ON AN INEQUALITY OF DIANANDA

PENG GAO

Abstract

We consider certain refinements of the arithmetic and geometric means, the results generalize an inequality of P. Diananda.

1. Introduction

Let $P_{n, r}(\mathbf{x})$ be the generalized weighted means: $P_{n, r}(\mathbf{x})=\left(\sum_{i=1}^{n} q_{i} x_{i}^{r}\right)^{\frac{1}{r}}$, where $P_{n, 0}(\mathbf{x})$ denotes the limit of $P_{n, r}(\mathbf{x})$ as $r \rightarrow 0^{+}$, with $q_{i}>0,1 \leq i \leq n$ are positive real numbers with $\sum_{i=1}^{n} q_{i}=1$ and $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. In this paper, we let $q=\min q_{i}$ and always assume $n \geq 2,0 \leq x_{1}<x_{2}<$ $\cdots<x_{n}$.

We let $A_{n}(\mathbf{x})=P_{n, 1}(\mathbf{x}), G_{n}(\mathbf{x})=P_{n, 0}(\mathbf{x}), H_{n}(\mathbf{x})=P_{n,-1}(\mathbf{x})$ and we shall write $P_{n, r}$ for $P_{n, r}(\mathbf{x})$, A_{n} for $A_{n}(\mathbf{x})$ and similarly for other means when there is no risk of confusion.

For mutually distinct numbers r, s, t and any real number α, β, we define

$$
\Delta_{r, s, t, \alpha, \beta}=\left|\frac{P_{n, r}^{\alpha}-P_{n, t}^{\alpha}}{P_{n, r}^{\beta}-P_{n, s}^{\beta}}\right|
$$

where we interpreter $P_{n, r}^{0}-P_{n, s}^{0}$ as $\ln P_{n, r}-\ln P_{n, s}$. When $\alpha=\beta$, we define $\Delta_{r, s, t, \alpha}$ to be $\Delta_{r, s, t, \alpha, \alpha}$. For example $\Delta_{r, s, t, 0}=\left|\left(\ln \frac{P_{n, r}}{P_{n, t}}\right) /\left(\ln \frac{P_{n, r}}{P_{n, s}}\right)\right|$.

Bounds for $\Delta_{r, s, t, \alpha, \beta}$ have been studied by many mathematicians. For the case $\alpha \neq \beta$, we refer the reader to the articles $[2,5,7]$ for the detailed discussions. When $\alpha=\beta$, we can bound $\Delta_{r, s, t, \alpha}$ in terms of r, s, t only, due to the following result of H.Hsu[6](see also [1]):
Theorem 1.1. For $r>s>t>0$

$$
\begin{equation*}
1<\Delta_{r, s, t, 1}<\frac{s(r-t)}{t(r-s)} \tag{1.1}
\end{equation*}
$$

It is also interesting to consider the following bounds:

$$
\begin{equation*}
f_{r, s, t, \alpha}(q) \geq \Delta_{r, s, t, \alpha} \geq g_{r, s, t, \alpha}(q) \tag{1.2}
\end{equation*}
$$

where $f_{r, s, t, \alpha}(q)$ is a decreasing function of q and $q_{r, s, t, \alpha}(q)$ is an increasing function of q.
The case $r=1, s=0, t=-1, \alpha=0$ in (1.2) with $f_{1,0,-1,0}(q)=1 / q, g_{1,0,-1,0}(q)=1 /(1-q)$ is the famous Sierpiński's inequality[9].

Another case, $r=1, s=\frac{1}{2}, t=0, \alpha=1$ with $f_{1,1 / 2,0,1}(q)=1 / q, g_{1,1 / 2,0,1}(q)=1 /(1-q)$ was proved by P. Diananda([3], [4])(see also [1],[8]), originally stated as:

$$
\frac{1}{q} \Sigma_{n} \geq A_{n}-G_{n} \geq \frac{1}{1-q} \Sigma_{n}
$$

where $\Sigma_{n}=\sum_{1 \leq i<j \leq n} q_{i} q_{j}\left(x_{i}^{\frac{1}{2}}-x_{j}^{\frac{1}{2}}\right)^{2}$.
The main purpose of this paper is to generalize Diananda's result, which is given by theorem 3.1 in section 3.

