A KALLMAN-ROTA INEQUALITY FOR EVOLUTION SEMIGROUPS

C. BUŞE AND S.S. DRAGOMIR

ABSTRACT. A Kallman-Rota type inequality for evolution semigroups and applications for real valued functions are given.

1. INTRODUCTION

Let X be a real or complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all linear and bounded operators acting on X. The norms in X and in $\mathcal{L}(X)$ will be denoted by $\|\cdot\|$.

Let \mathbb{R}_+ the set of all non-negative real numbers and $\mathbf{J} \in \{\mathbb{R}_+, \mathbb{R}\}$. The set $\{(t, s) : t \geq s \in \mathbf{J}\}$ will be denoted by $\Delta_{\mathbf{J}}$. A family

$$\mathcal{U}_{\mathbf{J}} = \{ U(t,s) : (t,s) \in \Delta_{\mathbf{J}} \} \subset \mathcal{L}(X)$$

is called an *evolution family* of bounded linear operators on X if U(t,t) = I (the identity operator on X) and U(t,s)U(s,r) = U(t,r) for all $t \ge s \ge r \in \mathbf{J}$. Such a family is said to be *strongly continuous* if for each $x \in X$, the maps

$$(t,s)\mapsto U(t,s)x:\Delta_{\mathbf{J}}\to X$$

are continuous. A strongly continuous evolution family is said to be *exponentially* bounded if there exist $\omega \in \mathbb{R}$ and $K_{\omega} \geq 1$ such that

$$||U(t,s)|| \leq K_{\omega} e^{\omega(t-s)}$$
 for all $(t,s) \in \Delta_{\mathbf{J}}$

and uniformly stable if there exists $M \in \mathbb{R}_+$ such that

(1.1)
$$\sup_{(t,s)\in\Delta_{\mathbf{J}}}||U(t,s)|| \le M < \infty$$

We remind that a family $\mathbf{T} = \{T(t) : t \ge 0\} \subset \mathcal{L}(X)$ is called *one-parameter* semigroup if T(0) = I and T(t+s) = T(t)T(s) for all $t \ge s \ge 0$. An one-parameter semigroup is called *strongly continuous* or C_0 -semigroup if for each $x \in X$ the maps $t \mapsto T(t)x$ are continuous on \mathbb{R}_+ . For a C_0 -semigroup \mathbf{T} , its infinitesimal generator A with the domain D(A) is defined by

$$D(A) := \left\{ x \in X: \text{ there exists in } X, \quad \lim_{t \to 0} \frac{T(t)x - x}{t} =: Ax \right\}.$$

It is easy to see that if $\mathbf{T} = \{T(t) : t \ge 0\}$ is a strongly continuous semigroup then the family $\mathcal{U}_{\mathbf{J}} = \{U(t,s) := T(t-s) : (t,s) \in \Delta_{\mathbf{J}}\}$ is a strongly continuous and exponentially bounded evolution family. Conversely, if $\mathcal{U}_{\mathbf{J}}$ is a strongly continuous evolution family and U(t,s) = U(t-s,0) for all $(t,s) \in \Delta_{\mathbf{J}}$ then the family $\mathbf{T} :=$ $\{T(t) = U(t,0) : t \ge 0\}$ is a strongly continuous one-parameter semigroup. For

¹⁹⁹¹ Mathematics Subject Classification. 47A30.

Key words and phrases. Kallman-Rota Inequality, Evolution Semigroups.

more details about the strongly continuous semigroups and evolution families we refer to [3].

Lemma 1. Let $\mathbf{T} := \{T(t) : t \geq 0\}$ be a strongly continuous one-parameter semigroup and $A: D(A) \subset X \to X$ its infinitesimal generator. If **T** is uniformly stable, that is, there is a positive constant M such that $\sup ||T(t)|| \leq M$, then $t \ge 0$

(1.2)
$$||Ax||^2 \le 4M^2 ||A^2x|| ||x||, \text{ for all } x \in D(A^2).$$

Proof. See [4].

