SOME NEW INEQUALITIES FOR HERMITE-HADAMARD DIVERGENCE IN INFORMATION THEORY

N.S. BARNETT, P. CERONE, AND S.S DRAGOMIR

ABSTRACT. In this paper we prove some new inequalities for Hermite-Hadamard divergence in Information Theory.

1. INTRODUCTION

One of the important issues in many applications of Probability Theory is finding an appropriate measure of *distance* (or *difference* or *discrimination*) between two probability distributions. A number of divergence measures for this purpose have been proposed and extensively studied by Jeffreys [1], Kullback and Leibler [2], Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea and Rao [7], Rao [8], Lin [9], Csiszár [10], Ali and Silvey [12], Vajda [13], Shioya and Da-te [40] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [8], genetics [14], finance, economics, and political science [15], [16], [17], biology [18], the analysis of contingency tables [19], approximation of probability distributions [20], [21], signal processing [22], [23] and pattern recognition [24], [25]. A number of these measures of distance are specific cases of f-divergence and so further exploration of this concept will have a flow on effect to other measures of distance and to areas in which they are applied.

Let the set χ and the σ -finite measure μ be given and consider the set of all probability densities on μ to be defined on $\Omega := \{p | p : \chi \to \mathbb{R}, p(x) \ge 0, \int p(x) d\mu(x) = 1\}$. The Kullback-Leibler divergence [2] is well known among the χ information divergences. It is defined as:

(1.1)
$$D_{KL}(p,q) := \int_{\chi} p(x) \log\left[\frac{p(x)}{q(x)}\right] d\mu(x), \quad p,q \in \Omega,$$

where log is to base 2.

In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler divergence. These are the: variation distance D_v , Hellinger distance D_H [1], χ^2 -divergence D_{χ^2} , α -divergence D_{α} , Bhattacharyya distance D_B [2], Harmonic distance D_{Ha} , Jeffreys distance D_J [1], triangular discrimination D_{Δ} [35], etc... They are defined as follows:

(1.2)
$$D_{v}(p,q) := \int_{\chi} |p(x) - q(x)| \, d\mu(x), \ p,q \in \Omega;$$

Date: March 20, 2000.

¹⁹⁹¹ Mathematics Subject Classification. Primary94Xxx; Secondary 26D15.

Key words and phrases. Divergence measures in Information Theory.

(1.3)
$$D_H(p,q) := \int_{\chi} \left| \sqrt{p(x)} - \sqrt{q(x)} \right| d\mu(x), \quad p,q \in \Omega;$$

(1.4)
$$D_{\chi^2}(p,q) := \int_{\chi} p(x) \left[\left(\frac{q(x)}{p(x)} \right)^2 - 1 \right] d\mu(x), \quad p,q \in \Omega;$$

(1.5)
$$D_{\alpha}(p,q) := \frac{4}{1-\alpha^2} \left[1 - \int_{\chi} \left[p(x) \right]^{\frac{1-\alpha}{2}} \left[q(x) \right]^{\frac{1+\alpha}{2}} d\mu(x) \right], \quad p,q \in \Omega;$$

(1.6)
$$D_B(p,q) := \int_{\chi} \sqrt{p(x) q(x)} d\mu(x), \quad p,q \in \Omega;$$

(1.7)
$$D_{Ha}(p,q) := \int_{\chi} \frac{2p(x) q(x)}{p(x) + q(x)} d\mu(x), \ p,q \in \Omega;$$

(1.8)
$$D_J(p,q) := \int_{\chi} \left[p\left(x\right) - q\left(x\right) \right] \ln \left[\frac{p\left(x\right)}{q\left(x\right)} \right] d\mu\left(x\right), \ p,q \in \Omega;$$

(1.9)
$$D_{\Delta}(p,q) := \int_{\chi} \frac{\left[p(x) - q(x)\right]^2}{p(x) + q(x)} d\mu(x), \ p,q \in \Omega.$$

For other divergence measures, see the paper [5] by Kapur or the book on line [6] by Taneja. For a comprehensive collection of preprints available on line, see the RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszár f-divergence is defined as follows [10]

(1.10)
$$D_f(p,q) := \int_{\chi} p(x) f\left[\frac{q(x)}{p(x)}\right] d\mu(x), \quad p,q \in \Omega,$$

where f is convex on $(0, \infty)$. It is assumed that f(u) is zero and strictly convex at u = 1. By appropriately defining this convex function, various divergences are derived. All the above distances (1.1)-(1.9), are particular instances of f-divergence. There are also many others that are not in this class (see for example [5] or [6]). For the basic properties of f-divergence see [7]-[10].