[^0]
2. LEMMAS

Lemma 2.1. For $0 \leq q \leq 1 / 2$

$$
\begin{array}{cl}
\frac{r-1}{r}-\left(1-q^{r-1}\right) \leq 0 & (r \geq 2) \\
\left|\frac{r-1}{r}\right| \geq\left|1-(1-q)^{r-1}\right| & (0<r \leq 2) \tag{2.2}
\end{array}
$$

with equality holding if and only if $r=2, q=1 / 2$.
Proof. We will prove (2.1) here and the proof for (2.2) is similar. It suffices to prove (2.1) for $q=1 / 2$, which is equivalent to $2^{r} \geq 2 r$. Notice the two curves $y=2^{r}, y=2 r$ only intersect at $r=1, r=2$ in which cases they are equal and the conclusion then follows.

Lemma 2.2. For $0<q \leq 1$, the function

$$
\begin{equation*}
f(q)=\left|\frac{q}{1-(1-q)^{r-1}}\right| \tag{2.3}
\end{equation*}
$$

is decreasing for $0<r \neq 1<2$ and increasing for $r>2$.
Proof. We prove the case $1<r \neq 2$ here and the case $0<r<1$ is similar. We have

$$
f^{\prime}(q)=\frac{1-(1-q)^{r-1}-q(r-1)(1-q)^{r-2}}{\left(1-(1-q)^{r-1}\right)^{2}}
$$

and by the mean value theorem $1-(1-q)^{r-1}=q(r-1) \eta^{r-2}$, where $1-q<\eta<1$, which implies $f^{\prime}(q) \leq 0$ for $1<r<2$ and $f^{\prime}(q) \geq 0$ for $r>2$.

Lemma 2.3. For $0<r \neq 1<2,0<q \leq 1 / 2$,

$$
\begin{equation*}
\left|\frac{1 / 2}{1-1 / r}\right|<\left|\frac{q}{1-(1-q)^{r-1}}\right| \tag{2.4}
\end{equation*}
$$

If $r>2,(2.4)$ is valid with ' $>$ ' instead of ' $<$ '.
Proof. We prove the case $1<r<2$ here and the other cases are similar. By lemma 2.1 it suffices to show (2.4) for $q=1 / 2$. In this case, (2.4) is equivalent to (2.2).

3. The Main Theorems

Theorem 3.1. For any $t \neq 0$,

$$
\begin{gather*}
\Delta_{t, \frac{t}{r}, 0, t} \geq \frac{1}{1-q^{r-1}} \quad(r \geq 2) \tag{3.1}\\
\Delta_{t, \frac{t}{r}, 0, t} \leq\left|\frac{1}{1-(1-q)^{r-1}}\right| \tag{3.2}
\end{gather*}
$$

with equality holding if and only if $n=2, x_{1}=0, q_{2}=q$ for (3.1), $n=2, x_{1}=0, q_{1}=q$ for (3.2), except in the trivial case $r=n=2, q_{1}=q_{2}=1 / 2$.

Proof. Since the proofs of (3.1)-(3.2) are very similar, we only prove (3.1) here and we just point out (2.2) is needed for the proof of (3.2). The case $r=2$ was treated in [3] so we will assume $r>2$ from now on. Consider the case $t=1$ first and we define

$$
D_{n}(\mathbf{x})=\left(1-q^{r-1}\right)\left(A_{n}-G_{n}\right)-\left(A_{n}-P_{n, 1 / r}\right)
$$

and we then have

$$
\begin{equation*}
\frac{1}{q_{n}} \frac{\partial D_{n}}{\partial x_{n}}=\left(1-q^{r-1}\right)\left(1-\frac{G_{n}}{x_{n}}\right)-\left(1-\left(\frac{P_{n, 1 / r}}{x_{n}}\right)^{1-1 / r}\right) \tag{3.3}
\end{equation*}
$$

