GENERALIZATIONS AND REFINEMENTS OF HERMITE-HADAMARD'S INEQUALITY

FENG QI, ZONG-LI WEI, AND QIAO YANG

Abstract

In this article, with the help of concept of the harmonic sequence of polynomials, the well known Hermite-Hadamard's inequality for convex functions is generalied to the cases with bounded derivatives of n-th order, including the so-called n-convex functions, from which Hermite-Hadamard's inequality is extended and refined.

1. Introduction

Let $f(x)$ be a convex function on the closed interval $[a, b]$, the well-known Hermite-Hadamard's inequality can be expreseed as [5]:

$$
\begin{equation*}
0 \leq \int_{a}^{b} f(t) d t-(b-a) f\left(\frac{a+b}{2}\right) \leq(b-a) \frac{f(a)+f(b)}{2}-\int_{a}^{b} f(t) d t \tag{1}
\end{equation*}
$$

A function $f(x)$ is said to be r-convex on $[a, b]$ with $r \geq 2$ if and only if $f^{(r)}(x)$ exists and $f^{(r)}(x) \geq 0$.

In terms of a trapezoidal formula and a midpoint formula for a real function $f(x)$ defined and integrable on $[a, b]$, using the first and second Euler-Maclaurin summation formulas, inequality (1) was generalized for $(2 r)$-convex functions on [$a, b]$ with $r \geq 1$ in [2].

In $[3,4]$, the following double integral inequalities were obtained.
Theorem A. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping and suppose that $\gamma \leq f^{\prime \prime}(t) \leq \Gamma$ for all $t \in(a, b)$. Then we have

$$
\begin{align*}
\frac{\gamma(b-a)^{2}}{24} & \leq \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t-f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(b-a)^{2}}{24} \tag{2}\\
\frac{\gamma(b-a)^{2}}{12} & \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \leq \frac{\Gamma(b-a)^{2}}{12} \tag{3}
\end{align*}
$$

In [8], the above inequalities were refined as follows.

[^0]Theorem B. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping and suppose that $\gamma \leq f^{\prime \prime}(t) \leq \Gamma$ for all $t \in(a, b)$. Then we have

$$
\begin{align*}
& \frac{3 S-2 \Gamma}{24}(b-a)^{2} \leq \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t-f\left(\frac{a+b}{2}\right) \leq \frac{3 S-2 \gamma}{24}(b-a)^{2} \tag{4}\\
& \frac{3 S-\Gamma}{24}(b-a)^{2} \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \leq \frac{3 S-\gamma}{24}(b-a)^{2} \tag{5}
\end{align*}
$$

where $S=\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}$.
If $f^{\prime \prime}(t) \leq 0$ (or $f^{\prime \prime}(t) \geq 0$), then we can set $\Gamma=0$ (or $\gamma=0$) in Theorem A and Theorem B, then Hermite-Hadamard's inequality (1) and those similar to the Hemite-Hadamard's inequality (1) can be obtained.

In this article, using concept of the harmonic sequence of polynomials, the well known Hermite-Hadamard's inequality for convex functions is generalied to the cases with bounded derivatives of n-th order, including the so-called n-convex functions, from which Hermite-Hadamard's inequality is extended and refeined.

2. Some simple generalizations

In this section, we will generalize results above to the cases that the n-th derivative of integrand is bounded for $n \in \mathbb{N}$.
Theorem 1. Let $f(t)$ be n-times differentiable on the clsoed interval $[a, b]$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ for $t \in[a, b]$ and $n \in \mathbb{N}$. Further, let $u \in[a, b]$ be a parameter. Then

$$
\begin{align*}
& \quad(b-a) S_{n} \max \left\{\frac{(u-a)^{n}}{n!}, \frac{(b-u)^{n}}{n!}\right\} \\
& \quad+\left[\frac{(u-a)^{n+1}-(u-b)^{n+1}}{(n+1)!}-(b-a) \max \left\{\frac{(u-a)^{n}}{n!}, \frac{(b-u)^{n}}{n!}\right\}\right] \Gamma \\
& \leq \tag{6}\\
& (-1)^{n} \int_{a}^{b} f(t) \mathrm{d} t+\sum_{i=0}^{n-1} \frac{(u-a)^{n-i}-(u-b)^{n-i}}{(n-i)!}(-1)^{i} f^{(n-i-1)}(u) \\
& \leq \\
& (b-a) S_{n} \max \left\{\frac{(u-a)^{n}}{n!}, \frac{(b-u)^{n}}{n!}\right\} \\
& \\
& \quad+\left[\frac{(u-a)^{n+1}-(u-b)^{n+1}}{(n+1)!}-(b-a) \max \left\{\frac{(u-a)^{n}}{n!}, \frac{(b-u)^{n}}{n!}\right\}\right] \gamma
\end{align*}
$$

where $S_{n}=\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}$.
Proof. Define

$$
p_{n}(t)= \begin{cases}\frac{(t-a)^{n}}{n!}, & t \in[a, u] \tag{7}\\ \frac{(t-b)^{n}}{n!}, & t \in(u, b]\end{cases}
$$

