
ON AN INEQUALITY OF DIANANDA

PENG GAO

Abstract. We consider certain refinements of the arithmetic and geometric means, the results
generalize an inequality of P. Diananda.

1. Introduction

Let Pn,r(x) be the generalized weighted means: Pn,r(x) = (
∑n

i=1 qix
r
i )

1
r , where Pn,0(x) denotes

the limit of Pn,r(x) as r → 0+, with qi > 0, 1 ≤ i ≤ n are positive real numbers with
∑n

i=1 qi = 1
and x = (x1, x2, · · · , xn). In this paper, we let q = min qi and always assume n ≥ 2, 0 ≤ x1 < x2 <
· · · < xn.

We let An(x) = Pn,1(x), Gn(x) = Pn,0(x),Hn(x) = Pn,−1(x) and we shall write Pn,r for Pn,r(x),
An for An(x) and similarly for other means when there is no risk of confusion.

For mutually distinct numbers r, s, t and any real number α, β, we define

∆r,s,t,α,β = |
Pα

n,r − Pα
n,t

P β
n,r − P β

n,s

|

where we interpreter P 0
n,r −P 0

n,s as ln Pn,r − lnPn,s. When α = β, we define ∆r,s,t,α to be ∆r,s,t,α,α.
For example ∆r,s,t,0 = |(ln Pn,r

Pn,t
)/(ln Pn,r

Pn,s
)|.

Bounds for ∆r,s,t,α,β have been studied by many mathematicians. For the case α 6= β, we refer
the reader to the articles [2, 5, 7] for the detailed discussions. When α = β, we can bound ∆r,s,t,α

in terms of r, s, t only, due to the following result of H.Hsu[6](see also [1]):
Theorem 1.1. For r > s > t > 0

(1.1) 1 < ∆r,s,t,1 <
s(r − t)
t(r − s)

It is also interesting to consider the following bounds:

(1.2) fr,s,t,α(q) ≥ ∆r,s,t,α ≥ gr,s,t,α(q)

where fr,s,t,α(q) is a decreasing function of q and qr,s,t,α(q) is an increasing function of q.
The case r = 1, s = 0, t = −1, α = 0 in (1.2) with f1,0,−1,0(q) = 1/q, g1,0,−1,0(q) = 1/(1 − q) is

the famous Sierpiński’s inequality[9].
Another case, r = 1, s = 1

2 , t = 0, α = 1 with f1,1/2,0,1(q) = 1/q, g1,1/2,0,1(q) = 1/(1 − q) was
proved by P. Diananda([3], [4])(see also [1],[8]) , originally stated as:

1
q
Σn ≥ An −Gn ≥

1
1− q

Σn

where Σn =
∑

1≤i<j≤n qiqj(x
1
2
i − x

1
2
j )2.

The main purpose of this paper is to generalize Diananda’s result, which is given by theorem 3.1
in section 3.
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2. Lemmas

Lemma 2.1. For 0 ≤ q ≤ 1/2
r − 1

r
− (1− qr−1) ≤ 0 (r ≥ 2)(2.1)

|r − 1
r

| ≥ |1− (1− q)r−1| (0 < r ≤ 2)(2.2)

with equality holding if and only if r = 2, q = 1/2.

Proof. We will prove (2.1) here and the proof for (2.2) is similar. It suffices to prove (2.1) for
q = 1/2, which is equivalent to 2r ≥ 2r. Notice the two curves y = 2r, y = 2r only intersect at
r = 1, r = 2 in which cases they are equal and the conclusion then follows. �

Lemma 2.2. For 0 < q ≤ 1, the function

(2.3) f(q) = | q

1− (1− q)r−1
|

is decreasing for 0 < r 6= 1 < 2 and increasing for r > 2.

Proof. We prove the case 1 < r 6= 2 here and the case 0 < r < 1 is similar. We have

f ′(q) =
1− (1− q)r−1 − q(r − 1)(1− q)r−2

(1− (1− q)r−1)2

and by the mean value theorem 1− (1− q)r−1 = q(r − 1)ηr−2, where 1− q < η < 1, which implies
f ′(q) ≤ 0 for 1 < r < 2 and f ′(q) ≥ 0 for r > 2. �

Lemma 2.3. For 0 < r 6= 1 < 2, 0 < q ≤ 1/2,

(2.4) | 1/2
1− 1/r

| < | q

1− (1− q)r−1
|

If r > 2, (2.4) is valid with ‘ >′ instead of ‘ <′.

Proof. We prove the case 1 < r < 2 here and the other cases are similar. By lemma 2.1 it suffices
to show (2.4) for q = 1/2. In this case, (2.4) is equivalent to (2.2). �

3. The Main Theorems

Theorem 3.1. For any t 6= 0,

∆t, t
r
,0,t ≥

1
1− qr−1

(r ≥ 2)(3.1)

∆t, t
r
,0,t ≤ | 1

1− (1− q)r−1
| (0 < r 6= 1 ≤ 2)(3.2)

with equality holding if and only if n = 2, x1 = 0, q2 = q for (3.1), n = 2, x1 = 0, q1 = q for (3.2),
except in the trivial case r = n = 2, q1 = q2 = 1/2.