By a change of variables: $\frac{x_{i}}{x_{n}} \rightarrow x_{i}, 1 \leq i \leq n$, we may assume $0<x_{1}<x_{2}<\cdots<x_{n}=1$ in (3.3) and rewrite it as

$$
\begin{equation*}
g_{n}\left(x_{1}, \cdots, x_{n-1}\right):=\left(1-q^{r-1}\right)\left(1-G_{n}\right)-\left(1-\left(P_{n, 1 / r}\right)^{1-1 / r}\right) \tag{3.4}
\end{equation*}
$$

We want to show $g_{n} \geq 0$. Let $\mathbf{a}=\left(a_{1}, \cdots, a_{n-1}\right) \in[0,1]^{n-1}$ be the absolute minimum of g_{n}. If a is a boundary point of $[0,1]^{n-1}$, then $a_{1}=0,(3.4)$ is reduced to

$$
g_{n}=1-q^{r-1}-\left(1-\left(P_{n, 1 / r}\right)^{1-1 / r}\right)
$$

It follows that $g_{n} \geq 0$ is equivalent to $P_{n, 1 / r} \geq q^{r}$ while the last inequality is easily verified with equality holding if and only if $n=2, a_{1}=0, q_{2}=q$. Thus (3.1) holds for this case.

Now we may assume $a_{1}>0$ and \mathbf{a} is an interior point of $[0,1]^{n-1}$, then we obtain

$$
\nabla g_{n}\left(a_{1}, \cdots, a_{n-1}\right)=0
$$

such that a_{1}, \cdots, a_{n-1} solve the equation

$$
-\left(1-q^{r-1}\right) \frac{G_{n}}{x}+(1-1 / r)\left(P_{n, 1 / r}\right)^{-1 / r}\left(\frac{P_{n, 1 / r}}{x}\right)^{1-1 / r}=0
$$

The above equation has at most one root, so we only need to show $g_{n} \geq 0$ for the case $n=2$. Now by letting $0<x_{1}=x<x_{2}=1$ in (3.4), we get

$$
\frac{1}{q_{1}} g_{2}^{\prime}(x)=h(x) x^{1 / r-1}
$$

where

$$
h(x)=\frac{r-1}{r}\left(q_{1} x^{1 / r}+q_{2}\right)^{r-2}-\left(1-q^{r-1}\right) x^{q_{1}-1 / r}
$$

If $1 / r \geq q_{1}$, then

$$
h^{\prime}(x)=\frac{(r-1)(r-2)}{r^{2}} q_{1} x^{1 / r-1}\left(q_{1} x^{1 / r}+q_{2}\right)^{r-3}-\left(1-q^{r-1}\right)\left(q_{1}-\frac{1}{r}\right) x^{q_{1}-1 / r-1} \geq 0
$$

which implies

$$
h(x) \leq h(1)=\frac{r-1}{r}-\left(1-q^{r-1}\right)<0
$$

for $r>2, q \leq 1 / 2$ by lemmas 2.1 and thus $g(x) \geq g(1)=0$.
If $q_{1}>1 / r$, we have:

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} h(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{r-1}{r}\left(q_{1} x^{1 / r}+q_{2}\right)^{r-2}-\left(1-q^{r-1}\right) x^{q_{1}-1 / r}\right)>0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}}\left(\frac{r-1}{r}\left(q_{1} x^{1 / r}+q_{2}\right)^{r-2}-\left(1-q^{r-1}\right) x^{q_{1}-1 / r}\right)=\frac{r-1}{r}-\left(1-q^{r-1}\right)<0 \tag{3.6}
\end{equation*}
$$

Notice here any positive root of $h(x)$ also satisfies the equation:

$$
P(x)=q_{1} x^{1 / r}+q_{2}-\left(C x^{q_{1}-1 / r}\right)^{\frac{1}{r-2}}=0
$$

where $C=r\left(1-q^{r-1}\right) /(r-1)$.
It is easy to see that $P^{\prime}(x)$ can have at most one positive root. Thus by Rolle's theorem, $P(x)$ hence $h(x)$ can have at most two roots in $(0,1)$. (3.5) and (3.6) further implies $h(x)$ hence $g_{2}^{\prime}(x)$ has exactly one root x_{0} in $(0,1)$. Since (3.6) shows $g_{2}^{\prime}(1)<0, g_{2}(x)$ takes its maximum value at x_{0}. Thus $g_{2}(x) \geq \min \left\{g_{2}(0), g_{2}(1)\right\}=0$.

