
SOME NEW IYENGAR TYPE INEQUALITIES

FENG QI, PIETRO CERONE, AND SEVER S. DRAGOMIR

Abstract. Some new Iyengar type inequalities for an integral are obtained

by using the generalised Taylor formula with integral remainder.

1. Introduction

Let f(x) be a differentiable function on a closed interval [a, b] such that |f ′(x)| ≤
M , then∣∣∣∣∣

∫ b

a

f(x)dx− (b− a)[f(a) + f(b)]
2

∣∣∣∣∣ ≤ (b− a)2M
4

− [f(b)− f(a)]2

4M
. (1)

In 1938, K. S. K. Iyengar [15] established inequality (1) by using a geometric
approach. So, we call (1) the Iyengar inequality.

Using the Rolle and Lagarange mean value theorems, the following inequalities
were obtained naturally and simply in [24], producing a refinement of the Iyengar
inequality (1).

Theorem A. Let f(x) be continuous on the closed interval [a, b] and differentiable
in the open interval (a, b), and m ≤ f ′(x) ≤ M for x ∈ (a, b). If f(x) is not a
constant, then we have

mM(b− a)2 + 2(b− a) (Mf(a)−mf(b)) + (f(a)− f(b))2

2 (M −m)
≤

∫ b

a

f(x) dx

≤ −mM(b− a)2 + 2(b− a) (mf(a)−Mf(b)) + (f(a)− f(b))2

2 (M −m)
. (2)

For f ′(x) integrable on [a, b], the inequalities in (2) were obtained independently
by R.P. Agarwal and S.S. Dragomir in [2] using the Hayashi inequality. They
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expressed the result (2) as∣∣∣∣∣
∫ b

a

f(t) dt− (b− a)
f(a) + f(b)

2

∣∣∣∣∣
≤ [f(b)− f(a)−m(b− a)][M(b− a)− f(b) + f(a)]

2(M −m)
. (3)

In [3], the inequalities in (2) and in (3) were derived in a different manner and
rearranged as∣∣∣∣∣

∫ b

a

f(x) dx− b− a

2
[f(a) + f(b)]

∣∣∣∣∣ ≤ (b− a)2

2(M −m)
(S −m)(M − S) (4)

≤ M −m

2

(
b− a

2

)2

, (5)

where S = f(b)−f(a)
b−a .

In the papers [25, 26], using the Taylor formula for functions with a single variable
or several variables, the Iyengar inequality (1) was generalized as follows.

Theorem B. Let f(x) be a differentiable function of Cn ([a, b]) satisfying N ≤
f (n+1)(x) ≤ M for x ∈ (a, b). Denote

Sn(u, v, w) =
n−1∑
k=1

(−1)k

k!
ukf (k−1)(v) + (−1)n w

n!
un (6)

and
∂kSn

∂uk
= S(k)

n (u, v, w), (7)

then, for any t ∈ [a, b], we have when n is an odd,

n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a,N)− S

(i)
n+2(b, b,N)

)
ti ≤

∫ b

a

f(x) x

≤
n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a,M)− S

(i)
n+2(b, b,M)

)
ti; (8)

and when n is even

n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a,N)− S

(i)
n+2(b, b,M)

)
ti ≤

∫ b

a

f(x)x

≤
n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a,M)− S

(i)
n+2(b, b,N)

)
ti. (9)

We may deduce both Theorem A and the following result as specialisations of
Theorem B.
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Theorem C. Let f(x) be differentiable on the closed interval [a, b], and N ≤
f ′′(x) ≤ M for x ∈ (a, b), then

N(b3 − a3)
6

+

{
f(a)− f(b) + bf ′(b)− af ′(a) +

N(a2 − b2)
2

}2

2 [(a− b)N − f ′(a) + f ′(b)]

≤
∫ b

a

f(x)x− bf(b) + af(a) +
b2f ′(b)− a2f ′(a)

2

≤ M(b3 − a3)
6

+

{
f(a)− f(b) + bf ′(b)− af ′(a) +

M(a2 − b2)
2

}2

2 [(a− b)M − f ′(a) + f ′(b)]
.