We are recalling the notion of evolution semigroup. For more details we refer to [1], [2] and references therein. We will consider the both cases, i.e., the evolution semigroups for evolution families on $\Delta_{\mathbb{R}_+}$ and on $\Delta_{\mathbb{R}}$.

Let $\mathcal{U}_{\mathbb{R}_+}$ be a strongly continuous and exponentially bounded evolution family of bounded linear operators acting on X. Let us consider the following spaces:

• $C_{00}(\mathbb{R}_+, X)$ is the space consisting by all X-valued, continuous functions on \mathbb{R}_+ , such that

$$f(0) = \lim_{t \to \infty} f(t) = 0,$$

endowed with the sup-norm.

• $L_p(\mathbb{R}_+, X), 1 \leq p < \infty$ is the usual Lebesgue-Bochner space of all measurable functions $f : \mathbb{R}_+ \to X$, identifying functions which are equal almost everywhere, such that

$$||f||_p := \left(\int_0^\infty ||f(s)||^p ds\right)^{\frac{1}{p}} < \infty.$$

Let \mathcal{X} be either $C_{00}(\mathbb{R}_+, X)$ or $L_p(\mathbb{R}_+, X)$ and $f \in \mathcal{X}$.

It is easy to see that for each t > 0, the function T(t)f given by

(1.3)
$$(T(t)f)(s) := \begin{cases} U(s,s-t)f(s-t), & s \ge t \\ 0, & 0 \le s < \end{cases}$$

belongs to \mathcal{X} , and the family $\mathbf{T} = \{T(t) : t \geq 0\}$ is an one-parameter semigroup of bounded linear operators acting on \mathcal{X} . Moreover, the following result, holds:

t

Lemma 2. The semigroup T defined in (1.3) is strongly continuous. If (A, D(A)) is the generator of T with its domain then for every u, f in \mathcal{X} the following statements are equivalent:

- (i) $u \in D(A)$ and Au = -f;(ii) $u(t) = \int_0^t U(t,s)f(s)ds;$

Proof. See [7].

The strongly continuous semigroup \mathbf{T} defined in (1.3) is called *evolution semi*group associated to $\mathcal{U}_{\mathbb{R}_+}$ on the space \mathcal{X} .

We will state here our first result.

Theorem 1. Let $\mathcal{U}_{\mathbb{R}_+}$ be a strongly continuous uniformly stable evolution family of bounded linear operators acting on X, and let $g \in \mathcal{X}$. Suppose that the following conditions are fulfilled:

- (i) $\int_0^{\cdot} U(\cdot, s)g(s)ds$ belongs to \mathcal{X} ;
- (ii) $\int_0^0 (\cdot s) U(\cdot, s) g(s) ds$ belongs to \mathcal{X} .

 $\mathbf{2}$

Then the following inequality holds:

(1.4)
$$\left\|\int_0^{\cdot} U(\cdot,s)g(s)ds\right\|_{\mathcal{X}}^2 \leq 4M^2 \|g\|_{\mathcal{X}} \times \left\|\int_0^{\cdot} (\cdot-s)U(\cdot,s)g(s)ds\right\|_{\mathcal{X}},$$

where M is the constant from the estimation (1.1).

 $BUC(\mathbb{R}, X)$ is the space of all X-valued, bounded and uniformly continuous functions on the real line endowed with the sup-norm. The following three spaces are closed subspaces of $BUC(\mathbb{R}, X)$:

- $C_0(\mathbb{R}, X)$ is the space of all X-valued, continuous functions on \mathbb{R} such that $\lim_{t \to \infty} f(t) = 0.$
- $AP(\mathbb{R}, X)$ is the space of all almost periodic functions, that is, the smallest closed subspace of $BUC(\mathbb{R}, X)$ containing the functions of the form

$$t \mapsto e^{i\mu t} x, \quad \mu \in \mathbb{R} \text{ and } x \in X,$$

see e.g. [6].

• $AAP(\mathbb{R}, X)$ is the space of all X-valued asymptotically almost periodic functions on \mathbb{R} , i.e., the space consisting in all functions f for which there exist $g \in C_0(\mathbb{R}, X)$ and $h \in AP(\mathbb{R}, X)$ such that f = g + h.