By direct computation, we have

$$
\begin{equation*}
\int_{a}^{b} p_{n}(t) \mathrm{d} t=\frac{(u-a)^{n+1}-(u-b)^{n+1}}{(n+1)!} \tag{8}
\end{equation*}
$$

Integrating by parts and using mathematical induction yields

$$
\begin{equation*}
\int_{a}^{b} p_{n}(t) f^{(n)}(t) \mathrm{d} t=\frac{(u-a)^{n}-(u-b)^{n}}{n!} f^{(n-1)}(u)-\int_{a}^{b} p_{n-1}(t) f^{(n-1)}(t) \mathrm{d} t \tag{9}
\end{equation*}
$$

and then

$$
\begin{align*}
& \int_{a}^{b} p_{n}(t) f^{(n)}(t) \mathrm{d} t+(-1)^{n+1} \int_{a}^{b} f(t) \mathrm{d} t \\
&=\sum_{i=0}^{n-1} \frac{(u-a)^{n-i}-(u-b)^{n-i}}{(n-i)!}(-1)^{i} f^{(n-i-1)}(u) \tag{10}
\end{align*}
$$

Utilizing of (8) and (10) yields

$$
\begin{align*}
\int_{a}^{b} p_{n}(t)\left[f^{(n)}(t)-\gamma\right] \mathrm{d} t= & (-1)^{n} \int_{a}^{b} f(t) \mathrm{d} t-\frac{(u-a)^{n+1}-(u-b)^{n+1}}{(n+1)!} \gamma \\
& +\sum_{i=0}^{n-1} \frac{(u-a)^{n-i}-(u-b)^{n-i}}{(n-i)!}(-1)^{i} f^{(n-i-1)}(u) \tag{11}
\end{align*}
$$

Meanwhile,

$$
\begin{align*}
& \int_{a}^{b} p_{n}(t)\left[f^{(n)}(t)-\gamma\right] \mathrm{d} t \\
\leq & \int_{a}^{b}\left|p_{n}(t)\right|\left|f^{(n)}(t)-\gamma\right| \mathrm{d} t \\
\leq & \max _{t \in[a, b]}\left|p_{n}(t)\right| \int_{a}^{b}\left(f^{(n)}(t)-\gamma\right) \mathrm{d} t \tag{12}\\
\leq & \max \left\{\frac{(u-a)^{n}}{n!}, \frac{(b-u)^{n}}{n!}\right\}\left[\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}-\gamma\right](b-a)
\end{align*}
$$

The right inequality in (6) follows from combining of (11) with (12).
The left inequality in (6) follows from similar arguments as above.
Theorem 2. Let $f(t)$ be n-times differentiable on the clsoed interval $[a, b]$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ for $t \in[a, b]$ and $n \in \mathbb{N}$. Then

$$
\begin{align*}
& \frac{1}{2^{n}} \frac{(b-a)^{n+1}}{n!}\left[S_{n}+\left(\frac{1+(-1)^{n}}{2(n+1)}-1\right) \Gamma\right] \\
\leq & (-1)^{n} \int_{a}^{b} f(t) \mathrm{d} t+\sum_{i=0}^{n-1} \frac{(b-a)^{n-i}}{(n-i)!} \frac{(-1)^{n+1}+(-1)^{i}}{2^{n-i}} f^{(n-i-1)}\left(\frac{a+b}{2}\right) \tag{13}\\
\leq & \frac{1}{2^{n}} \frac{(b-a)^{n+1}}{n!}\left[S_{n}+\left(\frac{1+(-1)^{n}}{2(n+1)}-1\right) \gamma\right]
\end{align*}
$$

where $S_{n}=\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}$.
Proof. This follows from taking $u=\frac{a+b}{2}$ in inequality (6).
Remark 1. If taking $n=2$ in (13), the double inequality (4) follows.