In [11], Lin and Wong (see also [9]) introduced the following divergence

(1.11)
$$D_{LW}(p,q) := \int_{\chi} p(x) \log \left[\frac{p(x)}{\frac{1}{2}p(x) + \frac{1}{2}q(x)} \right] d\mu(x), \ p,q \in \Omega.$$

This can be represented as follows, using the Kullback-Leibler divergence:

$$D_{LW}(p,q) = D_{KL}\left(p, \frac{1}{2}p + \frac{1}{2}q\right).$$

Lin and Wong have established the following inequalities

(1.12)
$$D_{LW}(p,q) \leq \frac{1}{2} D_{KL}(p,q);$$

(1.13)
$$D_{LW}(p,q) + D_{LW}(q,p) \le D_v(p,q) \le 2;$$

$$(1.14) D_{LW}(p,q) \le 1.$$

In [45], Shioya and Da-te improved (1.12) - (1.14) by showing that

$$D_{LW}(p,q) \le \frac{1}{2} D_v(p,q) \le 1.$$

In the same paper [45], the authors introduced the generalised Lin-Wong f-divergence $D_f\left(p, \frac{1}{2}p + \frac{1}{2}q\right)$ and the Hermite-Hadamard (HH) divergence

(1.15)
$$D_{HH}^{f}(p,q) := \int_{\chi} p(x) \frac{\int_{1}^{\frac{q(x)}{p(x)}} f(t) dt}{\frac{q(x)}{p(x)} - 1} d\mu(x), \quad p,q \in \Omega$$

and, by use of the Hermite-Hadamard inequality for convex functions, proved the following basic inequality

(1.16)
$$D_f\left(p, \frac{1}{2}p + \frac{1}{2}q\right) \le D_{HH}^f\left(p, q\right) \le \frac{1}{2}D_f\left(p, q\right),$$

provided that f is convex and normalised, i.e., f(1) = 0.

In this paper we point out new inequalities for the HH-divergence, which also improve the above result (1.16).

For classical and new results in comparing different kinds of divergence measures, see the papers [1]-[45] where further references are given.

2. The Results

In the following, we assume everywhere that the mapping $f:(0,\infty)\to\mathbb{R}$ is convex and normalised.

The following result holds.

Theorem 1. Let $p, q \in \leq$, then we have the inequality,

$$(2.1) D_f\left(p, \frac{1}{2}p + \frac{1}{2}q\right) \\ \leq \lambda D_f\left(p, p + \frac{\lambda}{2}\left(q - p\right)\right) + (1 - \lambda) D_f\left(p, \frac{p + q}{2} + \frac{\lambda}{2}\left(q - p\right)\right) \\ \leq D_{HH}^f\left(p, q\right) \leq \frac{1}{2} \left[D_f\left(p, (1 - \lambda)p + \lambda q\right) + (1 - \lambda) D_f\left(p, q\right)\right] \\ \leq \frac{1}{2} D_f\left(p, q\right),$$

for all $\lambda \in [0,1]$.

Proof. First, the following refinement of the Hermite-Hadamard inequality is proved.

$$(2.2) \qquad f\left(\frac{a+b}{2}\right) \\ \leq \lambda f\left(a+\lambda \cdot \frac{b-a}{2}\right) + (1-\lambda) f\left(\frac{a+b}{2}+\lambda \cdot \frac{b-a}{2}\right) \\ \leq \frac{1}{b-a} \int_{a}^{b} f(u) \, du \leq \frac{1}{2} \left[f\left((1-\lambda)a+\lambda b\right) + \lambda f(a) + (1-\lambda) f(b)\right] \\ \leq \frac{f(a)+f(b)}{2}$$

for all $\lambda \in [0, 1]$.