(10)

In recent years, R.P. Agarwal, P. Cerone, S.S. Dragomir and S. Wang, utilizing
Hayashi inequality or Steffensen inequality, generalized Iyengar’ inequality to those
involving higher derivatives, weighted integral, and so on. See [2]–[6], and [10].

Meanwhile, F. Qi, B.-N. Guo, Y.-J. Zhang and L.-H. Cui, proceeded in an alter-
nate direction. Using the mean value theorems for functions with a single variable
or several variables, generalized Iyengar inequality to involve bounds of higher or-
der derivatives, with norm bounds, for weighted multiple integral, and the like. See
[8, 12, 14] and [24]–[29].

The Iyengar inequality (1) has been researched by many mathematicians, and
there is much literature devoted to it. Please refer to references in this paper.
Before elaborating on the contributions of the current article, it is useful to present
some background notation and definitions.
Definition 1. A sequence of polynomials {Pi(t, x)}∞i=0 is called harmonic if it
satisfies the following Appell condition

P ′
i (t) ,

∂Pi(t, x)
∂t

= Pi−1(t, x) , Pi−1(t) (11)

and P0(t, x) = 1 for all defined (t, x) and i ∈ N.
It is well-known that Bernoulli polynomials Bi(t) can be defined by the following

expansion
xetx

ex − 1
=

∞∑
i=0

Bi(t)
i!

xi, |x| < 2π, t ∈ R, (12)

and are uniquely determined by the following formulae

B′
i(t) = iBi−1(t), B0(t) = 1; (13)

and Bi(t + 1)−Bi(t) = iti−1. (14)

Similarly, Euler polynomials can be defined by

2etx

ex + 1
=

∞∑
i=0

Ei(t)
i!

xi, |x| < π, t ∈ R, (15)

and are uniquely determined by the following properties

E′
i(t) = iEi−1(t), E0(t) = 1; (16)

Ei(t + 1) + Ei(t) = 2ti. (17)
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For further details about Bernoulli polynomials and Euler polynomials, please
refer to [1, 23.1.5 and 23.1.6]. Moreover, some new generalizations of Bernoulli
numbers and polynomials can be found in [13, 17, 27].

There are many examples of harmonic sequences of polynomials. For instance
([3, 7, 18]), for i a nonegative integer, t, τ , θ ∈ R and τ 6= θ,

Pi,λ(t) , Pi,λ(t; τ ; θ) =
[t− (λθ + (1− λ)τ)]i

i!
, (18)

Pi,B(t) , Pi,B(t; τ ; θ) =
(τ − θ)i

i!
Bi

(
t− θ

τ − θ

)
, (19)

Pi,E(t) , Pi,E(t; τ ; θ) =
(τ − θ)i

i!
Ei

(
t− θ

τ − θ

)
. (20)

As usual, let Bi = Bi(0), i ∈ N, denote Bernoulli numbers. From properties
(13) and (14), (16) and (17) of Bernoulli and Euler polynomials respectively, we
can obtain easily that, for i ≥ 1,

Bi+1(0) = Bi+1(1) = Bi+1, B1(0) = −B1(1) = −1
2
, (21)

and, for j ∈ N,

Ej(0) = −Ej(1) = − 2
j + 1

(2j+1 − 1)Bj+1. (22)

It is also a well known fact that B2i+1 = 0 for all i ∈ N.
In [18], the following generalized Taylor formula was established.

Theorem D. Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials. Further, let
I ⊂ R be a closed interval and a ∈ I. If f : I → R is any function such that f (n)(x)
is absolutely continuous for some n ∈ N, then, for any x ∈ I, we have

f(x) = f(a) +
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x)− Pk(a)f (k)(a)

]
+ Rn(f ; a, x), (23)

where

Rn(f ; a, x) = (−1)n

∫ x

a

Pn(t)f (n+1)(t) dt. (24)

If we set in (23) and (24) Pn(t) = (t−x)n

n! , then we obtain directly the classical
Taylor formula with remainder of integral form. Generalised Taylor formulae from
product Appel polynomials was considered in [4] which involves the product of
polynomials satisfying the Appel condition (1).

