ∈ A for k ∈ N so that they are sequences of Appell
polynomials satisfying (1.2). Further, let I be a closed interval and a ∈ I then,
for f : I → R and f (n) absolutely continuous on I, the following inequalities hold.
Namely, for x ∈ I,

(3.16)

∣∣∣∣∣f (x)− τn (f ; a, x)− (−1)n(
n
m

) Un (x)
[
f (n); a, x

]∣∣∣∣∣
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≤ (x− a) bn (x) σ
(
f (n+1); a, x

)
, f (n+1) ∈ L2 [I] ,

≤ (x− a) bn (x)
(

Γn+1 (x)− γn+1 (x)
2

)
, γn+1 (x) ≤ f (n+1) (t) ≤ Γn+1 (x) ,

t ∈ [a, x]

≤ (x− a)(
n
m

) ·
(
Φn+1 (x)− φn+1 (x)

)
2

φn+1 (x) ≤ Kn (t) ≤ Φn+1 (x) ,

×
(
Γn+1 (x)− γn+1 (x)

)
2

, t ∈ [a, x]

where τn (f ; a, x) is as defined in (2.2),

Un (x) =
∫ x

a

Kn (t) dt =
∫ x

a

pn−m (t) qm (t) dt,(3.17) [
f (n); a, x

]
=

f (n) (x)− f (n) (a)
x− a

,(3.18)

bn (x) =
1(
n
m

) [ 1
x− a

∫ x

a

K2
n (t) dt−

(
Un (x)
x− a

)2
] 1

2

,(3.19)

and σ
(
f (n+1); a, x

)
being as defined by (3.7).

Proof. Associating g (t) with (−1)n

( n
m ) Kn (t) and h (t) with f (n+1) (t) then from (3.1)

we obtain

T

(
(−1)n(

n
m

) Kn (t) , f (n+1) (t)

)

= M

(
(−1)n(

n
m

) Kn (t) f (n+1) (t)

)
−M

(
(−1)n(

n
m

) Kn (t)

)
M
(
f (n+1) (t)

)
and thus, from (2.3)

(x− a)T

(
(−1)n(

n
m

) Kn (t) , f (n+1) (t)

)
(3.20)

= Rn (f ; a, x)− (−1)n(
n
m

) Un (x)
[
f (n); a, x

]
where Un (x) and

[
f (n); a, x

]
are given by (3.17) and (3.18).

Substituting (2.1) in (3.20) produces

f (x)− τn (f ; a, x)− (−1)n(
n
m

) Un (x)
[
f (n); a, x

]
= (x− a) T

(
(−1)n(

n
m

) Kn (t) , f (n+1) (t)

)
,

which upon taking the modulus and utilising (3.2) gives the results (3.16) where
bn (x) = 1

( n
m ) [T (Kn (t) ,Kn (t))]

1
2 , since T (ag, ah) = a2T (g, h) , a constant.

The following corollary provides a particular result for a specific nth degree
polynomial.
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Corollary 4. Let the conditions of Theorem 4 hold. The following result is then
valid. Namely, for θ ∈ [a, x]

(3.21)

∣∣∣∣∣f (x)− τ∗n (f ; a, x)− (−1)n(
n
m

) U∗
n (x)

[
f (n); a, x

]∣∣∣∣∣
≤ (x− a) b∗n (x)σ

(
f (n+1); a, x

)
, f (n+1) ∈ L2 [I] ,

≤ (x− a) b∗n (x)
(

Γn+1 (x)− γn+1 (x)
2

)
, γn+1 (x) ≤ f (n+1) (t) ≤ Γn+1 (x) ,

t ∈ [a, x]

≤ (x− a) ·
(
Φ∗

n+1 (x)− φ∗n+1 (x)
)

2
φ∗n+1 (x) ≤ κn (t)

2
≤ Φ∗

n+1 (x) ,

×
(
Γn+1 (x)− γn+1 (x)

)
2

, t ∈ [a, x]

where

(3.22) τ∗n (f ; a, x)

= f (a) +
1(
n
m

) n∑
k=1

(−1)k+1
[
κ(k)

n (x) f (n−k) (x)− κ(k)
n (a) f (n−k) (a)

]

(3.23) κn (t) =
(t− x)n−m

(n−m)!
· (t− θ)m

m!
, θ ∈ [a, x] ,

(3.24) κ(k)
n (t) =

U∑
j=L

(
k

j

)
(t− x)n−m−j

(n−m− j)!
· (t− θ)j−k+m

(j − k + m)!

with U = min {k, n−m}, L = max {0, k −m}.
Further,

(3.25)
U∗

n (x)(
n
m

)
=


(−1)n+1 (x−a)n+1

(n+1)! , θ = x,

(−1)n−m (x−θ)n+1

n!