Applying the Hermite-Hadamard inequality on each subinterval $[a, (1 - \lambda) a + \lambda b]$, $[(1 - \lambda) a + \lambda b, b]$, we have,

$$f\left(\frac{a+(1-\lambda)a+\lambda b}{2}\right) \times \left[(1-\lambda)a+\lambda b-a\right]$$

$$\leq \int_{a}^{(1-\lambda)a+\lambda b} f(u) \, du$$

$$\leq \frac{f\left((1-\lambda)a+\lambda b\right)+f(a)}{2} \times \left[(1-\lambda)a+\lambda b-a\right]$$

and

$$\begin{split} &f\left(\frac{(1-\lambda)\,a+\lambda b+b}{2}\right)\times\left[b-(1-\lambda)\,a-\lambda b\right]\\ &\leq &\int_{(1-\lambda)a+\lambda b}^{b}f\left(u\right)du\\ &\leq &\frac{f\left(b\right)+f\left((1-\lambda)\,a+\lambda b\right)}{2}\times\left[b-(1-\lambda)\,a-\lambda b\right], \end{split}$$

which are clearly equivalent to

(2.3)
$$\lambda f\left(a + \lambda \cdot \frac{b-a}{2}\right) \leq \frac{1}{b-a} \int_{a}^{(1-\lambda)a+\lambda b} f(u) \, du$$
$$\leq \frac{\lambda f\left((1-\lambda)a + \lambda b\right) + \lambda f(a)}{2}$$

and

(2.4)
$$(1-\lambda) f\left(\frac{a+b}{2} + \lambda \cdot \frac{b-a}{2}\right)$$

$$\leq \frac{1}{b-a} \int_{(1-\lambda)a+\lambda b}^{b} f(u) du$$

$$\leq \frac{(1-\lambda) f(b) + (1-\lambda) f((1-\lambda)a + \lambda b)}{2}$$

respectively.

Summing (2.3) and (2.4), we obtain the second and first inequality in (2.2). By the convexity property, we obtain

$$\begin{split} \lambda f\left(a+\lambda\cdot\frac{b-a}{2}\right) + (1-\lambda) f\left(\frac{a+b}{2}+\lambda\cdot\frac{b-a}{2}\right) \\ \geq & f\left[\lambda\left(a+\lambda\cdot\frac{b-a}{2}\right) + (1-\lambda)\left(\frac{a+b}{2}+\lambda\cdot\frac{b-a}{2}\right)\right] \\ = & f\left(\frac{a+b}{2}\right) \end{split}$$

and the first inequality in (2.1) is proved.

The latter inequality is obvious by the convexity property of f.

Now, if we choose a = 1 and $b = \frac{q(x)}{p(x)}$, $x \in \chi$, in (2.2) and multiply by $p(x) \ge 0$, $x \in \chi$, we get

$$\begin{split} p\left(x\right)f\left(\frac{p\left(x\right)+q\left(x\right)}{2p\left(x\right)}\right) \\ &\leq \quad \lambda p\left(x\right)f\left(\frac{p\left(x\right)+\lambda\left(q\left(x\right)-p\left(x\right)\right)}{2p\left(x\right)}\right) \\ &+\left(1-\lambda\right)p\left(x\right)f\left(\frac{p\left(x\right)+q\left(x\right)}{2p\left(x\right)}+\frac{\lambda\left(q\left(x\right)-p\left(x\right)\right)}{2p\left(x\right)}\right) \\ &\leq \quad \frac{p^{2}\left(x\right)}{q\left(x\right)-p\left(x\right)}\int_{1}^{\frac{q\left(x\right)}{p\left(x\right)}}f\left(u\right)du \\ &\leq \quad \frac{1}{2}\left[f\left(\frac{\left(1-\lambda\right)p\left(x\right)+\lambda q\left(x\right)}{p\left(x\right)}\right)p\left(x\right)+\lambda p\left(x\right)f\left(1\right)+\left(1-\lambda\right)p\left(x\right)f\left(\frac{q\left(x\right)}{p\left(x\right)}\right)\right] \\ &\leq \quad \frac{p\left(x\right)f\left(1\right)+p\left(x\right)f\left(\frac{q\left(x\right)}{p\left(x\right)}\right)}{2}. \end{split}$$

Integrating on χ and taking into account the definition of f-divergence (1.10) and the Hermite-Hadamard divergence (1.15), we obtain (2.1).