Thus we have shown $g_{n} \geq 0$, hence $\frac{\partial D_{n}}{\partial x_{n}} \geq 0$ with equality holding if and only if $n=1$ or $n=$ $2, x_{1}=0, q_{2}=q$. By letting x_{n} tend to x_{n-1}, we have $D_{n} \geq D_{n-1}$ (with weights $q_{1}, \cdots, q_{n-2}, q_{n-1}+$ $\left.q_{n}\right)$. Since $1-q^{r-1}$ is a decreasing function of q, it follows by induction that $D_{n}>D_{n-1}>\cdots>$ $D_{2}=0$ when $x_{1}=0, q_{2}=q$ in D_{2} or else $D_{n}>D_{n-1}>\cdots>D_{1}=0$. Since we assume $n>2$ in this paper, this completes the proof for $t=1$.

Now for an arbitrary t, a change of variables $x_{i} \rightarrow x_{i}^{t}$ in the above cases leads to the desired conclusion.

We remark here the constants in (3.1)-(3.2) are best possible by considering the case $n=2, x_{1}=$ $0, q_{2}=q$ or $q_{1}=q$. Also when $n=2$, we conclude from the proof of lemma 2.1 and $\lim _{x_{1} \rightarrow x_{2}} \Delta_{t, \frac{t}{r}, 0, t}=$ $r /(r-1)$ that an upper bound in the form of (3.2) does not hold for $\Delta_{1, \frac{1}{r}, 0,1}$ when $r>2$. Similarly, a lower bound in the form of (3.1) doesn't hold for $1<r<2$.

For $t=1$, rewrite (3.1) as

$$
\begin{equation*}
A_{n}-G_{n} \geq \frac{1}{1-q^{r-1}}\left(A_{n}-P_{n, 1 / r}\right) \tag{3.7}
\end{equation*}
$$

When $n=2$ we have

$$
\lim _{x_{1} \rightarrow x_{2}} \frac{\left(A_{2}-P_{2,1 / 2}\right) /(1-q)}{\left(A_{2}-P_{2,1 / r^{\prime}}\right) /\left(1-q^{r^{\prime}-1}\right)}=\frac{1 / 2 /(1-q)}{\left(1-1 / r^{\prime}\right) /\left(1-q^{r^{\prime}-1}\right)}
$$

by considering $q=0,1 / 2$, we find that the right hand sides of (3.7) are not comparable for $r=2$ and any $r^{\prime}>2$.

However, for the comparison of the left hand sides of (3.2), we have
Theorem 3.2. For any $t \neq 0,0<r \neq 1<2, q>0$

$$
\begin{equation*}
\left|\frac{q}{1-(1-q)^{r-1}}\right| \geq \Delta_{t, \frac{t}{r}, \frac{t}{2}, t} \tag{3.8}
\end{equation*}
$$

If $r \geq 2$, (3.8) is valid with' \leq ' instead ' \geq ' with equality holding in all the cases if and only if $n=2, x_{1}=0, q_{1}=q$.
Proof. Since the proofs are similar, we only prove the case $1<r<2$ here. Notice by lemma 2.2, $\frac{q}{1-(1-q)^{r-1}}$ is decreasing with respect to q so we can prove by induction as we did in the proof of theorem 3.1. Consider the case $t=1$ first and define

$$
E_{n}(\mathbf{x})=q\left(A_{n}-P_{n, 1 / r}\right)-\left(1-(1-q)^{r-1}\right)\left(A_{n}-P_{n, 1 / 2}\right)
$$

so

$$
\begin{equation*}
\frac{1}{q_{n}} \frac{\partial E_{n}}{\partial x_{n}}=q\left(1-\left(\frac{P_{n, 1 / r}}{x_{n}}\right)^{1-1 / r}\right)-\left(1-(1-q)^{r-1}\right)\left(1-\left(\frac{P_{n, 1 / 2}}{x_{n}}\right)^{1 / 2}\right) \tag{3.9}
\end{equation*}
$$