Theorem 3. Let $f(t)$ be n-times differentiable on the clsoed interval $[a, b]$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ for $t \in[a, b]$ and $n \in \mathbb{N}$, and $u \in \mathbb{R}$. Then

$$
\begin{align*}
& {\left[(b-a) \max \left\{\frac{|a-u|^{n}}{n!}, \frac{|b-u|^{n}}{n!}\right\}+\frac{(b-u)^{n+1}-(a-u)^{n+1}}{(n+1)!}\right] \gamma } \\
& -(b-a) S_{n} \max \left\{\frac{|a-u|^{n}}{n!}, \frac{|b-u|^{n}}{n!}\right\} \\
\leq & (-1)^{n} \int_{a}^{b} f(t) \mathrm{d} t \\
& +\sum_{i=0}^{n-1}(-1)^{i} \frac{(b-u)^{n-i} f^{(n-i-1)}(b)-(a-u)^{n-i} f^{(n-i-1)}(a)}{(n-i)!} \tag{14}\\
\leq & {\left[(b-a) \max \left\{\frac{|a-u|^{n}}{n!}, \frac{|b-u|^{n}}{n!}\right\}+\frac{(b-u)^{n+1}-(a-u)^{n+1}}{(n+1)!}\right] \Gamma } \\
& -(b-a) S_{n} \max \left\{\frac{|a-u|^{n}}{n!}, \frac{|b-u|^{n}}{n!}\right\},
\end{align*}
$$

where $S_{n}=\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}$.
Proof. Define

$$
\begin{equation*}
q_{n}(t)=\frac{(t-u)^{n}}{n!}, \quad u \in \mathbb{R} \tag{15}
\end{equation*}
$$

By direct computation, we have

$$
\begin{equation*}
\int_{a}^{b} q_{n}(t) \mathrm{d} t=\frac{(b-u)^{n+1}-(a-u)^{n+1}}{(n+1)!} \tag{16}
\end{equation*}
$$

Integrating by parts and using mathematical induction yields

$$
\begin{align*}
& \int_{a}^{b} q_{n}(t) f^{(n)}(t) \mathrm{d} t+\int_{a}^{b} q_{n-1}(t) f^{(n-1)}(t) \mathrm{d} t \tag{17}\\
= & \frac{(b-u)^{n} f^{(n-1)}(b)-(a-u)^{n} f^{(n-1)}(a)}{n!}
\end{align*}
$$

and then

$$
\begin{align*}
& \int_{a}^{b} q_{n}(t) f^{(n)}(t) \mathrm{d} t+(-1)^{n+1} \int_{a}^{b} f(t) \mathrm{d} t \\
= & \sum_{i=0}^{n-1}(-1)^{i} \frac{(b-u)^{n-i} f^{(n-i-1)}(b)-(a-u)^{n-i} f^{(n-i-1)}(a)}{(n-i)!} . \tag{18}
\end{align*}
$$

Making use of of (16) and (18) and direct calculation yields

$$
\begin{align*}
\int_{a}^{b} q_{n}(t)[\gamma- & \left.f^{(n)}(t)\right] \mathrm{d} t=(-1)^{n+1} \int_{a}^{b} f(t) \mathrm{d} t+\frac{(b-u)^{n+1}-(a-u)^{n+1}}{(n+1)!} \gamma \\
& +\sum_{i=0}^{n-1}(-1)^{i+1} \frac{(b-u)^{n-i} f^{(n-i-1)}(b)-(a-u)^{n-i} f^{(n-i-1)}(a)}{(n-i)!} \tag{19}
\end{align*}
$$

It is easy to see that

$$
\begin{align*}
& \int_{a}^{b} q_{n}(t)\left[\gamma-f^{(n)}(t)\right] \mathrm{d} t \\
\leq & \max _{t \in[a, b]}\left|q_{n}(t)\right| \int_{a}^{b}\left(f^{(n)}(t)-\gamma\right) \mathrm{d} t \tag{20}\\
\leq & \max \left\{\frac{|a-u|^{n}}{n!}, \frac{|b-u|^{n}}{n!}\right\}\left[\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}-\gamma\right](b-a) .
\end{align*}
$$

The left inequality in (14) follows from combining of (19) with (20).
The right inequality in (14) follows from similar arguments as above.
Theorem 4. Let $f(t)$ be n-times differentiable on the clsoed interval $[a, b]$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ for $t \in[a, b]$ and $n \in \mathbb{N}$. Then

$$
\begin{align*}
& \frac{1}{2^{n}} \frac{(b-a)^{n+1}}{n!}\left[\left(1+\frac{1+(-1)^{n}}{2(n+1)}\right) \gamma-S_{n}\right] \\
\leq & (-1)^{n} \int_{a}^{b} f(t) \mathrm{d} t \\
& +\sum_{i=0}^{n-1} \frac{(b-a)^{n-i}}{(n-i)!} \frac{(-1)^{n+1} f^{(n-i-1)}(a)+(-1)^{i} f^{(n-i-1)}(b)}{2^{n-i}} \tag{21}\\
\leq & \frac{1}{2^{n}} \frac{(b-a)^{n+1}}{n!}\left[\left(1+\frac{1+(-1)^{n}}{2(n+1)}\right) \Gamma-S_{n}\right],
\end{align*}
$$