Remark 1. If $\lambda = 0$ or $\lambda = 1$, then by (2.1), we obtain the inequality (1.16). Corollary 1. Let $p, q \in \Omega$, then we have the inequality,

$$(2.5) \quad D_f\left(p, \frac{p+q}{2}\right) \leq \frac{1}{2} \left[D_f\left(p, \frac{3p+q}{4}\right) + D_f\left(p, \frac{p+3q}{4}\right) \right]$$
$$\leq D_{HH}^f\left(p, q\right) \leq \frac{1}{2} \left[D_f\left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_f\left(p, q\right) \right]$$
$$\leq \frac{1}{2} D_f\left(p, q\right),$$

which is obtained by taking $\lambda = \frac{1}{2}$ in (2.1). **Remark 2.** If we replace λ by $(1 - \lambda)$ in (2.1), we have,

$$(2.6) D_f\left(p,\frac{p+q}{2}\right) \\ \leq (1-\lambda)D_f\left(p,\frac{p+q}{2}+\lambda(p-q)\right)+\lambda D_f\left(p,q+\lambda\frac{p-q}{2}\right) \\ \leq D_{HH}^f\left(p,q\right) \leq \frac{1}{2}\left[D_f\left(p,\lambda p+(1-\lambda)q\right)+\lambda D_f\left(p,q\right)\right] \\ \leq \frac{1}{2}D_f\left(p,q\right).$$

Now, if we add (2.1) and (2.6) and divide by 2, we can state the following corollary.

Corollary 2. Let $p, q \in \Omega$, then we have the inequality,

$$(2.7) \qquad D_f\left(p, \frac{p+q}{2}\right) \\ \leq \lambda \left[D_f\left(p, p+\frac{\lambda}{2}\left(q-p\right)\right) + D_f\left(p, q+\frac{\lambda}{2}\left(p-q\right)\right)\right] \\ + (1-\lambda) \left[D_f\left(p, \frac{p+q}{2} + \frac{\lambda}{2}\left(q-p\right)\right) + D_f\left(p, \frac{p+q}{2} + \frac{1}{2}\left(p-q\right)\right)\right] \\ \leq D_{HH}^f\left(p,q\right) \\ \leq \frac{1}{4} \left[D_f\left(p, (1-\lambda)p + \lambda q\right) + D_f\left(p, \lambda p + (1-\lambda)q\right) + D_f\left(p,q\right)\right] \\ \leq \frac{1}{2} D_f\left(p,q\right),$$

for all $\lambda \in [0,1]$.

We also define the divergence.

(2.8)
$$H_{f}(p,q;t) := \int_{\chi} p(x) f\left[\frac{tq(x) + (1-t)p(x)}{p(x)}\right] d\mu(x)$$
$$= D_{f}(p,tq + (1-t)p).$$

Theorem 2. Let $p, q \in \Omega$, then,

(i) $H_f(p,q;\cdot)$ is convex on [0,1]; (ii) We have the bounds

(2.9)
$$\inf_{t \in [0,1]} H_f(p,q;t) = H_f(p,q;0) = 0,$$

(2.10)
$$\sup_{t \in [0,1]} H_f(p,q;t) = H_f(p,q;1) = D_f(p,q),$$

(2.11)
$$H_f(p,q;t) \le tD_f(p,q) \text{ for all } t \in [0,1].$$

(iii) The mapping $H_{f}(p,q;\cdot)$ is monotonic nondecreasing on [0,1].

Proof. (i) Let
$$t_1, t_2 \in [0, 1]$$
 and $\alpha, \beta \in [0, 1]$ with $\alpha + \beta = 1$, then,