[
1

( n
m ) −B

(
n−m + 1,m + 1, a−θ

x−θ

)]
, θ ∈ [a, x)

(3.26) b∗n (x) =
1(
n
m

) [M∗ (κ2
n

)
−
(

U∗
n (x)

x− a

)2
] 1

2

,

(3.27) M∗ (κ2
n

)
=


(−1)n+1 (x−a)2n

(n−m)!m!(2n+1) , θ = x,

(x−θ)2n+1

(n−m)!m!(x−a)

[
1

( 2n
2m ) −B

(
2 (n−m) + 1, 2m + 1, a−θ

x−θ

)]
, θ ∈ [a, x)
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and

(3.28) B (α, β;X) =
∫ X

0

(1− u)α−1
uβ−1du with B (α, β; 1) =

Γ (α) Γ (β)
Γ (α + β)

.

Finally, ( n

m

)
φ∗n (x) = inf

t∈[a,x]
κn (t) and

( n

m

)
Φ∗

n (x) = sup
t∈[a,x]

κn (t) .

Proof. The above results are a direct consequence of Theorem 4 for Kn (t) = κn (t)
as given by (3.23). A star is used to signify this particular Kn (t) . Now, from (3.17),

(3.29)
U∗

n (x)(
n
m

) =
∫ x

a

κn (t) dt =
1
n!

∫ x

a

(t− x)n−m · (t− θ)m
dt, θ ∈ [a, x] .

For θ = x then U∗
n (x) = (−1)n+1 (x−a)n+1

(n+1)(n−m)!m! and for θ ∈ [a, x) we have

U∗
n (x)(
n
m

) =
1
n!

∫ x−θ

a−θ

(u + θ − x)n−m
umdu

= (−1)n−m (x− θ)n+1

n!

[
B (n−m + 1,m + 1, 1)

− B

(
n−m + 1,m + 1,

a− θ

x− θ

)]
.

Now, since B (α, β; 1) = Γ(α)Γ(β)
Γ(α+β) , then the expression (3.25) is as stated.

We have to determine b∗n (x) . From (3.19) we have

(3.30) b∗n (x) =
1(
n
m

) [ 1
x− a

∫ x

a

κ2
n (t) dt−

(
U∗

n (x)
x− a

)2
] 1

2

.

Thus, since U∗
n (x) has already been determined as (3.25) we need to evaluate

M∗ (κ2
n

)
. That is, from (3.23)

(x− a)M∗ (κ2
n

)
=
∫ x

a

κ2
n (t) dt

and so,

(3.31) (n−m)!m! (x− a)M∗ (κ2
n

)
=
∫ x

a

(t− x)2(n−m) (t− θ)2m
dt := J (θ) .

For θ = x we have

(3.32) J (x) =
∫ x

a

(t− x)2n
dt =

(x− a)2n+1

(2n + 1)!
.

For θ 6= x, that is for θ ∈ [a, x) we have

J (θ) =
∫ x−θ

a−θ

(u− (x− θ))2(n−m)
u2mdu(3.33)

= (x− θ)2n+1
∫ 1

a−θ
x−θ

(1− v)2(n−m)
v2mdv

= (x− θ)2n+1

[
1(
2n
2m

) −B

(
2 (n−m) + 1, 2m + 1,

a− θ

x− θ

)]
.
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Combining (3.32) and (3.21) with (3.31) followed by substitution in (3.30) gives
(3.26).

Remark 4. If m = n then κn (t) = P cλ
n (t) with θ = λa + (1− λ) x, then b∗n (x) is

equivalent to βcλ
n given in (3.11) with (3.12). Taking θ = x will reproduce the results

of Dragomir [5] involving bounds for the perturbed traditional Taylor representation.
Remark 5. It is possible to obtain bounds for perturbed Taylor formulae by using
the Chebychev inequality and an inequality due to Lupaş. The Chebychev inequality
(see [9, p. 207]) states that for g, h : [a, x] → R absolutely continuous and g′ (·) ,
h′ (·) bounded then

|T (g, h)| ≤ 1
12

(x− a)2 sup
t∈[a,x]

|g′ (t)| sup
t∈[a,x]

|h′ (t)| .

However T2 (g, h) ≤ T (g, g) T (h, h) and so

(3.34) |T (g, h)| ≤ x− a√
12

sup
t∈[a,x]

|g′ (t)|
√

T (h, h).

The Lupaş result (see [3, p. 210]) states that if g, h : (a, x) → R are locally
absolutely continuous on I = (a, x) and g′, h′ ∈ L2 (I) then

|T (g, h)| ≤ (x− a)2

π2
‖g′‖†2 ‖h

′‖†2 ,

where

‖f‖†2 :=
(

1
x− a

∫ x

a

|f (t)|2 dt

) 1
2

, f ∈ L2 (I) .

Following a similar procedure as above gives

(3.35) |T (g, h)| ≤ x− a

π
‖g′‖†2

√
T (h, h).

Taking g (t) = f (n+1) (t) and h (t) = Pn (t) or Kn (t) in (3.34) and (3.35) would
produce further bounds for Taylor expansions. These would however, require fur-
ther conditions on f (n+2) (t) being bounded when utilizing the result (3.34) and
f (n+2) ∈ L2 (I) for (3.35). The earlier results were in terms of conditions on
f (n+1) (t) rather than f (n+2) (t) . This will not be pursued further here.
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