Proof. Since the proofs of (3.1)-(3.2) are very similar, we only prove (3.1) here and we just point
out (2.2) is needed for the proof of (3.2). The case r = 2 was treated in [3] so we will assume r > 2
from now on. Consider the case t = 1 first and we define

Dn(x) = (1− qr−1)(An −Gn)− (An − Pn,1/r)

and we then have

(3.3)
1
qn

∂Dn

∂xn
= (1− qr−1)(1− Gn

xn
)− (1− (

Pn,1/r

xn
)1−1/r)
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By a change of variables: xi
xn

→ xi, 1 ≤ i ≤ n, we may assume 0 < x1 < x2 < · · · < xn = 1 in
(3.3) and rewrite it as

(3.4) gn(x1, · · · , xn−1) := (1− qr−1)(1−Gn)− (1− (Pn,1/r)
1−1/r)

We want to show gn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the absolute minimum of gn. If
a is a boundary point of [0, 1]n−1, then a1 = 0, (3.4) is reduced to

gn = 1− qr−1 − (1− (Pn,1/r)
1−1/r)

It follows that gn ≥ 0 is equivalent to Pn,1/r ≥ qr while the last inequality is easily verified with
equality holding if and only if n = 2, a1 = 0, q2 = q. Thus (3.1) holds for this case.

Now we may assume a1 > 0 and a is an interior point of [0, 1]n−1, then we obtain

∇gn(a1, · · · , an−1) = 0

such that a1, · · · , an−1 solve the equation

−(1− qr−1)
Gn

x
+ (1− 1/r)(Pn,1/r)

−1/r(
Pn,1/r

x
)1−1/r = 0

The above equation has at most one root, so we only need to show gn ≥ 0 for the case n = 2.
Now by letting 0 < x1 = x < x2 = 1 in (3.4), we get

1
q1

g′2(x) = h(x)x1/r−1

where
h(x) =

r − 1
r

(q1x
1/r + q2)r−2 − (1− qr−1)xq1−1/r

If 1/r ≥ q1, then

h′(x) =
(r − 1)(r − 2)

r2
q1x

1/r−1(q1x
1/r + q2)r−3 − (1− qr−1)(q1 −

1
r
)xq1−1/r−1 ≥ 0

which implies

h(x) ≤ h(1) =
r − 1

r
− (1− qr−1) < 0

for r > 2, q ≤ 1/2 by lemmas 2.1 and thus g(x) ≥ g(1) = 0.
If q1 > 1/r, we have:

(3.5) lim
x→0+

h(x) = lim
x→0+

(
r − 1

r
(q1x

1/r + q2)r−2 − (1− qr−1)xq1−1/r) > 0

and

(3.6) lim
x→1−

h(x) = lim
x→1−

(
r − 1

r
(q1x

1/r + q2)r−2 − (1− qr−1)xq1−1/r) =
r − 1

r
− (1− qr−1) < 0

Notice here any positive root of h(x) also satisfies the equation:

P (x) = q1x
1/r + q2 − (Cxq1−1/r)

1
r−2 = 0

where C = r(1− qr−1)/(r − 1).
It is easy to see that P ′(x) can have at most one positive root. Thus by Rolle’s theorem, P (x)

hence h(x) can have at most two roots in (0, 1). (3.5) and (3.6) further implies h(x) hence g′2(x)
has exactly one root x0 in (0, 1). Since (3.6) shows g′2(1) < 0, g2(x) takes its maximum value at x0.
Thus g2(x) ≥ min{g2(0), g2(1)} = 0.

Thus we have shown gn ≥ 0, hence ∂Dn
∂xn

≥ 0 with equality holding if and only if n = 1 or n =
2, x1 = 0, q2 = q. By letting xn tend to xn−1, we have Dn ≥ Dn−1(with weights q1, · · · , qn−2, qn−1+
qn). Since 1 − qr−1 is a decreasing function of q, it follows by induction that Dn > Dn−1 > · · · >
D2 = 0 when x1 = 0, q2 = q in D2 or else Dn > Dn−1 > · · · > D1 = 0. Since we assume n > 2 in
this paper, this completes the proof for t = 1.
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Now for an arbitrary t, a change of variables xi → xt
i in the above cases leads to the desired

conclusion. �

We remark here the constants in (3.1)-(3.2) are best possible by considering the case n = 2, x1 =
0, q2 = q or q1 = q. Also when n = 2, we conclude from the proof of lemma 2.1 and lim

x1→x2

∆t, t
r
,0,t =

r/(r−1) that an upper bound in the form of (3.2) does not hold for ∆1, 1
r
,0,1 when r > 2. Similarly,

a lower bound in the form of (3.1) doesn’t hold for 1 < r < 2.
For t = 1, rewrite (3.1) as

(3.7) An −Gn ≥
1

1− qr−1
(An − Pn,1/r)

When n = 2 we have

lim
x1→x2

(A2 − P2,1/2)/(1− q)
(A2 − P2,1/r′)/(1− qr′−1)

=
1/2/(1− q)

(1− 1/r′)/(1− qr′−1)

by considering q = 0, 1/2, we find that the right hand sides of (3.7) are not comparable for r = 2
and any r′ > 2.