$$\begin{aligned} H_{f}\left(p,q;\alpha t_{1}+\beta t_{2}\right) \\ &= \int_{\chi} p\left(x\right) f\left[\frac{\left(\alpha t_{1}+\beta t_{2}\right) q\left(x\right)+\left(1-\alpha t_{1}-\beta t_{2}\right) p\left(x\right)}{q\left(x\right)}\right] d\mu\left(x\right) \\ &= \int_{\chi} p\left(x\right) f\left[\alpha \cdot \frac{\left[t_{1}q\left(x\right)+\left(1-t_{1}\right) p\left(x\right)\right]}{q\left(x\right)}+\beta \cdot \frac{\left[t_{2}q\left(x\right)+\left(1-t_{2}\right) p\left(x\right)\right]}{q\left(x\right)}\right] d\mu\left(x\right) \\ &\leq \alpha \cdot \int_{\chi} p\left(x\right) f\left[\frac{t_{1}q\left(x\right)+\left(1-t_{1}\right) p\left(x\right)}{q\left(x\right)}\right] d\mu\left(x\right) \\ &+\beta \cdot \int_{\chi} p\left(x\right) f\left[\frac{t_{2}q\left(x\right)+\left(1-t_{2}\right) p\left(x\right)}{q\left(x\right)}\right] d\mu\left(x\right) \\ &= \alpha H_{f}\left(p,q,t_{1}\right)+\beta H_{f}\left(p,q,t_{2}\right) \\ &\text{and convertity is prevent} \end{aligned}$$

and convexity is proved.

(ii) Using Jensen's inequality, we have:

$$H_{f}(p,q,t) \geq f\left[\int_{\chi} p(x) \left[\frac{tq(x) + (1-t)p(x)}{q(x)}\right] d\mu(x)\right] \\ = f\left[t\int_{\chi} q(x) d\mu(x) + (1-t)\int_{\chi} p(x) d\mu(x)\right] \\ = f(1) = 0 = H_{f}(p,q,0).$$

Also, by convexity of f, we have,

$$\begin{split} H_f\left(p,q,t\right) &\leq \int_{\chi} p\left(x\right) \left[tf\left(\frac{q\left(x\right)}{p\left(x\right)}\right) + \left(1-t\right)f\left(1\right) \right] d\mu\left(x\right) \\ &\leq t\int_{\chi} p\left(x\right)f\left(\frac{q\left(x\right)}{p\left(x\right)}\right) d\mu\left(x\right) + \left(1-t\right)f\left(1\right)\int_{\chi} p\left(x\right) d\mu\left(x\right) \\ &= tD_f\left(p,q\right), \end{split}$$

and the statement (ii) is proved.

(iii) Let $t_1, t_2 \in [0, 1]$ with $t_2 > t_1$. As $H_f(p, q; \cdot)$ is convex, then

$$\frac{H_{f}(p,q,t_{2}) - H_{f}(p,q,t_{1})}{t_{2} - t_{1}} \geq \frac{H_{f}(p,q,t_{1}) - H_{f}(p,q,0)}{t_{1} - 0}$$

and as

$$H_f(p,q,t_1) \ge H_f(p,q,0) = 0,$$

we deduce that $H_f(p, q, t_1) \leq H_f(p, q, t_2)$, which proves the monotonicity of $H_f(p, q, \cdot)$.

Remark 3. If we write (2.11) in terms of 1 - t rather than t, we obtain

(2.12)
$$H_f(p,q,1-t) \le (1-t) D_f(p,q), \ t \in [0,1].$$

Adding (2.11) and (2.12), we get,

(2.13)
$$H_f(p,q,t) + H_f(p,q,1-t) \le D_f(p,q)$$

for all $t \in [0, 1]$.

Remark 4. For $t \in \left[\frac{1}{2}, 1\right]$, we have the inequality,

(2.14)
$$D_f\left(p, \frac{1}{2}p + \frac{1}{2}q\right) \le D_f\left(p, tq + (1-t)p\right) \le tD_f\left(p, q\right),$$

which is similar to (1.13).

We can also define the divergence,

(2.15)
$$F_{f}(p,q;t) := \int_{\chi} \int_{\chi} p(x) p(y) f\left[t \cdot \frac{q(x)}{p(x)} + (1-t) \cdot \frac{q(y)}{p(y)}\right] d\mu(x) d\mu(y),$$

where $p, q \in \Omega$ and $t \in [0, 1]$.

The properties of this mapping are embodied in the following theorem.