Let \mathcal{Y} one of the spaces described before and $f \in \mathcal{Y}$. If $\mathcal{U}_{\mathbb{R}}$ satisfies certain conditions, which will be outlined in Lemma 3 below, then for each $t \geq 0$ the function given by

(1.5)
$$s \mapsto (T(t)f)(s) := U(s, s-t)f(s-t) : \mathbb{R} \to X$$

belongs to \mathcal{Y} , and the family $\mathbf{T} := \{T(t) : t \geq 0\}$ is an one-parameter semigroup of bounded linear operators on \mathcal{Y} . The semigroup \mathbf{T} can be not strongly continuous. However, in certain cases, this semigroup is strongly continuous, and is called *evolution semigroup* associated to $\mathcal{U}_{\mathbb{R}}$ on the space \mathcal{Y} .

Lemma 3. Let $\mathcal{U}_{\mathbb{R}}$ be a strongly continuous evolution family of bounded linear operators on X, and q be a fixed positive real number.

- (i) If Y = C₀(ℝ, X), and U_ℝ is exponentially bounded, then the semigroup associated to U_ℝ, defined in (1.5), is a strongly continuous one-parameter semigroup of bounded linear operators on Y;
- (ii) If Y is either the spaces AP(ℝ, X) or AAP(ℝ, X) and U_ℝ is q-periodic, that is, U(t+q, s+q) = U(t, s) for all (t, s) ∈ Δ_ℝ, then the semigroup given in (1.5), is a strongly continuous semigroup on Y.

Let (B, D(B)) the generator of the evolution semigroup given in (1.5). If u and g belongs to \mathcal{Y} then the following statements are equivalent:

(iii) $u \in D(B)$ and Bu = -g;

(1.6)
$$u(t) = U(t,s)u(s) + \int_{s}^{t} U(t,s)g(s)ds,$$

for all $t \geq s$.

Proof. See [5], [9] for evolution semigroups defined on $C_0(\mathbb{R}, X)$ and [8] for evolution semigroups on $AP(\mathbb{R}, X)$ or $AAP(\mathbb{R}, X)$.

Let \mathcal{Y} be one of the spaces $C_0(\mathbb{R}, X)$, $AP(\mathbb{R}, X)$, $AAP(\mathbb{R}, X)$ and let \mathcal{Y}_0 be the set of all functions $f \in \mathcal{Y}$ such that $\lim_{t \to (-\infty)} f(t) = 0$. It is clearly that \mathcal{Y}_0 is a closed subspace of \mathcal{Y} .

We may now state our second result.

Theorem 2. Let $\mathcal{U}_{\mathbb{R}}$ be a strongly continuous uniformly stable evolution family of bounded linear operators on X and q > 0, fixed. The following statements hold:

- (j) If $\mathcal{Y} = C_0(\mathbb{R}, X)$, then the evolution semigroup given in (1.5) is defined on \mathcal{Y}_0 ;
- (jj) If \mathcal{Y} is one of the both spaces $AP(\mathbb{R}, X)$ or $AAP(\mathbb{R}, X)$ and $\mathcal{U}_{\mathbb{R}}$ is q-periodic then the evolution semigroup given in (1.4) is defined on \mathcal{Y}_0 .

If (C, D(C)) is the generator of the evolution semigroup on \mathcal{Y}_0 , given in (1.5), and v, h belongs to \mathcal{Y}_0 , then the following statements are equivalent:

(jjj) $v \in D(C)$ and Cv = -h; (jv)

(1.7)
$$v(t) = \int_{-\infty}^{t} U(t,s)h(s)ds,$$

for every real number t. Moreover, the following inequality holds:

(1.8)
$$\left\|\int_{-\infty}^{\cdot} U(\cdot,s)h(s)ds\right\|_{\mathcal{Y}}^{2} \leq 4M^{2} \left\|h\right\|_{\mathcal{Y}} \times \left\|\int_{-\infty}^{\cdot} (\cdot-s)U(\cdot,s)h(s)ds\right\|_{\mathcal{Y}}.$$