By a change of variables: $\frac{x_{i}}{x_{n}} \rightarrow x_{i}, 1 \leq i \leq n$, we may assume $0<x_{1}<x_{2}<\cdots<x_{n}=1$ in (3.9) and rewrite it as

$$
\begin{equation*}
h_{n}\left(x_{1}, \cdots, x_{n-1}\right):=q\left(1-\left(P_{n, 1 / r}\right)^{1-1 / r}\right)-\left(1-(1-q)^{r-1}\right)\left(1-P_{n, 1 / 2}^{1 / 2}\right) \tag{3.10}
\end{equation*}
$$

We want to show $h_{n} \geq 0$. Let $\mathbf{a}=\left(a_{1}, \cdots, a_{n-1}\right) \in[0,1]^{n-1}$ be the absolute minimum of h_{n}. If \mathbf{a} is a boundary point of $[0,1]^{n-1}$, then $a_{1}=0$, and we can regard h_{n} as a function of a_{2}, \cdots, a_{n-1}, then we obtain

$$
\nabla h_{n}\left(a_{2}, \cdots, a_{n-1}\right)=0
$$

Otherwise $a_{1}>0$, \mathbf{a} is an interior point of $[0,1]^{n-1}$ and

$$
\nabla h_{n}\left(a_{1}, \cdots, a_{n-1}\right)=0
$$

In either case a_{2}, \cdots, a_{n-1} solve the equation

$$
-q(1-1 / r)\left(P_{n, 1 / r}\right)^{-1 / r}\left(\frac{P_{n, 1 / r}}{x}\right)^{1-1 / r}+\frac{1}{2}\left(1-(1-q)^{r-1}\right) x^{-1 / 2}=0
$$

The above equation has at most one root, so we only need to show $h_{n} \geq 0$ for the case $n=3$ with $0=x_{1}<x_{2}=x<x_{3}=1$ in (3.10). In this case we regard h_{3} as a function of x and we get

$$
\frac{1}{q_{2}} h_{3}^{\prime}(x)=-q \frac{r-1}{r}\left(q_{2} x^{1 / r}+q_{3}\right)^{r-2} x^{1 / r-1}+\frac{1}{2}\left(1-(1-q)^{r-1}\right) x^{-1 / 2}
$$

Let x be a critical point, then $h_{3}^{\prime}(x)=0$. Similar to the proof of theorem 3.1, there can be at most two roots in $[0,1]$ for $h_{3}^{\prime}(x)=0$.

Further notice that

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{q_{2}} h_{3}^{\prime}(x)=-q \frac{r-1}{r}\left(1-q_{1}\right)^{r-2}+\frac{1-(1-q)^{r-1}}{2}<0
$$

by lemma 2.3 and

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{q_{2}} h_{3}^{\prime}(x)=+\infty
$$

It then follows that $h_{3}^{\prime}(x)$ has exactly one root x_{0} in $(0,1)$ and $h_{3}^{\prime}(1)<0$ implies $h_{3}(x)$ takes its maximum value at x_{0}. Thus $h_{3}(x) \geq \min \left\{h_{3}(0), h_{3}(1)\right\} \geq 0$ where the last inequality follows from lemma 2.2. Thus $D_{n} \geq 0$ with equality holding if and only if $n=2, x_{1}=0, q_{1}=q$ and a change of variables $x_{i} \rightarrow x_{i}^{t}$ completes the proof.