Theorem 3. Let $p, q \in \Omega$, then,

(i) $F_f(p,q;\cdot)$ is symmetrical about $\frac{1}{2}$, that is,

(2.16)
$$F_f(p,q;t) = F_f(p,q;1-t) \text{ for all } t \in [0,1]$$

(ii) F is convex on [0, 1];

(iii) We have the bounds:

(2.17)
$$\sup_{t \in [0,1]} F_f(p,q;t) = F_f(p,q;0) = F_f(p,q;1) = D_f(p,q),$$

(2.18)

$$\inf_{t \in [0,1]} F_f(p,q;t) = F_f\left(p,q;\frac{1}{2}\right) \\
= \int_{\chi} \int_{\chi} p(x) p(y) f\left[\frac{q(x) p(y) + p(x) q(y)}{2p(x) q(y)}\right] d\mu(x) d\mu(y) \\
\ge 0;$$

(iv) $F_f(p,q;\cdot)$ is nondecreasing on $\left[0,\frac{1}{2}\right]$ and nonincreasing on $\left[\frac{1}{2},1\right]$;

(v) We have the inequality:

(2.19)
$$F_f(p,q;t) \ge \max \{H_f(p,q;t); H_f(p,q;1-t)\} \text{ for all } t \in [0,1].$$

Proof. (i) Is obvious.

- (ii) Follows by the convexity of f in a similar way to that in the proof of Theorem 2.
- (iii) For all $x, y \in \chi$ we have:

$$f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + (1-t) \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] \le t \cdot f\left(\frac{q\left(x\right)}{p\left(x\right)}\right) + (1-t) \cdot f\left(\frac{q\left(y\right)}{p\left(y\right)}\right)$$

for any $t \in [0, 1]$.

Multiplying by $p(x) p(y) \ge 0$ and integrating over χ^2 , we write,

$$\begin{split} F_f(p,q;t) &\leq \int_{\chi} \int_{\chi} p\left(x\right) p\left(y\right) \left[t \cdot f\left(\frac{q\left(x\right)}{p\left(x\right)}\right) + (1-t) \cdot f\left(\frac{q\left(y\right)}{p\left(y\right)}\right) \right] d\mu\left(x\right) d\mu\left(y\right) \\ &= t \int_{\chi} p\left(y\right) d\mu\left(y\right) \int_{\chi} p\left(x\right) f\left(\frac{q\left(x\right)}{p\left(x\right)}\right) d\mu\left(x\right) \\ &+ (1-t) \int_{\chi} d\mu\left(x\right) \int_{\chi} p\left(y\right) f\left(\frac{q\left(y\right)}{p\left(y\right)}\right) d\mu\left(y\right) \\ &= t \cdot D_f\left(p,q\right) + (1-t) \cdot D_f\left(p,q\right) = D_f\left(p,q\right) \\ &= F_f\left(p,q;0\right) = F_f\left(p,q;1\right) \end{split}$$

and the bound (2.17) is proved. Since f is convex, then for all $t \in [0, 1]$ and $x, y \in \chi$, we have

$$\begin{aligned} &\frac{1}{2} \left\{ f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + (1-t) \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] + f\left[(1-t) \cdot \frac{q\left(x\right)}{p\left(x\right)} + t \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] \right\} \\ &\geq \quad f\left[\frac{1}{2} \left(\frac{q\left(x\right)}{p\left(x\right)} + \frac{q\left(y\right)}{p\left(y\right)}\right)\right]. \end{aligned}$$

Multiplying by $p(x) p(y) \ge 0$ and integrating over χ^2 , we have,

$$\frac{1}{2} \left[F_f(p,q;t) + F_f(p,q;1-t) \right]$$

$$\geq \int_{\chi} \int_{\chi} p(x) p(y) f\left[\frac{1}{2} \left(\frac{q(x)}{p(x)} + \frac{q(y)}{p(y)} \right) \right] d\mu(x) d\mu(y)$$

8

and the first part of (2.18) is proved.

Using Jensen's integral inequality, we may write:

$$\begin{split} & \int_{\chi} \int_{\chi} f\left[\frac{1}{2} \left(\frac{q\left(x\right) p\left(y\right) + p\left(x\right) q\left(y\right)}{p\left(x\right) q\left(y\right)}\right)\right] p\left(x\right) p\left(y\right) d\mu\left(x\right) d\mu\left(y\right) \\ & \geq \quad f\left[\int_{\chi} \int_{\chi} \frac{1}{2} \left(\frac{q\left(x\right) p\left(y\right) + p\left(x\right) q\left(y\right)}{p\left(x\right) q\left(y\right)}\right) p\left(x\right) p\left(y\right) d\mu\left(x\right) d\mu\left(y\right)\right] \\ & = \quad f\left[\frac{1}{2} \left[\int_{\chi} p\left(x\right) d\mu\left(x\right) \int_{\chi} p\left(y\right) d\mu\left(y\right) + \int_{\chi} q\left(x\right) d\mu\left(x\right) \int_{\chi} q\left(y\right) d\mu\left(y\right)\right]\right] \\ & = \quad f\left(1\right) = 0 \end{split}$$

and the second part of (2.18) is proved.