In this article, using the generalized Taylor formula (23), we will derive some new
Iyengar type inequalities for an integral of functions with single variable, which
generalize some related known results obtained in [8, 12, 14, 15, 24, 25, 28], for
example.

2. Some integral identities

In this section, we establish two identities involving integrals which form the
basis for the procurement of our main results.
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Theorem 1. Let {Pi(x)}∞i=0 and {Qi(x)}∞i=0 be harmonic sequences of polynomials.
If f : [a, b] → R is a function such that f (n)(x) is absolutely continuous for some
n ∈ N, then we have the following generalized Taylor identity

(n + 1)
∫ b

a

f(x) dx = b
n∑

k=0

q(k, k; b)− a
n∑

k=0

p(k, k; a)

+
n∑

k=1

k∑
i=1

[
p(i, i− 1, a)− q(i, i− 1; b)

]
+ t

n∑
k=0

[
p(k, k; a)− q(k, k; b)

]
+

n∑
k=1

k∑
i=1

[
q(i, i− 1, t)− p(i, i− 1; t)

]
+

∫ t

a

(t− s)p(n, n + 1; s) ds +
∫ b

t

(t− s)q(n, n + 1; s) ds, (25)

where t ∈ [a, b] and

p(`,m;x) = (−1)`P`(x)f (m)(x), (26)

q(`,m;x) = (−1)`Q`(x)f (m)(x) (27)

for any nonnegative integers 0 ≤ ` ≤ n and 0 ≤ m ≤ n + 1 and x ∈ [a, b].

Proof. Let t be a parameter such that a ≤ t ≤ b, then∫ b

a

f(x) dx =
∫ t

a

f(x) dx +
∫ b

t

f(x) dx. (28)

From the generalized Taylor formula (23), for x ∈ [a, b], it follows that

f(x) = f(a) +
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x)− Pk(a)f (k)(a)

]
+ Rn,P (f ; a, x), (29)

f(x) = f(b) +
n∑

k=1

(−1)k+1
[
Qk(x)f (k)(x)−Qk(b)f (k)(b)

]
+ Rn,Q(f ; b, x). (30)

By integration by parts we have∫ t

a

Pk(x)f (k)(x) dx

=
[
Pk(t)f (k−1)(t)− Pk(a)f (k−1)(a)

]
−

∫ t

a

Pk−1(x)f (k−1)(x) dx.

Clearly, we can apply the same procedure to the term
∫ t

a
Pk−1(x)f (k−1)(x) dx. So,

by successive integration by parts we obtain

(−1)k

∫ t

a

Pk(x)f (k)(x) dx

=
k∑

i=1

(−1)i
[
Pi(t)f (i−1)(t)− Pi(a)f (i−1)(a)

]
+

∫ t

a

f(x) dx. (31)
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Similarly, we have

(−1)k

∫ b

t

Qk(x)f (k)(x) dx

=
k∑

i=1

(−1)i
[
Qi(b)f (i−1)(b)−Qi(t)f (i−1)(t)

]
+

∫ b

t

f(x) dx. (32)

Integrating both sides of formula (29) over the interval [a, t] and utilizing identity
(31) yields

(n + 1)
∫ t

a

f(x) dx = (t− a)
n∑

k=0

(−1)kPk(a)f (k)(a)

+
n∑

k=1

k∑
i=1

(−1)i+1
[
Pi(t)f (i−1)(t)− Pi(a)f (i−1)(a)

]
+ (−1)n

∫ t

a

∫ x

a

Pn(s)f (n+1)(s) dsdx.

(33)

Similarly, integrating both sides of the result (30) over the interval [t, b] and using
the identity (32) gives

(n + 1)
∫ b

t

f(x) dx = (b− t)
n∑

k=0

(−1)kQk(b)f (k)(b)

+
n∑

k=1

k∑
i=1

(−1)i+1
[
Qi(b)f (i−1)(b)−Qi(t)f (i−1)(t)

]
+ (−1)n

∫ b

t

∫ x

b

Qn(s)f (n+1)(s) dsdx.

