A NOTE ON A PAPER BY G.BENNETT AND G. JAMESON

PENG GAO

Abstract

We note that some recent results of G.Bennett and G. Jameson are consequences of the majorization principle. We also generalize a result of H.Alzer.

Let $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ be real finite sequences. Then \mathbf{x} is said to be majorized by \mathbf{y} if for all convex functions f, we have

$$
\sum_{j=1}^{n} f\left(x_{j}\right) \leq \sum_{j=1}^{n} f\left(y_{j}\right)
$$

We write $\mathbf{x} \leq_{\text {maj }} \mathbf{y}$ if this occurs. From now on we denote \mathbf{x}^{*} to be the decreasing rearrangement of \mathbf{x} and the majorization principle states that if $\left(x_{j}\right)$ and $\left(y_{j}\right)$ are decreasing, then $\mathbf{x} \leq_{\text {maj }} \mathbf{y}$ is equivalent to

$$
\begin{align*}
& x_{1}+x_{2}+\cdots+x_{j} \leq y_{1}+y_{2}+\cdots+y_{j}(1 \leq j \leq n-1) \\
& x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{n}(n \geq 0) \tag{1}
\end{align*}
$$

We refer the reader to [2, Sect. 1.30]for a simple proof of this.
In a recent paper [3, G.Bennett and G. Jameson considered the average of the values of a function at a sequence of n points equally spaced through an interval and by defining:

$$
A_{n}(f)=\frac{1}{n-1} \sum_{r=1}^{n-1} f\left(\frac{r}{n}\right)(n \geq 2), B_{n}(f)=\frac{1}{n+1} \sum_{r=0}^{n} f\left(\frac{r}{n}\right)(n \geq 0)
$$

they proved the following
Theorem 1. a. If f is a convex function on the open interval $(0,1)$, then $A_{n}(f)$ increases with n. If f is concave, $A_{n}(f)$ decreases with n.
b. If f is convex on $[0,1]$, then $B_{n}(f)$ decreases with n. If f is concave, $B_{n}(f)$ increases with n.

We note first that part a of theorem 1 was proved by V.I.Levin and S.B.Stečkin in 6 and as they pointed out there, one can also deduce the same result by applying theorem 130 in the famous book Inequalities by G.H.Hardy, J.E. Littlewood and G. Pólya 5 .

We point out here theorem 1 is a consequence of the majorization principle, by choosing \mathbf{x} to be an $n(n-1)$-tuple, formed by repeating n times each term of the $(n-1)$-tuple: $\left(\frac{1}{n}, \cdots, \frac{n-1}{n}\right)$ and \mathbf{y} an $n(n-1)$-tuple, formed by repeating $n-1$ times each term of the n-tuple: $\left(\frac{1}{n+1}, \cdots, \frac{n}{n+1}\right)$. One checks easily $\mathbf{x}^{*}, \mathbf{y}^{*}$ satisfy condition (1) and part a of theorem 1 follows if we apply the majorization principle to $\mathbf{x}^{*}, \mathbf{y}^{*}$ while noticing $-f$ is convex when f is concave.

Similarly, part bof theorem 1 follows if we choose \mathbf{x} to be an $(n+1)(n+2)$-tuple, formed by repeating $n+1$ times each term of the $(n+2)$-tuple: $\left(\frac{0}{n+1}, \cdots, \frac{n+1}{n+1}\right)$ and \mathbf{y} an $(n+1)(n+2)$ tuple, formed by repeating $n+2$ times each term of the $(n+1)$-tuple: $\left(\frac{0}{n}, \cdots, \frac{n}{n}\right)$ and apply the majorization principle to $\mathbf{x}^{*}, \mathbf{y}^{*}$.

We can also obtain some variants of theorem 1 by applying the majorization principle. For example, by choosing \mathbf{x} to be an $n(n+1)$-tuple, formed by repeating $n+1$ times each term of the

[^0]n-tuple: $\left(\ln \frac{1}{\sqrt[n]{n!}}, \cdots, \ln \frac{n}{\sqrt[n]{n!}}\right)$ and \mathbf{y} an $n(n+1)$-tuple, formed by repeating n times each term of the $(n+1)$-tuple: $\left(\ln \frac{1}{\sqrt[n+1]{(n+1)!}}, \cdots, \ln \frac{n+1}{\sqrt[n+1]{(n+1)!}}\right)$. By a result of J. Martins $[7]$, the condition (1) is satisfied by $\mathbf{x}^{*}, \mathbf{y}^{*}$. Thus we have
Theorem 2. If f is a convex function on the real line, then $L_{n}(f)$ increases with n. If f is concave, $L_{n}(f)$ decreases with n, where
$$
L_{n}(f)=\frac{1}{n} \sum_{r=1}^{n} f\left(\ln \frac{r}{\sqrt[n]{n!}}\right)(n \geq 1)
$$

By taking $f(x)=e^{r x}$ in the above theorem we immediately get the following result of H.Alzer [1:
Corollary 1. Let $n>0$ be an integer. Then we have for all real numbers $r>0$:

$$
\left[(n+1) \sum_{i=1}^{n} i^{r} / n \sum_{i=1}^{n+1} i^{r}\right]^{1 / r} \leq \frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \leq\left[n \sum_{i=1}^{n+1} i^{-r} /(n+1) \sum_{i=1}^{n} i^{-r}\right]^{1 / r}
$$

We note here one can also generalize theorem 2 hence corollary 1 by using a recent result of T.H.Chan, P.Gao and F.Qi 4 and we will leave this to the reader.

References

[1] H. Alzer, Refinement of an inequality of G. Bennett, Discrete Math., 135 (1994), 39-46.
[2] E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag,Berlin-Göttingen-Heidelberg 1961.
[3] G.Bennett and G. Jameson, Monotonic averages of convex functions, J. Math. Anal. Appl., 252 (2000), 410-430.
[4] T.H.Chan, P.Gao and F.Qi, On the generalization of Martins' inequality, Monatsh. Math., accepted.
[5] G.H.Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1952.
[6] V.I.Levin and S.B.Stečkin, Inequalities, Amer. Math. Soc. Transl. (2), 14 (1960), 1-29.
[7] J. S. Martins, Arithmetic and geometric means, an application to Lorentz sequence spaces, Math. Nachr., 139 (1998), 281-288.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
E-mail address: penggao@umich.edu

[^0]: Date: November 1, 2002.
 1991 Mathematics Subject Classification. Primary 26A51,26D15.
 Key words and phrases. majorization principle.