(iv) The mapping $F_f(p,q;\cdot)$ being convex on [0,1], we may write, for $1 \ge t_2 > t_1 \ge \frac{1}{2}$, that,

$$\frac{F_f(p,q;t_2) - F_f(p,q;t_1)}{t_2 - t_1} \ge \frac{F_f(p,q;t_1) - F_f(p,q;\frac{1}{2})}{t_1 - \frac{1}{2}}$$

and as

$$F_f(p,q;t_1) \ge F_f\left(p,q;\frac{1}{2}\right), \ t_1 \ge \frac{1}{2},$$

we deduce that $F_f(p,q;t_2) \ge F_f(p,q;t_1)$, i.e., the mapping $F_f(p,q;\cdot)$ is monotonically nondecreasing on $[0, \frac{1}{2}]$.

Similarly, we can prove that $F_f(p, q; \cdot)$ is monotonically nonincreasing on $[0, \frac{1}{2}]$, and the statement (iv) is proved.

(v) Using Jensen's integral inequality, we have,

$$\begin{split} &\int_{\chi} p\left(y\right) f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + (1-t) \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] d\mu\left(y\right) \\ \geq & f\left[\int_{\chi} p\left(y\right) \left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + (1-t) \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] d\mu\left(y\right)\right] \\ = & f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} \int_{\chi} p\left(y\right) d\mu\left(y\right) + (1-t) \cdot \int_{\chi} q\left(y\right) d\mu\left(y\right) \\ = & f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + (1-t)\right]. \end{split}$$

Multiplying by $p(x) \ge 0$ and integrating over χ , we have,

$$F_{f}(p,q;t) \geq \int_{\chi} p(x) f\left[t \cdot \frac{q(x)}{p(x)} + (1-t)\right] d\mu(x)$$

= $H_{f}(p,q;t),$

for all $t \in [0, 1]$. Now, as

$$F_f(p,q;1-t) \ge H_f(p,q;1-t)$$

and $F_f(p,q;t) = F_f(p,q;1-t)$ for all $t \in [0,1]$, the inequality (2.19) is completely proved.