(34)

Now, combining (33) and (34) and utilising (28) produces

(n + 1)
∫ b

a

f(x) dx = b

n∑
k=0

(−1)kQk(b)f (k)(b)− a

n∑
k=0

(−1)kPk(a)f (k)(a)

+
n∑

k=1

k∑
i=1

(−1)i+1
[
Qi(b)f (i−1)(b)− Pi(a)f (i−1)(a)

]
+ t

n∑
k=0

(−1)k+1
[
Qk(b)f (k)(b)− Pk(a)f (k)(a)

]
+

n∑
k=1

k∑
i=1

(−1)i
[
Qi(t)− Pi(t)

]
f (i−1)(t)

+ (−1)n

[∫ t

a

∫ x

a

Pn(s)f (n+1)(s) dsdx +
∫ b

t

∫ x

b

Qn(s)f (n+1)(s) dsdx

]
. (35)
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Further, interchanging the order of integration for the last two terms in (35) leads
to ∫ t

a

∫ x

a

Pn(s)f (n+1)(s) dsdx =
∫ t

a

(t− s)Pn(s)f (n+1)(s) ds, (36)∫ b

t

∫ x

b

Qn(s)f (n+1)(s) dsdx =
∫ b

t

(t− s)Qn(s)f (n+1)(s) ds. (37)

Substituting (36) and (37) into (35), rearranging and introducing the notation in
(26) and (27) produces the identity (25). The proof is complete.

Remark 1. If we set

Pi(s) = Qi(s) =
(s− x)i

i!
(38)

for i a nonnegative natural number in (29) and (30) from the very start, then
following the same procedure as in the proof of Theorem 1, we would obtain∫ t

a

f(x) dx =
n∑

i=0

f (i)(a)
(i + 1)!

(t− a)i+1 +
1

(n + 1)!

∫ t

a

(t− s)n+1f (n+1)(s) ds, (39)

∫ b

t

f(x) dx = −
n∑

i=0

f (i)(b)
(i + 1)!

(t− b)i+1 +
1

(n + 1)!

∫ b

t

(t− s)n+1f (n+1)(s) ds, (40)

the combination of which, produces∫ b

a

f(x) dx =
n∑

i=0

f (i)(a)
(i + 1)!

(t− a)i+1 −
n∑

i=0

f (i)(b)
(i + 1)!

(t− b)i+1

+
1

(n + 1)!

∫ b

a

(t− s)n+1f (n+1)(s) ds. (41)

The following result is a particularisation of Theorem 1, but because of its in-
trinsic importance is denoted as a theorem in its own right, rather than a corollary.

Theorem 2. Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials. If f : [a, b] →
R is a function such that f (n)(x) is absolutely continuous for some n ∈ N, then we
have the following identity

(n + 1)
∫ b

a

f(x) dx = b
n∑

k=0

p(k, k; b)− a
n∑

k=0

p(k, k; a)

−
n∑

k=1

k∑
i=1

[
p(i, i− 1; b)− p(i, i− 1; a)

]
− t

n∑
k=0

[
p(k, k; b)− p(k, k; a)

]
+

∫ b

a

(t− s)p(n, n + 1; s) ds, (42)

where t ∈ [a, b] and p(`,m;x) = (−1)`P`(x)f (m)(x), x ∈ [a, b], for any nonnegative
integers 0 ≤ ` ≤ n and 0 ≤ m ≤ n + 1.

Proof. This follows from taking Pi(s) = Qi(s) for 0 ≤ i ≤ ∞ and s ∈ [a, b] in
Theorem 1.
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Remark 2. If we set

Pi(s) =
[s− (λb + (1− λ)a)]i

i!
and Qi(s) =

[s− (µb + (1− µ)a)]i

i!
(43)

in identity (25), then

(n + 1)
∫ b

a

f(x) dx =
n∑

k=0

(b− a)k

k!
[
b(µ− 1)kf (k)(b)− aλkf (k)(a)

]
−

n∑
k=1

k∑
i=1

(b− a)i

i!
[
(µ− 1)if (i−1)(b)− λif (i−1)(a)

]
− t

n∑
k=0

(b− a)k

k!
[
(µ− 1)kf (k)(b)− λkf (k)(a)

]
+

n∑
k=1

k∑
i=1

(−1)i

i!
{
[t− (µb + (1− µ)a)]i − [t− (λb + (1− λ)a)]i

}
f (i−1)(t)

+
(−1)n

n!