2. Proofs

Proof of Theorem 1. Let **T** be the evolution semigroup associated to $\mathcal{U}_{\mathbb{R}_+}$ on the space \mathcal{X} and (A, D(A)) its infinitesimal generator. From Lemma 2 it follows that the function $t \mapsto u(t) := \int_0^t U(t,s)g(s)ds$ belongs to D(A) and Au = -g. The function $t \mapsto v(t) := \int_0^t U(t,r)u(r)dr$ belongs to \mathcal{X} . Indeed, using the Fubini Theorem, we have:

$$\begin{aligned} v(t) &= \int_0^t \left[U(t,r) \int_0^r U(r,s)g(s)ds \right] dr \\ &= \int_0^t \left[\int_0^r U(t,s)g(s)ds \right] dr \\ &= \int_0^t \left[\int_0^t \mathbf{1}_{[0,r]}(s)U(t,s)g(s)ds \right] dr \\ &= \int_0^t \left[\int_s^t U(t,s)g(s)dr \right] ds \\ &= \int_0^t (t-s)U(t,s)g(s)ds, \end{aligned}$$

where $1_{[0,r]}$ is the characteristic function of the interval [0,r]. Using again Lemma 2 follows that $v \in D(A^2)$ and $A^2v = A(Av) = -Au = g$.

Now the inequality (1.4) follows by Lemma 1, if we replace x with v in (1.2).

Proof of Theorem 2. Firstly we prove that \mathcal{Y}_0 is an invariant subspace for each operator $T(t), t \ge 0$, given in (1.5). By Lemma 3 it suffices to prove that $\lim_{s \to (-\infty)} (T(t)f)(s) =$ 0 for each $t \ge 0$ and every $f \in \mathcal{Y}_0$, and this fact is an easy consequence of the following estimations:

$$||(T(t)f)(s)|| \le ||U(s,s-t)|| ||f(s-t)|| \le M ||f(s-t)|| \to 0 \text{ as } s \to (-\infty),$$

where M is the positive constant from (1.1). Now, the implication $(jjj) \Rightarrow (jv)$ follows from Lemma 3, passing to the limit for $s \rightarrow (-\infty)$. The converse implication $(jv) \Rightarrow (jjj)$ can be obtained on the following way.

Let v as in (1.7) and t > 0. Simple calculus gives

$$\frac{T(t)v - v}{t} = -\frac{\int_0^t T(r)hdr}{t} \to -h \text{ in } \mathcal{X}$$

when $t \to 0$, that is $v \in D(C)$ and Cv = -h. Now the inequality (1.8), can be established as in the proof of Theorem 1 and we omit the details.

3. Applications

In this section some scalar inequalities are presented.

Corollary 1. Let $g : \mathbb{R}_+ \to \mathbb{R}$ be a continuous function such that $g(0) = g(\infty) := \lim_{t \to \infty} g(t) = 0$. Suppose that the functions:

$$t \mapsto h(t) := \int_0^t g(s) ds \text{ and } t \mapsto u(t) := \int_0^t (t-s)g(s) ds$$

verifies the condition $h(\infty) = u(\infty) = 0$.

Then the following inequality holds:

$$\sup_{t\geq 0} \left| \int_0^t g(s)ds \right|^2 \leq 4 \cdot \sup_{t\geq 0} |g(t)| \times \sup_{t\geq 0} \left| \int_0^t (t-s)g(s)ds \right|$$

Proof. We apply Theorem 1 for $\mathcal{X} = C_{00}(\mathbb{R}_+, \mathbb{R})$ and for U(t, s)x = x, where $t \ge s \ge 0$ and $x \in \mathbb{R}$.

Corollary 2. Let g, h, u as in Corollary 1 and f be a continuous, positive and nondecreasing function on \mathbb{R}_+ . The following inequality holds:

$$\sup_{t \ge 0} \left[\frac{\left| \int_0^t f(s)g(s)ds \right|^2}{f(t)^2} \right] \le 4 \sup_{t \ge 0} |g(t)| \sup_{t \ge 0} \left[\frac{\left| \int_0^t (t-s)f(s)g(s)ds \right|}{f(t)} \right].$$

Proof. Follows by Theorem 1 for $\mathcal{X} = C_{00}(\mathbb{R}_+, \mathbb{R})$ and $U(t, s) = \frac{f(s)}{f(t)}$.