where $S_{n}=\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}$.
Proof. This follows from taking $u=\frac{a+b}{2}$ in (14).
Corollary 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on $[a, b]$ and suppose that $\gamma \leq f^{\prime \prime}(t) \leq \Gamma$ for $t \in(a, b)$. Then we have

$$
\begin{equation*}
\frac{2 \gamma-3 S_{2}}{12}(b-a)^{2} \leq \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t-\frac{f(a)+f(b)}{2} \leq \frac{2 \Gamma-3 S_{2}}{12}(b-a)^{2} \tag{22}
\end{equation*}
$$

where $S_{2}=\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}$.
Proof. If setting $n=2$ in (21), then inequality (22) follows.

3. More general generalizations

In this section, we will generalize Hermite-Hadamard's inequality to more general cases with help of the concept of the harmonic sequence of polynomials.
Definition 1. A sequence of polynomials $\left\{P_{i}(t, x)\right\}_{i=0}^{\infty}$ is called harmonic if it satisfies the following Appell condition

$$
\begin{equation*}
P_{i}^{\prime}(t) \triangleq \frac{\partial P_{i}(t, x)}{\partial t}=P_{i-1}(t, x) \triangleq P_{i-1}(t) \tag{23}
\end{equation*}
$$

and $P_{0}(t, x)=1$ for all defined (t, x) and $i \in \mathbb{N}$.

It is well-known that Bernoulli's polynomials $B_{i}(t)$ can be defined by the following expansion

$$
\begin{equation*}
\frac{x e^{t x}}{e^{x}-1}=\sum_{i=0}^{\infty} \frac{B_{i}(t)}{i!} x^{i}, \quad|x|<2 \pi, \quad t \in \mathbb{R} \tag{24}
\end{equation*}
$$

and are uniquely determined by the following formulae

$$
\begin{gather*}
B_{i}^{\prime}(t)=i B_{i-1}(t), \quad B_{0}(t)=1 \tag{25}\\
B_{i}(t+1)-B_{i}(t)=i t^{i-1} \tag{26}
\end{gather*}
$$

Similarly, Euler's polynomials can be defined by

$$
\begin{equation*}
\frac{2 e^{t x}}{e^{x}+1}=\sum_{i=0}^{\infty} \frac{E_{i}(t)}{i!} x^{i}, \quad|x|<\pi, \quad t \in \mathbb{R} \tag{27}
\end{equation*}
$$

and are uniquely determined by the following properties

$$
\begin{gather*}
E_{i}^{\prime}(t)=i E_{i-1}(t), \quad E_{0}(t)=1 \tag{28}\\
E_{i}(t+1)+E_{i}(t)=2 t^{i} \tag{29}
\end{gather*}
$$

For further details about Bernoulli's polynomials and Euler's polynomials, please refer to [1, 23.1.5 and 23.1.6] or [9]. Moreover, some new generalizations of Bernoulli's numbers and polynomials can be found in $[6,7]$.

There are many examples of harmonic sequences of polynomials. For instances, for i being nonegative integer, $t, \tau, \theta \in \mathbb{R}$ and $\tau \neq \theta$,

$$
\begin{align*}
& P_{i, \lambda}(t) \triangleq P_{i, \lambda}(t ; \tau ; \theta)=\frac{[t-(\lambda \theta+(1-\lambda) \tau)]^{i}}{i!} \tag{30}\\
& P_{i, B}(t) \triangleq P_{i, B}(t ; \tau ; \theta)=\frac{(\tau-\theta)^{i}}{i!} B_{i}\left(\frac{t-\theta}{\tau-\theta}\right) \tag{31}\\
& P_{i, E}(t) \triangleq P_{i, E}(t ; \tau ; \theta)=\frac{(\tau-\theta)^{i}}{i!} E_{i}\left(\frac{t-\theta}{\tau-\theta}\right) \tag{32}
\end{align*}
$$