(∫ t

a

(t− s)[s− (λb + (1− λ)a)]nf (n+1)(s) ds

+
∫ b

t

(t− s)[s− (µb + (1− µ)a)]nf (n+1)(s) ds dx

)
. (44)

If we set

Pi(s) = Qi(s) =
[s− (λb + (1− λ)a)]i

i!
(45)

in formula (42), then

(n + 1)
∫ b

a

f(x) dx =
n∑

k=0

(b− a)k

k!
[
b(λ− 1)kf (k)(b)− aλkf (k)(a)

]
−

n∑
k=1

k∑
i=1

(b− a)i

i!
[
(λ− 1)if (i−1)(b)− λif (i−1)(a)

]
− t

n∑
k=0

(b− a)k

k!
[
(λ− 1)kf (k)(b)− λkf (k)(a)

]
+

(−1)n

n!

∫ b

a

(t− s)[s− (λb + (1− λ)a)]nf (n+1)(s) ds. (46)

Taking λ = 0 or λ = 1 in (46) yields expansions about b and a respectively.
Namely,

(n + 1)
∫ b

a

f(x) dx = b
n∑

k=0

(a− b)k

k!
f (k)(b)−

n∑
k=1

k∑
i=1

(a− b)i

i!
f (i−1)(b)

− t
n∑

k=0

(a− b)k

k!
f (k)(b) +

1
n!

∫ b

a

(t− s)(a− s)nf (n+1)(s) ds. (47)
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or

(n + 1)
∫ b

a

f(x) dx =
n∑

k=1

k∑
i=1

(b− a)i

i!
f (i−1)(a)− a

n∑
k=0

(b− a)k

k!
f (k)(a)

+ t
n∑

k=0

(b− a)k

k!
f (k)(a) +

1
n!

∫ b

a

(t− s)(b− s)nf (n+1)(s) ds. (48)

Remark 3. If the assumption is made that,

Pi(s) = Pi,B(s; b; a) =
(b− a)i

i!
Bi

(
s− a

b− a

)
(49)

for nonnegative integer i, then from Theorem 2, straightforward calculations and
utilising the properties (21), (22) together with the fact that B2i+1 = 0 for i ∈ N,
produces

(n + 1)
∫ b

a

f(x) dx =
[
bf(b)− af(a)

]
− 1

2
(b− a)

[
af ′(a) + bf ′(b)

]
+

[n
2 ]∑

k=1

(b− a)2k

(2k)!
B2k

[
bf (2k)(b)− af (2k)(a)

]

+
n

2
(b− a)

[
f(a) + f(b)

]
−

n∑
k=2

[ k
2 ]∑

i=1

(b− a)2i

(2i)!
B2i

[
f (2i−1)(b)− f (2i−1)(a)

]

− t

{[
f(b)−f(a)

]
− 1

2
(b−a)

[
f ′(a)+f ′(b)

]
+

[n
2 ]∑

k=1

(b− a)2k

(2k)!
B2k

[
f (2k)(b)−f (2k)(a)

]}

+
(a− b)n

n!

∫ b

a

(t− s)Bn

(
s− a

b− a

)
f (n+1)(s) ds, (50)

where [x] denotes the Gauss function, whose value is the largest integer not exceed-
ing x.
Remark 4. Suppose that in Theorem 2

Pi(s) = Pi,E(s; a; b) =
(a− b)i

i!
Ei

(
s− b

a− b

)
(51)

for nonnegative integer i, then, by direct calculation and utilising (21), (22) and
B2i+1 = 0 for i ∈ N, we obtain

(n + 1)
∫ b

a

f(x) dx = af(a) + bf(b)

+
[n+1

2 ]∑
k=1

2(1− 4k)(b− a)2k−1

(2k)!
B2k

[
af (2k−1)(a) + bf (2k−1)(b)

]

+
n∑

k=1

[ k+1
2 ]∑

i=1

2(4i − 1)(b− a)2i−1

(2i)!
B2i

[
f (2(i−1))(a) + f (2(i−1))(b)

]
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− t

{
af(a) + bf(b) +

[n+1
2 ]∑

k=1

2(4k − 1)(b− a)2k−1

(2k)!
B2k

[
f (2k−1)(a) + f (2k−1)(b)

]}

+
(b− a)n

n!