Corollary 3. Let $1 \leq p < \infty$ and $f \in L_p(\mathbb{R}_+, \mathbb{R})$. If the functions

$$t \mapsto g(t) := \int_0^t f(s) ds \text{ and } t \mapsto h(t) := \int_0^t (t-s) f(s) ds$$

belongs to $L^p(\mathbb{R}_+,\mathbb{R})$, then the following inequality, holds:

$$\|g\|_{p}^{2} \leq 4 \|f\|_{p} \times \|h\|_{p}$$

Proof. Follows by Theorem 1 for $\mathcal{X} = L_p(\mathbb{R}_+, \mathbb{R})$ and for U(t, s)x = x where $t \ge s \ge 0$ and $x \in \mathbb{R}$.

Corollary 4. Let $g : \mathbb{R} \to \mathbb{R}$ be an almost periodic or asymptotically almost periodic function such that $g(-\infty) = 0$. Then

$$\sup_{t\in\mathbb{R}} \left| \int_{-\infty}^t \frac{1+\sin^2 s}{1+\sin^2 t} g(s) ds \right|^2 \le 16 \sup_{t\in\mathbb{R}} |g(t)| \times \sup_{t\in\mathbb{R}} \left| \int_{-\infty}^t (t-s) \frac{1+\sin^2 s}{1+\sin^2 t} g(s) ds \right|.$$

Proof. Follows by Theorem 2 for $\mathcal{Y} = AP(\mathbb{R}, \mathbb{R})$ or $\mathcal{Y} = AAP(\mathbb{R}, \mathbb{R})$ and $U(t, s)x = \frac{1+\sin^2 s}{1+\sin^2 t}x$ where $t \geq s$ and $x \in \mathbb{R}$. It is clear that $\mathcal{U} = \{U(t,s); t \geq s\}$ is a π -periodic family consisting in operators acting on \mathbb{R} , and $\sup_{t>s} U(t,s) \leq 2$.

References

- C. Chicone, Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations", Amer. Math. Soc., Math. Surv. and Monographs, 70, 1999.
- [2] S. Clark, Yu Latushkin, S. Montgomery-Smith and T. Randolph, Stability radius and internal versus external stability in Banach spaces: An evolution semigroup approach, SIAM J. Contr. and Optim., 38 (2000), 1757-1793.
- [3] K. Engel and R. Nagel, "One-parameter semigroups for linear evolution equations", Springer-Verlag, New-York, 2000.
- [4] R. R. Kallman and G. C. Rota, On the inequality ||f'|| ≤ 4 ||f|| ||f''||, Inequalities II, O. Shisha, Ed., Academic Press, New-York, 1970, pp. 187-192.
- [5] Yu. Latushkin and S. Montgomery-Smith, Evolutionary semigroups and Lyapunov theorems in Banach spaces, J. Func. Anal., 127(1995), 173-197.
- [6] B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations", Moscow Univ. Publ. House, 1978. English translation by Cambridge Univ. Press, Cambridge U.K., 1982.
- [7] Nguyen Van Minh, Frank R\"abiger and Roland Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, *Integral Equations Operator Theory*, **32**,(1998), 332-353.
- [8] T. Naito, Nguyen Van Minh, Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Differential Equations, 152(1999), 338-376.
- [9] R. Rau, Hyperbolic evolution semigroups on vector valued-functions, Semigroup Forum, 48 (1994), 107-118.

DEPARTMENT OF MATHEMATICS, WEST UNIVERSITY OF TIMISOARA, TIMISOARA, 1900, BD. V. PARVAN. NR. 4, ROMANIA

E-mail address: buse@tim1.uvt.ro *URL*: http://rgmia.vu.edu.au/BuseCVhtml/

School of Communications and Informatics, Victoria University of Technology, P.O. Box 14428, Melbourne City MC, Victoria 8001,, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

$\mathbf{6}$