Notice here for $1<r<2$, by setting $t=1$ and letting $q \rightarrow 0$ in (3.8) while noticing $\frac{q}{1-(1-q)^{r-1}}$ is a decreasing function of q, we get

$$
\Delta_{1, \frac{1}{r}, \frac{1}{2}, 1} \leq \frac{1}{r-1}
$$

a special case of theorem 1.1, which shows in this case theorem 3.2 refines theorem 1.1.
We end the paper by refining a result of the author[5]:
Theorem 3.3. If $x_{1} \neq x_{n}, n \geq 2$, then for $1>s \geq 0$

$$
\begin{equation*}
\frac{P_{n, s}^{1-s}-x_{1}^{1-s}}{2 x_{1}^{1-s}\left(A_{n}-x_{1}\right)} \sigma_{n, 1}-q \frac{\left(A_{n}-P_{n, s}\right)^{2}}{2\left(A_{n}-x_{1}\right)}>A_{n}-P_{n, s}>\frac{x_{n}^{1-s}-P_{n, s}^{1-s}}{2 x_{n}^{1-s}\left(x_{n}-A_{n}\right)} \sigma_{n, 1}+q \frac{\left(A_{n}-P_{n, s}\right)^{2}}{2\left(x_{n}-A_{n}\right)} \tag{3.11}
\end{equation*}
$$

Proof. We will prove the right-hand inequality and the left-hand side inequality is similar. let

$$
F_{n}(\mathbf{x})=\left(x_{n}-A_{n}\right)\left(A_{n}-P_{n, s}\right)-\frac{x_{n}^{1-s}-P_{n, s}^{1-s}}{2 x_{n}^{1-s}} \sigma_{n, 1}-q\left(A_{n}-P_{n, s}\right)^{2} / 2
$$

We want to show by induction that $F_{n} \geq 0$. We have

$$
\begin{aligned}
\frac{\partial F_{n}}{\partial x_{n}} & =\left(1-q_{n}-q q_{n}\left(1-\left(\frac{P_{n, s}}{x_{n}}\right)^{1-s}\right)\right)\left(A_{n}-P_{n, s}\right)-\frac{1-s}{2 x_{n}}\left(\frac{P_{n, s}}{x_{n}}\right)^{1-s}\left(1-\left(\frac{x_{n}}{P_{n, s}}\right)^{s} q_{n}\right) \sigma_{n, 1} \\
& \geq\left(1-q_{n}\right)\left(\frac{P_{n, s}}{x_{n}}\right)^{1-s}\left(A_{n}-P_{n, s}-\frac{1-s}{2 x_{n}} \sigma_{n, 1}\right) \geq 0
\end{aligned}
$$

where the last inequality holds by a theorem of the author[5]. Thus by a similar induction process as the one in the proof of theorem 3.1, we have $F_{n} \geq 0$. Since not all the x_{i} 's are equal, we get the desired result.

References

[1] P.S. Bullen, N.S. Mitrinović and P.M.Vasić, Means and Their Inequalities, D. Reidel Publishing Co., Dordrecht,1988.
[2] D. I. Cartwright and M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
[3] P. H. Diananda, On some inequalities of H. Kober, Proc. Cambridge Philos. Soc., 59 (1963), 341-346.
[4] P. H. Diananda, "On some inequalities of H. Kober": Addendum, Proc. Cambridge Philos. Soc., 59 (1963), 837-839.
[5] P. Gao, Certain Bounds for the Differences of Means, RGMIA Research Report Collection 5(3), Article 7, 2002.
[6] L.C. Hsu, Questions 1843,1844, Math. Student, 23 (1955), 121.
[7] A.McD. Mercer, Some new inequalities involving elementary mean values, J. Math. Anal. Appl., 229 (1999), 677-681.
[8] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers Group, Dordrecht, 1993.
[9] W. Sierpiński, On an inequality for arithmetic, geometric and harmonic means, Warsch. Sitzungsber., 2 (1909), 354-358(in Polish).

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
E-mail address: penggao@umich.edu

[^0]: Date: November 4, 2002.
 1991 Mathematics Subject Classification. Primary 26D15.
 Key words and phrases. generalized power mean inequality, refinement of the Arithmetic-Geometric inequality.