∫ b

a

(t− s)En

(
s− b

a− b

)
f (n+1)(s) ds, (52)

where [x] also denotes the Gauss function as in Remark 3.

3. Some new Iyengar type inequalities

In the work that follows, we adopt the notation:

Γ
P

= sup
x∈[a,b]

p(n, n + 1;x) = sup
x∈[a,b]

{
(−1)nPn(x)f (n+1)(x)

}
,

γ
P

= inf
x∈[a,b]

p(n, n + 1;x) = inf
x∈[a,b]

{
(−1)nPn(x)f (n+1)(x)

}
,

Γ
Q

= sup
x∈[a,b]

q(n, n + 1;x) = sup
x∈[a,b]

{
(−1)nQn(x)f (n+1)(x)

}
,

γ
Q

= inf
x∈[a,b]

q(n, n + 1;x) = inf
x∈[a,b]

{
(−1)nQn(x)f (n+1)(x)

}
,

Γ = sup
x∈[a,b]

f (n+1)(x), γ = inf
x∈[a,b]

f (n+1)(x),

(53)

where the definitions (26) and (27) have been used.
Suppose f(x) is a n-times differentiable function on the closed interval [a, b] and

f (n+1)(x) exists on (a, b). Let

M = Γ = sup
s∈(a,b)

f (n+1)(s), N = γ = inf
s∈(a,b)

f (n+1)(s), (54)

then, from (41), we can deduce Theorem B and Theorem C, the results obtained
in [25] and [26].

Bounds may also be obtained in terms of the traditional Lebesgue norms for
f (n+1) ∈ Lp([a, b]), 1 ≤ p < ∞. Specifically, if f (n)(x) is absolutely continuous on
the closed interval [a, b], then, for any t ∈ [a, b], it follows from (41), that∣∣∣∣∣

∫ b

a

f(x) dx−
n∑

i=0

f (i)(a)
(i + 1)!

(t− a)i+1 +
n∑

i=0

f (i)(b)
(i + 1)!

(t− b)i+1

∣∣∣∣∣
≤ (t− a)n+2 + (b− t)n+2

(n + 2)!

∫ b

a

∣∣∣f (n+1)(s)
∣∣∣ ds. (55)

Also, as a simple consequence of Hölder inequality, if f (n+1) ∈ Lp([a, b]) for a
positive number p > 1, then, for any t ∈ [a, b], we have∣∣∣∣∣

∫ b

a

f(x) dx−
n∑

i=0

f (i)(a)
(i + 1)!

(t− a)i+1 +
n∑

i=0

f (i)(b)
(i + 1)!

(t− b)i+1

∣∣∣∣∣
≤ (t− a)n+1+ 1

q + (b− t)n+1+ 1
q

(n + 1)! q
√

nq + q + 1

(∫ b

a

∣∣∣f (n+1)(s)
∣∣∣p ds

) 1
p

, (56)

where q satisfies 1
p + 1

q = 1.
Note that inequality (56) has been proved in [12].
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Let {Pi(x)}∞i=0 and {Qi(x)}∞i=0 be two harmonic sequences of polynomials. If
f : [a, b] → R is a function such that f (n)(x) is absolutely continuous for some
n ∈ N, then, from identity (25), it is easy to obtain the expression

1
2
[
(a− t)2γ

Q
− (b− t)2Γ

P

]
≤ (n + 1)

∫ b

a

f(x) dx + a
n∑

k=0

p(k, k; a)− b
n∑

k=0

q(k, k; b)

−
n∑

k=1

k∑
i=1

[
p(i, i− 1, a)− q(i, i− 1; b)

]
− t

n∑
k=0

[
p(k, k; a)− q(k, k; b)

]
−

n∑
k=1

k∑
i=1

[
q(i, i− 1, t)− p(i, i− 1; t)