As usual, let $B_{i}=B_{i}(0), i \in \mathbb{N}$, denote Bernoulli's numbers. From properties (25) and (26), (28) and (29) of Bernoulli's and Euler's polynomials respectively, we can obtain easily that, for $i \geq 1$,

$$
\begin{equation*}
B_{i+1}(0)=B_{i+1}(1)=B_{i+1}, \quad B_{1}(0)=-B_{1}(1)=-\frac{1}{2} \tag{33}
\end{equation*}
$$

and, for $j \in \mathbb{N}$,

$$
\begin{equation*}
E_{j}(0)=-E_{j}(1)=-\frac{2}{j+1}\left(2^{j+1}-1\right) B_{j+1} \tag{34}
\end{equation*}
$$

It is also a well known fact that $B_{2 i+1}=0$ for all $i \in \mathbb{N}$.
Theorem 5. Let $\left\{P_{i}(t)\right\}_{i=0}^{\infty}$ be a harmonic sequence of polynomials, let $f(t)$ be n-times differentiable on the clsoed interval $[a, b]$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ for
$t \in[a, b]$ and $n \in \mathbb{N}$. Let α be a real constant. Then

$$
\begin{align*}
& {\left[\alpha+\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|\right] S_{n} } \\
& -\left(\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|+\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}+\alpha\right) \Gamma \\
\leq & (-1)^{n+1}\left[\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t+\sum_{i=1}^{n}(-1)^{i} \frac{P_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)}{b-a}\right] \tag{35}\\
\leq & {\left[\alpha-\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|\right] S_{n} } \\
& +\left(\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|-\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}-\alpha\right) \Gamma
\end{align*}
$$

and

$$
\begin{align*}
& {\left[\alpha-\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|\right] S_{n} } \\
& +\left(\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|-\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}-\alpha\right) \gamma \\
\leq & (-1)^{n+1}\left[\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t+\sum_{i=1}^{n}(-1)^{i} \frac{P_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)}{b-a}\right] \tag{36}\\
\leq & {\left[\alpha+\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|\right] S_{n} } \\
& -\left(\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|+\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}+\alpha\right) \gamma
\end{align*}
$$

where $S=\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}$.
Proof. By successive integration by parts and mathematical induction we obtain

$$
\begin{align*}
& (-1)^{n} \int_{a}^{b} P_{n}(t) f^{(n)}(t) \mathrm{d} t-\int_{a}^{b} f(t) \mathrm{d} t \\
= & \sum_{i=1}^{n}(-1)^{i}\left[P_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)\right] \tag{37}
\end{align*}
$$

Using definition of the harmonic sequence of polynomials yields

$$
\begin{equation*}
\int_{a}^{b} P_{n}(t) \mathrm{d} t=P_{n+1}(b)-P_{n+1}(a) . \tag{38}
\end{equation*}
$$

Using (37) and (38) gives us

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b}\left[P_{n}(t)+\alpha\right]\left[\Gamma-f^{(n)}(t)\right] \mathrm{d} t \\
= & \frac{(-1)^{n+1}}{b-a} \int_{a}^{b} f(t) \mathrm{d} t+\left(\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}+\alpha\right) \Gamma \tag{39}\\
& +\sum_{i=1}^{n}(-1)^{n+i+1} \frac{P_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)}{b-a}-\alpha S_{n} .
\end{align*}
$$

Direct calculating shows

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b}\left[P_{n}(t)+\alpha\right]\left[\Gamma-f^{(n)}(t)\right] \mathrm{d} t\right| \\
\leq & \frac{1}{b-a} \max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right| \int_{a}^{b}\left[\Gamma-f^{(n)}(t)\right] \mathrm{d} t \tag{40}\\
= & \max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|\left[\Gamma-\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}\right] .
\end{align*}
$$

From combining of (39) with (40), it follows that

$$
\begin{align*}
& {\left[\alpha+\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|\right] S_{n} } \\
& -\left(\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|+\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}+\alpha\right) \Gamma \\
\leq & \frac{(-1)^{n+1}}{b-a} \int_{a}^{b} f(t) \mathrm{d} t+\sum_{i=1}^{n}(-1)^{n+i+1} \frac{P_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)}{b-a} \tag{41}\\
\leq & {\left[\alpha-\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|\right] S_{n} } \\
& +\left(\max _{t \in[a, b]}\left|P_{n}(t)+\alpha\right|-\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}-\alpha\right) \Gamma .
\end{align*}
$$

The inequality (35) follows.
Similarly, we can obtain the inequality (36).

Remark 2. If taking $P_{2}(t)=\frac{1}{2}\left(t-\frac{a+b}{2}\right)^{2}, \alpha=-\frac{(b-a)^{2}}{8}$, and $n=2$ in (35) and (36), then the inequality (5) follows easily.

Remark 3. If setting $P_{n}(t)=q_{n}(t)$ and $\alpha=0$ in (35) and (36), then we can deduce Theorem 3 from Theorem 5.

