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Abstract. Let n and m be natural numbers. Suppose {ai}n+m
i=1 is an increas-

ing, logarithmically convex, and positive sequence. Denote the power mean

Pn(r) for any given positive real number r by Pn(r) =
(

1
n

∑n
i=1 ar

i

)1/r
. Then

Pn(r)/Pn+m(r) ≥ an/an+m. The lower bound is the best possible.

1. Introduction

It is well-known that the following inequality

n

n + 1
<

(
1
n

∑n
i=1 ir

1
n+1

∑n+1
i=1 ir

)1/r

<
n
√

n!
n+1
√

(n + 1)!
(1)

holds for r > 0 and n ∈ N. We call the left-hand side of this inequality Alzer’s

inequality [1], and the right-hand side Martins’ inequality [8].

Let {ai}i∈N be a positive sequence. If ai+1ai−1 ≥ a2
i for i ≥ 2, we call {ai}i∈N

a logarithmically convex sequence; if ai+1ai−1 ≤ a2
i for i ≥ 2, we call {ai}i∈N a

logarithmically concave sequence.

In [2], Martins’ inequality was generalized as follows: Let {ai}i∈N be an in-

creasing, logarithmically concave, positive, and nonconstant sequence satisfying

(a`+1/a`)` ≥ (a`/a`−1)`−1 for any positive integer ` > 1, then(
1
n

∑n
i=1 ar

i

1
n+m

∑n+m
i=1 ar

i

)1/r

<
n
√

an!
n+m
√

an+m!
, (2)

where r is a positive number, n, m ∈ N, and ai! denotes the sequence factorial∏n
i=1 ai. The upper bound is best possible.
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Recently, in [14], another generalization of Martins’ inequality was obtained:

Let n, m ∈ N and {ai}n+m
i=1 be an increasing, logarithmically concave, positive, and

nonconstant sequence such that the sequence
{
i
[ai+1

ai
− 1
]}n+m−1

i=1
is increasing.

Then the inequality (2) between ratios of the power means and of the geometic

means holds. The upper bound is the best possible.

Alzer’s inequality has invoked the interest of several mathematicians including,

for examples, P. Cerone [3], Ch.-P. Chen [3], S. S. Dragomir [3], N. Elezović [4],

B.-N. Guo [5, 16, 17], J.-Ch. Kuang [6], L. Debnath [15], Zh. Liu [7], Q.-M. Luo

[18], N. Ozeki [9], J. Pečarić [4], J. Sándor [19, 20], J. S. Ume [21], the first author

[10]–[13] of this paper, and so on.

In [22], a general form of Alzer’s inequality was obtained: Let {ai}∞i=1 be a

strictly increasing positive sequence, and let m be a natural number. If {ai}∞i=1 is

logarithmically concave and the sequence
{(an+1

an

)n}∞
i=1

is increasing, then

an

an+m
<

(
1
n

∑n
i=1 ar

i

1
n+m

∑n+m
i=1 ar

i

)1/r

. (3)

In this short note, utilizing the mathematical induction, we obtain the following

Theorem 1. Let n and m be natural numbers. Suppose {ai}n+m
i=1 is an increasing,

logarithmically convex, and positive sequence. Denote the power mean Pn(r) for

any given positive real number r by

Pn(r) =

(
1
n

n∑
i=1

ar
i

) 1
r

. (4)

Then the sequence
{

Pi(r)
ai

}n+m

i=1
is decreasing for any given positive real number r,

that is,
Pn(r)

Pn+m(r)
≥ an

an+m
. (5)

The lower bound in (5) is the best possible.

Considering that the exponential functions axα

and aαx

for given constants α ≥ 1

and a > 1 is logarithmically convex on [0,∞), as a corollary of Theorem 1, we have

Corollary 1. Let α ≥ 1 and a > 1 be two constants. For any given real number r,

the following inequalities hold:

a(n+k)α

a(n+m+k)α ≤

(
1
n

∑n+k
i=k+1 aiαr

1
n+m

∑n+m+k
i=k+1 aiαr

)1/r

, (6)



A LOWER BOUND FOR RATIO OF POWER MEANS 3

aαn+k

aαn+m+k ≤

(
1
n

∑n+k
i=k+1 aαir

1
n+m

∑n+m+k
i=k+1 aαir

)1/r

, (7)

where n and m are natural numbers, and k is a nonnegative integer. The lower

bounds above are the best possible.

2. Proof of Theorem 1

The inequality (5) is equivalent to
1
n

∑n
i=1 ar

i

1
n+m

∑n+m
i=1 ar

i

≥ ar
n

ar
n+m

, (8)

that is,
1

(n + m)ar
n+m

n+m∑
i=1

ar
i ≤

1
nar

n

n∑
i=1

ar
i . (9)

This is also equivalent to

1
(n + 1)ar

n+1

n+1∑
i=1

ar
i ≤

1
nar

n

n∑
i=1

ar
i . (10)

Since
n+1∑
i=1

ar
i =

n∑
i=1

ar
i + ar

n+1, (11)

inequality (10) reduces to
n∑

i=1

ar
i ≥

nar
nar

n+1

(n + 1)ar
n+1 − nar

n

. (12)

It is easy to see that inequality (12) holds for n = 1.

Assume that inequality (12) holds for some n > 1. Using the principle of mathe-

matical induction, considering equality (11) and the inductive hypothesis, it is easy

to show that the induction for inequality (12) on n + 1 can be written as

(n + 2)ar
n+2 − (n + 1)ar

n+1

(n + 1)ar
n+1 − nar

n

≥
(

an+2

an+1

)r

, (13)

which can be rearranged as

k

[(
an+1

an+2

)r

−
(

an

an+1

)r]
+
(

an+1

an+2

)r

≤ 1. (14)

Since the sequence {ai}n+m
i=1 is increasing, we have an+1

an+2
≤ 1 and

(an+1
an+2

)r ≤ 1.

From the logarithmical convexity of the sequence {ai}n+m
i=1 , it follows that an+1

an+2
≤

an

an+1
and

(an+1
an+2

)r − ( an

an+1

)r ≤ 0. Therefore, inequality (14) is valid. Thus, the

inequality (5) holds.
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It can easily be shown by L’Hospital rule that

lim
r→∞

Pn(r)
Pn+m(r)

=
an

an+m
. (15)

Hence, the lower bound in (5) is the best possible. The proof is complete.
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