]
≤ 1

2
[
(a− t)2Γ

P
− (b− t)2γ

Q

]
. (57)

Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials. If f : [a, b] → R is a
function such that f (n)(x) is absolutely continuous for some n ∈ N, then we have
the following inequalities

1
2
[
a2γ

P
− b2Γ

P

]
−

{
bΓ

P
− aγ

P
−

∑n
k=0

[
p(k, k; b)− p(k, k; a)

]}2

2
(
γ

P
− Γ

P

)
≤ (n + 1)

∫ b

a

f(x) dx− b
n∑

k=0

p(k, k; b) + a
n∑

k=0

p(k, k; a)

+
n∑

k=1

k∑
i=1

[
p(i, i− 1; b)− p(i, i− 1; a)

]
≤ 1

2
[
a2Γ

P
− b2γ

P

]
−

{
bγ

P
− aΓ

P
−

∑n
k=0

[
p(k, k; b)− p(k, k; a)

]}2

2
(
Γ

P
− γ

P

) . (58)

In fact, (58) follows from the identity (42) and maximizing or minimizing a
quadratic polynomial in t.

Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials. If f : [a, b] → R is a
function such that f (n)(x) is absolutely continuous for some n ∈ N, and defining

U := max
s∈[a,b]

|Pn(s)| , V := max
s∈[a,b]

∣∣∣f (n+1)(s)
∣∣∣ , and W := max

s∈[a,b]

∣∣∣Pn(s)f (n+1)(s)
∣∣∣ ,
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then, from (42), maximizing or minimizing a quadratic polynomial in t yields{
(a + b)UV −

∑n
k=0

[
p(k, k; b)− p(k, k; a)

]}2

4UV
− a2 + b2

2
UV

≤
{
(a + b)W −

∑n
k=0

[
p(k, k; b)− p(k, k; a)

]}2

4W
− a2 + b2

2
W

≤ (n + 1)
∫ b

a

f(x) dx− b
n∑

k=0

p(k, k; b) + a
n∑

k=0

p(k, k; a)

+
n∑

k=1

k∑
i=1

[
p(i, i− 1; b)− p(i, i− 1; a)

]
≤ a2 + b2

2
W −

{
(a + b)W +

∑n
k=0

[
p(k, k; b)− p(k, k; a)

]}2

4W

≤ a2 + b2

2
UV −

{
(a + b)UV +

∑n
k=0

[
p(k, k; b)− p(k, k; a)

]}2

4UV
. (59)

Remark 5. Now it is clear that, if estimating the following general integral remain-
ders ∫ t

a

(t− s)p(n, n + 1; s) ds +
∫ b

t

(t− s)q(n, n + 1; s) ds, (60)

and
∫ b

a

(t− s)p(n, n + 1; s) ds (61)

that appear in (25) and (42), then using better and more appropriate techniques
than previously gives rise to more accurate Iyengar type inequalities.
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[30] P. M. Vasić and G. V. Milonanović, On an inequality of Iyengar, Univ. Beograd. Publ.

Elektrotehn. Fak. Ser. Mat. Fiz. No. 544–576 (1976), 18–24.

http://rgmia.vu.edu.au/v3n3.html
http://rgmia.vu.edu.au/v3n3.html
http://rgmia.vu.edu.au/v4n4.html
http://rgmia.vu.edu.au/v2n7.html
http://rgmia.vu.edu.au/v2n7.html
http://rgmia.vu.edu.au/v2n7.html


14 FENG QI, P. CERONE, AND S.S. DRAGOMIR

(Qi) Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City,

Henan 454000, China

E-mail address: qifeng@jzit.edu.cn, qifeng618@hotmail.com

URL: http://rgmia.vu.edu.au/qi.html

(Cerone) School of Communications and Informatics, Victoria University of Tech-
nology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail address: pc@matilda.vu.edu.au

URL: http://rgmia.vu.edu.au/cerone

(Dragomir) School of Communications and Informatics, Victoria University of Tech-
nology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html


	1. Introduction
	2. Some integral identities
	3. Some new Iyengar type inequalities
	Acknowledgements

	References