Theorem 6. Let $\left\{E_{i}(t)\right\}_{i=0}^{\infty}$ be the Euler's polynomials and $\left\{B_{i}\right\}_{i=0}^{\infty}$ the Bernoulli's numbers. Let $f(t)$ be n-times differentiable on the clsoed interval $[a, b]$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ for $t \in[a, b]$ and $n \in \mathbb{N}$. Then

$$
\begin{align*}
& \frac{(a-b)^{n}}{n!}\left[\left(\max _{t \in[0,1]}\left|E_{n}(t)\right|+\frac{4\left(2^{n+2}-1\right)}{(n+1)(n+2)} B_{n+2}\right) \Gamma-\max _{t \in[0,1]}\left|E_{n}(t)\right| S_{n}\right] \\
\leq & \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \\
& +2 \sum_{i=1}^{\left[\frac{n+1}{2}\right]} \frac{(b-a)^{2(i-1)}}{(2 i)!}\left[f^{(2(i-1))}(a)+f^{(2(i-1))}(b)\right]\left(1-4^{i}\right) B_{2 i} \tag{42}\\
\leq & \frac{(a-b)^{n}}{n!}\left[\max _{t \in[0,1]}\left|E_{n}(t)\right| S_{n}-\left(\max _{t \in[0,1]}\left|E_{n}(t)\right|-\frac{4\left(2^{n+2}-1\right)}{(n+1)(n+2)} B_{n+2}\right) \Gamma\right]
\end{align*}
$$

and

$$
\begin{align*}
& \frac{(a-b)^{n}}{n!}\left[\max _{t \in[0,1]}\left|E_{n}(t)\right| S_{n}-\left(\max _{t \in[0,1]}\left|E_{n}(t)\right|-\frac{4\left(2^{n+2}-1\right)}{(n+1)(n+2)} B_{n+2}\right) \gamma\right] \\
\leq & \frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \\
& +2 \sum_{i=1}^{\left[\frac{n+1}{2}\right]}\left(1-4^{i}\right) \frac{(b-a)^{2(i-1)}}{(2 i)!}\left[f^{(2(i-1))}(a)+f^{(2(i-1))}(b)\right] B_{2 i} \tag{43}\\
\leq & \frac{(a-b)^{n}}{n!}\left[\left(\max _{t \in[0,1]}\left|E_{n}(t)\right|+\frac{4\left(2^{n+2}-1\right)}{(n+1)(n+2)} B_{n+2}\right) \gamma-\max _{t \in[0,1]}\left|E_{n}(t)\right| S_{n}\right]
\end{align*}
$$

where $S=\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}$ and $[x]$ denotes the Gauss function, whose value is the largest integer not more than x.

Proof. Let

$$
\begin{equation*}
P_{i}(t)=P_{i, E}(t ; b ; a)=\frac{(b-a)^{i}}{i!} E_{i}\left(\frac{t-a}{b-a}\right) . \tag{44}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\max _{t \in[a, b]}\left|P_{n}(t)\right|=\frac{(b-a)^{n}}{n!} \max _{t \in[0,1]}\left|E_{n}(t)\right| \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{n+1}(b)-P_{n+1}(a)}{b-a}=\frac{4\left(2^{n+2}-1\right)}{n+2} \frac{(b-a)^{n}}{(n+1)!} B_{n+2} . \tag{46}
\end{equation*}
$$

Using formulae (34) and straightforward calculating yields

$$
\begin{align*}
& \sum_{i=1}^{n}(-1)^{i} \frac{P_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)}{b-a} \\
= & \sum_{i=1}^{n}(-1)^{i} \frac{(b-a)^{i-1}}{i!}\left[E_{i}(1) f^{(i-1)}(b)-E_{i}(0) f^{(i-1)}(a)\right] \\
= & \sum_{i=1}^{n}(-1)^{i} \frac{(b-a)^{i-1}}{i!} E_{i}(1)\left[f^{(i-1)}(a)+f^{(i-1)}(b)\right] \tag{47}\\
= & 2 \sum_{i=1}^{n}(-1)^{i} \frac{(b-a)^{i-1}}{(i+1)!}\left[f^{(i-1)}(a)+f^{(i-1)}(b)\right]\left(2^{i+1}-1\right) B_{i+1} \\
= & 2 \sum_{i=1}^{\left[\frac{n+1}{2}\right]}\left(1-4^{i}\right) \frac{(b-a)^{2(i-1)}}{(2 i)!}\left[f^{(2(i-1))}(a)+f^{(2(i-1))}(b)\right] B_{2 i} .
\end{align*}
$$

Substituting (44), (45), (46) and (47) into (35) and (36) and taking $\alpha=0$ leads to (42) and (43). The proof is complete.