References

- H. JEFFREYS, An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London, 186 A (1946), 453-461.
- [2] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
- [3] A. RÉNYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Stat. and Prob., University of California Press, 1 (1961), 547-561.
- [4] J.H. HAVRDA and F. CHARVAT, Quantification method classification process: concept of structural α-entropy, Kybernetika, 3 (1967), 30-35.
- [5] J.N. KAPUR, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3 (1984), 1-16.
- [6] B.D. SHARMA and D.P. MITTAL, New non-additive measures of relative information, Journ. Comb. Inf. Sys. Sci., 2 (4)(1977), 122-132.
- [7] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy function, *IEEE Trans. Inf. Th.*, 28 (3) (1982), 489-495.
- [8] C.R. RAO, Diversity and dissimilarity coefficients: a unified approach, *Theoretic Population Biology*, 21 (1982), 24-43.
- [9] J. LIN, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Th., 37 (1) (1991), 145-151.
- [10] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect observations, *Studia Math. Hungarica*, 2 (1967), 299-318.
- [11] I. CSISZÁR, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-339.
- [12] S.M. ALI and S.D. SILVEY, A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Sec B, 28 (1966), 131-142.
- [13] I. VAJDA, Theory of Statistical Inference and Information, Dordrecht-Boston, Kluwer Academic Publishers, 1989.
- [14] M. MEI, The theory of genetic distance and evaluation of human races, Japan J. Human Genetics, 23 (1978), 341-369.
- [15] A. SEN, On Economic Inequality, Oxford University Press, London 1973.
- [16] H. THEIL, Economics and Information Theory, North-Holland, Amsterdam, 1967.
- [17] H. THEIL, Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.
- [18] E.C. PIELOU, Ecological Diversity, Wiley, New York, 1975.
- [19] D.V. GOKHALE and S. KULLBACK, Information in Contingency Tables, New York, Marcel Dekker, 1978.
- [20] C.K. CHOW and C.N. LIN, Approximating discrete probability distributions with dependence trees, *IEEE Trans. Inf. Th.*, **14** (3) (1968), 462-467.
- [21] D. KAZAKOS and T. COTSIDAS, A decision theory approach to the approximation of discrete probability densities, *IEEE Trans. Perform. Anal. Machine Intell.*, 1 (1980), 61-67.
- [22] T.T. KADOTA and L.A. SHEPP, On the best finite set of linear observables for discriminating two Gaussian signals, *IEEE Trans. Inf.* Th., **13** (1967), 288-294.
- [23] T. KAILATH, The divergence and Bhattacharyya distance measures in signal selection, *IEEE Trans. Comm. Technology.*, Vol COM-15 (1967), 52-60.
- [24] M. BETH BASSAT, f-entropies, probability of error and feature selection, Inform. Control, 39 (1978), 227-242.
- [25] C.H. CHEN, Statistical Pattern Recognition, Rocelle Park, New York, Hoyderc Book Co., 1973.
- [26] V.A. VOLKONSKI and J. A. ROZANOV, Some limit theorems for random function -I, (English Trans.), Theory Prob. Appl., (USSR), 4 (1959), 178-197.
- [27] M.S. PINSKER, Information and Information Stability of Random variables and processes, (in Russian), Moscow: Izv. Akad. Nouk, 1960.
- [28] I. CSISZÁR, A note on Jensen's inequality, Studia Sci. Math. Hung., 1 (1966), 185-188.
- [29] H.P. McKEAN, JR., Speed of approach to equilibrium for Koc's caricature of a Maximilian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367.
- [30] J.H.B. KEMPERMAN, On the optimum note of transmitting information, Ann. Math. Statist., 40 (1969), 2158-2177.

- [31] S. KULLBACK, A lower bound for discrimination information in terms of variation, *IEEE Trans. Inf. Th.*, **13** (1967), 126-127.
- [32] S. KULLBACK, Correction to a lower bound for discrimination information in terms of variation, *IEEE Trans. Inf. Th.*, 16 (1970), 771-773.
- [33] I. VAJDA, Note on discrimination information and variation, IEEE Trans. Inf. Th., 16 (1970), 771-773.
- [34] G.T. TOUSSAINT, Sharper lower bounds for discrimination in terms of variation, IEEE Trans. Inf. Th., 21 (1975), 99-100.
- [35] F. TOPSOE, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll., RGMIA, 2 (1) (1999), 85-98.
- [36] L. LECAM, Asymptotic Methods in Statistical Decision Theory, New York: Springer, 1986.
- [37] D. DACUNHA-CASTELLE, Ecole d'ete de Probability de Saint-Flour, III-1977, Berlin, Heidelberg: Springer 1978.
- [38] C. KRAFT, Some conditions for consistency and uniform consistency of statistical procedures, Univ. of California Pub. in Statistics, 1 (1955), 125-142.
- [39] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Annals Math. Statist., 22 (1951), 79-86.
- [40] E. HELLINGER, Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. für reine and Augeur. Math., 36 (1909), 210-271.
- [41] A. BHATTACHARYYA, On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc., 35 (1943), 99-109.
- [42] I. J. TANEJA, Generalised Information Measures and their Applications (http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html).
- [43] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
- [44] J. LIN and S.K.M. WONG, A new directed divergence measure and its characterization, Int. J. General Systems, 17 (1990), 73-81.
- [45] H. SHIOYA and T. DA-TE, A generalisation of Lin divergence and the derivative of a new information divergence, *Elec. and Comm. in Japan*, 78 (7) (1995), 37-40.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: neil@matilda.vu.edu.au *URL*: http://sci.vu.edu.au/staff/neilb.html

E-mail address: pc@matilda.vu.edu.au *URL*: http://rgmia.vu.edu.au/cerone

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.vu.edu.au/SSDragomirWeb.html