However, for the comparison of the left hand sides of (3.2), we have
Theorem 3.2. For any t 6= 0, 0 < r 6= 1 < 2, q > 0

(3.8) | q

1− (1− q)r−1
| ≥ ∆t, t

r
, t
2
,t

If r ≥ 2, (3.8) is valid with ‘ ≤′ instead ‘ ≥′ with equality holding in all the cases if and only if
n = 2, x1 = 0, q1 = q.

Proof. Since the proofs are similar, we only prove the case 1 < r < 2 here. Notice by lemma 2.2,
q

1−(1−q)r−1 is decreasing with respect to q so we can prove by induction as we did in the proof of
theorem 3.1. Consider the case t = 1 first and define

En(x) = q(An − Pn,1/r)− (1− (1− q)r−1)(An − Pn,1/2)

so

(3.9)
1
qn

∂En

∂xn
= q(1− (

Pn,1/r

xn
)1−1/r)− (1− (1− q)r−1)(1− (

Pn,1/2

xn
)1/2)

By a change of variables: xi
xn

→ xi, 1 ≤ i ≤ n, we may assume 0 < x1 < x2 < · · · < xn = 1 in
(3.9) and rewrite it as

(3.10) hn(x1, · · · , xn−1) := q(1− (Pn,1/r)
1−1/r)− (1− (1− q)r−1)(1− P

1/2
n,1/2)

We want to show hn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the absolute minimum of hn. If
a is a boundary point of [0, 1]n−1, then a1 = 0, and we can regard hn as a function of a2, · · · , an−1,
then we obtain

∇hn(a2, · · · , an−1) = 0
Otherwise a1 > 0, a is an interior point of [0, 1]n−1 and

∇hn(a1, · · · , an−1) = 0

In either case a2, · · · , an−1 solve the equation

−q(1− 1/r)(Pn,1/r)
−1/r(

Pn,1/r

x
)1−1/r +

1
2
(1− (1− q)r−1)x−1/2 = 0

The above equation has at most one root, so we only need to show hn ≥ 0 for the case n = 3
with 0 = x1 < x2 = x < x3 = 1 in (3.10). In this case we regard h3 as a function of x and we get

1
q2

h′3(x) = −q
r − 1

r
(q2x

1/r + q3)r−2x1/r−1 +
1
2
(1− (1− q)r−1)x−1/2
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Let x be a critical point, then h′3(x) = 0. Similar to the proof of theorem 3.1, there can be at
most two roots in [0, 1] for h′3(x) = 0.

Further notice that

lim
x→1−

1
q2

h′3(x) = −q
r − 1

r
(1− q1)r−2 +

1− (1− q)r−1

2
< 0

by lemma 2.3 and

lim
x→0+

1
q2

h′3(x) = +∞

It then follows that h′3(x) has exactly one root x0 in (0, 1) and h′3(1) < 0 implies h3(x) takes its
maximum value at x0. Thus h3(x) ≥ min{h3(0), h3(1)} ≥ 0 where the last inequality follows from
lemma 2.2. Thus Dn ≥ 0 with equality holding if and only if n = 2, x1 = 0, q1 = q and a change of
variables xi → xt

i completes the proof. �

Notice here for 1 < r < 2 , by setting t = 1 and letting q → 0 in (3.8) while noticing q
1−(1−q)r−1

is a decreasing function of q , we get

∆1, 1
r
, 1
2
,1 ≤

1
r − 1

a special case of theorem 1.1, which shows in this case theorem 3.2 refines theorem 1.1.
We end the paper by refining a result of the author[5]:

Theorem 3.3. If x1 6= xn, n ≥ 2, then for 1 > s ≥ 0

(3.11)
P 1−s

n,s − x1−s
1

2x1−s
1 (An − x1)

σn,1 − q
(An − Pn,s)2

2(An − x1)
> An − Pn,s >

x1−s
n − P 1−s

n,s

2x1−s
n (xn −An)

σn,1 + q
(An − Pn,s)2

2(xn −An)

Proof. We will prove the right-hand inequality and the left-hand side inequality is similar. let

Fn(x) = (xn −An)(An − Pn,s)−
x1−s

n − P 1−s
n,s

2x1−s
n

σn,1 − q(An − Pn,s)2/2

We want to show by induction that Fn ≥ 0. We have
∂Fn

∂xn
= (1− qn − qqn(1− (

Pn,s

xn
)1−s))(An − Pn,s)−

1− s

2xn
(
Pn,s

xn
)1−s(1− (

xn

Pn,s
)sqn)σn,1

≥ (1− qn)(
Pn,s

xn
)1−s(An − Pn,s −

1− s

2xn
σn,1) ≥ 0

where the last inequality holds by a theorem of the author[5]. Thus by a similar induction process
as the one in the proof of theorem 3.1, we have Fn ≥ 0. Since not all the xi’s are equal, we get the
desired result. �
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