Theorem 7. Let $\left\{P_{i}(t)\right\}_{i=0}^{\infty}$ and $\left\{Q_{i}(t)\right\}_{i=0}^{\infty}$ be two harmonic sequences of polynomials, α and β two real constants, $u \in[a, b]$. Let $f(t)$ be n-times differentiable on
the clsoed interval $[a, b]$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ for $t \in[a, b]$ and $n \in \mathbb{N}$. Then

$$
\begin{align*}
& {\left[\frac{Q_{n+1}(b)-P_{n+1}(a)}{b-a}+\frac{P_{n+1}(u)-Q_{n+1}(u)}{b-a}\right.} \\
& \left.+\frac{(\alpha-\beta) u+(b \beta-a \alpha)}{b-a}+C(u)\right] \gamma-C(u) S_{n} \\
\leq & \frac{(-1)^{n}}{b-a} \int_{a}^{b} f(t) \mathrm{d} t+\sum_{i=1}^{n}(-1)^{n+i} \frac{Q_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)}{b-a} \\
& +\sum_{i=1}^{n}(-1)^{n+i} \frac{P_{i}(u)-Q_{i}(u)}{b-a} f^{(i-1)}(u) \tag{48}\\
& +\frac{\beta f^{(n-1)}(b)-\alpha f^{(n-1)}(a)}{b-a}+\frac{(\alpha-\beta) f^{(n-1)}(u)}{b-a} \\
\leq & {\left[\frac{Q_{n+1}(b)-P_{n+1}(a)}{b-a}+\frac{P_{n+1}(u)-Q_{n+1}(u)}{b-a}\right.} \\
& \left.+\frac{(\alpha-\beta) u+(b \beta-a \alpha)}{b-a}-C(u)\right] \gamma+C(u) S_{n}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[\frac{Q_{n+1}(b)-P_{n+1}(a)}{b-a}+\frac{P_{n+1}(u)-Q_{n+1}(u)}{b-a}\right.} \\
& \left.+\frac{(\alpha-\beta) u+(b \beta-a \alpha)}{b-a}-C(u)\right] \Gamma+C(u) S_{n} \\
\leq & \frac{(-1)^{n}}{b-a} \int_{a}^{b} f(t) \mathrm{d} t+\sum_{i=1}^{n}(-1)^{n+i} \frac{Q_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)}{b-a} \\
& +\sum_{i=1}^{n}(-1)^{n+i} \frac{P_{i}(u)-Q_{i}(u)}{b-a} f^{(i-1)}(u) \tag{49}\\
& +\frac{\beta f^{(n-1)}(b)-\alpha f^{(n-1)}(a)}{b-a}+\frac{(\alpha-\beta) f^{(n-1)}(u)}{b-a} \\
\leq & {\left[\frac{Q_{n+1}(b)-P_{n+1}(a)}{b-a}+\frac{P_{n+1}(u)-Q_{n+1}(u)}{b-a}\right.} \\
& \left.+\frac{(\alpha-\beta) u+(b \beta-a \alpha)}{b-a}+C(u)\right] \Gamma-C(u) S_{n}
\end{align*}
$$

where $S_{n}=\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}$ and

$$
\begin{equation*}
C(u)=\max \left\{\max _{t \in[a, u]}\left|P_{n}(t)+\alpha\right|, \max _{t \in(u, b]}\left|Q_{n}(t)+\beta\right|\right\} \tag{50}
\end{equation*}
$$

Proof. Define

$$
\psi_{n}(t)= \begin{cases}P_{n}(t)+\alpha, & t \in[a, u] \tag{51}\\ Q_{n}(t)+\beta, & t \in(u, b]\end{cases}
$$

It is easy to see that

$$
\begin{align*}
& \int_{a}^{b} \psi_{n}(t) \mathrm{d} t=\int_{a}^{u} \psi_{n}(t) \mathrm{d} t+\int_{u}^{b} \psi_{n}(t) \mathrm{d} t \\
& \quad=\left[Q_{n+1}(b)-P_{n+1}(a)\right]+\left[P_{n+1}(u)-Q_{n+1}(u)\right]+(\alpha-\beta) u+(b \beta-a \alpha) \tag{52}
\end{align*}
$$

Direct computing produces

$$
\begin{align*}
\int_{a}^{b} \psi_{n}(t) f^{(n)}(t) \mathrm{d} t= & \int_{a}^{u} \psi_{n}(t) f^{(n)}(t) \mathrm{d} t+\int_{u}^{b} \psi_{n}(t) f^{(n)}(t) \mathrm{d} t \\
= & (-1)^{n} \int_{a}^{b} f(t) \mathrm{d} t+(\alpha-\beta) f^{(n-1)}(u) \\
& +\sum_{i=1}^{n}(-1)^{n+i}\left[Q_{i}(b) f^{(i-1)}(b)-P_{i}(a) f^{(i-1)}(a)\right] \tag{53}\\
& +\sum_{i=1}^{n}(-1)^{n+i}\left[P_{i}(u)-Q_{i}(u)\right] f^{(i-1)}(u) \\
& +\left[\beta f^{(n-1)}(b)-\alpha f^{(n-1)}(a)\right]
\end{align*}
$$

and

$$
\begin{align*}
\left|\int_{a}^{b} \psi_{n}(t)\left[f^{(n)}(t)-\gamma\right] \mathrm{d} t\right| & \leq \max _{t \in[a, b]}\left|\psi_{n}(t)\right| \int_{a}^{b}\left(f^{(n)}(t)-\gamma\right) \mathrm{d} t \tag{54}\\
& \leq C(u)\left[f^{(n-1)}(b)-f^{(n-1)}(a)-\gamma(b-a)\right]
\end{align*}
$$

Combining (52), (53), (54) and rearranging leads to (48).
The inequality (49) follows from the same arguments. The proof is complete.
Remark 4. If taking $u=b$ in Theorem 7, then Theorem 5 is derived.
Remark 5. If taking $\alpha=\beta=0, P_{i}(t)=\frac{(t-a)^{i}}{i!}$ and $Q_{i}(t)=\frac{(t-b)^{i}}{i!}$ in Theorem 7, then Theorem 1 follows.
Remark 6. If $f^{(n)}(t) \geq 0$ (or $\left.f^{(n)}(t) \leq 0\right)$ for $t \in[a, b]$, then we can set $\gamma=0$ (or $\Gamma=0$), and so some inequalities for the so-called n-convex (or n-concave) functions are obtained as consequences of theorems in this paper, which generalize or refine the well-known Hermite-Hadamard's inequality.

Acknowledgements. This paper was completed during the first author's visit to the RGMIA between November 1, 2001 and January 31, 2002, as a Visiting Professor with grants from the Victoria University of Technology and Jiaozuo Institute of Technology.

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tebles, National Bureau of Standards, Applied Mathematics Series 55,4 th printing, Washington, 1965. 6
[2] G. Allasia, C. Diodano, and J. Pečarić, Hadamard-type inequalities for ($2 r$)-convex functions with application, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 133 (1999), 187-200. 1
[3] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequality point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, New York, 2000, 135-200. 1
[4] P. Cerone and S. S. Dragomir, Trapezoidal-type rules from an inequality point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, New York, 2000, 65-134. 1
[5] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA Monographs, 2000. Available online at http://rgmia.vu.edu.au/ monographs/hermite_hadamard.html. 1
[6] B.-N. Guo and F. Qi, Generalisation of Bernoulli polynomials, Internat. J. Math. Ed. Sci. Tech. (2002), in the press. RGMIA Res. Rep. Coll. 4 (2001), no. 4, Art. 10, 591-595. Available online at http://rgmia.vu.edu.au/v4n4.html. 6
[7] Q.-M. Luo, B.-N. Guo, and F. Qi, Generalizations of Bernoulli numbers and polynomials, submitted. 6
[8] N. Ujević, Some double integral inequalities, J. Inequal. Pure Appl. Math. (2002), accepted. 1
[9] Zhu-Xi Wang and Dun-Ren Guo Tèshū Hánshù Gàilùn (Introduction to Special Function), The Series of Advanced Physics of Peking University, Peking University Press, Beijing, China, 2000. (Chinese) 6
(Qi) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, China

E-mail address: qifeng@jzit.edu.cn
URL: http://rgmia.vu.edu.au/qi.html
(Wei) Department of Mathematics, Luoyang Normal College, Luoyang City, Henan 471022, China

E-mail address: weizl@lync.edu.cn
(Yang) Department of Information Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou City, Henan 450045, China

[^0]: Date: December 18, 2001.
 2000 Mathematics Subject Classification. 26D10, 41A55.
 Key words and phrases. Harmonic sequence of polynomials, Hermite-Hadamard's inequality, Appell condition, n-convex function, bounded derivative.

 The first author was supported in part by NNSF (\#10001016) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (\#004051800), SF for Pure Research of Natural Science of the Education Department of Henan Province (\#1999110004), Doctor Fund of Jiaozuo Institute of Technology, China.

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-IATEX.

