ON A MEAN VALUE ON INTERVAL $[a, b]$ IN THE CONTEXT OF COMPLEMENTARY AND RECIPROCAL MEANS

Jovan V. Malešević

Abstract

In introduction - statement 1^{0}, besides "parallelogram of the means" from article [1], we also state the means (5) from the article [2]. In the statement 2^{0}, we give the features of the means (5) on the graph of the function $y=M_{x}(a, b)$ together with calculating their corresponding indexes on the graph. In the statement 3^{0}, the mean $K[\bar{M}(a, b)]$ is considered, as well as its reciprocal mean.

$\mathbf{1}^{\mathbf{0}}$. In the paper [1] by figure 2 there are the graphs of the functions given

$$
\begin{equation*}
y=M_{x}(a, b) \quad \text { and } \quad y_{1}=R\left[M_{x}(a, b)\right]=M_{1-x}(a, b), \tag{1}
\end{equation*}
$$

where the graph of the reciprocal function $R\left[M_{x}(a, b)\right]$ is axis symmetrical to the graph of the function $M_{x}(a, b)$ in relation to the line $x=\frac{1}{2}\left(R\left[M_{\frac{1}{2}+x}(a, b)\right]=\right.$ $\left.M_{\frac{1}{2}-x}(a, b)\right)$ and to the middle points marked on them:

$$
\begin{equation*}
H\left(0, \frac{2 a b}{a+b}\right), G\left(\frac{1}{2}, \sqrt{a b}\right), A\left(1, \frac{a+b}{2}\right), L\left(\frac{3}{2}, \frac{a^{\frac{3}{2}}+b^{\frac{3}{2}}}{a^{\frac{1}{2}}+b^{\frac{1}{2}}}\right), M\left(2, \frac{a^{2}+b^{2}}{a+b}\right) \tag{2}
\end{equation*}
$$

where the quadrable $H G M L$ is a parallelogram. Namely, from the complementarity:

$$
\begin{equation*}
M(a, b)+H(a, b)=G(a, b)+L(a, b)=a+b \tag{3}
\end{equation*}
$$

follows

$$
\begin{equation*}
G(a, b)-H(a, b)=M(a, b)-L(a, b) \text { and } L(a, b)-H(a, b)=M(a, b)-G(a, b) \tag{4}
\end{equation*}
$$

Next, in the paper [2] the mean is introduced, which is marked here as $\bar{M}(a, b)$:

$$
\begin{equation*}
\bar{M}(a, b)=\frac{4 a b}{a^{2}+6 a b+b^{2}} \quad \text { and } \quad R[\bar{M}(a, b)]=\frac{A(a, b)+H(a, b)}{2} . \tag{5}
\end{equation*}
$$

$\mathbf{2}^{\mathbf{0}}$. At this point we give the graphic construction of the means $\bar{M}(a, b)$ and $R[\bar{M}(a, b)]$ on the graph of the function $y=M_{x}(a, b)$, as well as the verification of the relations:

$$
\begin{equation*}
G(a, b)<R[\bar{M}(a, b)]<A(a, b) \quad \text { and } \quad H(a, b)<\bar{M}(a, b)<G(a, b) \tag{6}
\end{equation*}
$$

and the calculation of their corresponding indexes on the graph of the function.

According to the downward convexity of the graph of the function $y=M_{x}(a, b)$ on the interval $[0,1]$ is true (figure):

$$
\begin{equation*}
R[\bar{M}(a, b)]=\frac{A(a, b)+H(a, b)}{2}>G(a, b) \quad \text { and } \quad R[\bar{M}(a, b)]<A(a, b) \tag{7}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
R[\bar{M}(a, b)] \in(G(a, b), A(a, b))-\text { the point } \bar{A} . \tag{8}
\end{equation*}
$$

Next, taking into account that $y=M_{x}(a, b)$ strictly increases

$$
\begin{equation*}
R[\bar{M}(a, b)] \in M_{x}(a, b) \tag{9}
\end{equation*}
$$

for the unique $x=x_{0} \in\left(\frac{1}{2}, 1\right)$ - the point B on the graph of the function $y=M_{x}(a, b)$ was created by the intersection of the line from point \bar{A}, being parallel to x-axis and the mentioned graph.

Next, the perpendicular from the point B to x-axis in the intersection with the graph of the function $R\left[M_{x}(a, b)\right]=M_{1-x}(a, b)$, brings us to the point C on the graph of function $y_{1}=M_{1-x}(a, b)$. For $x_{0}=\frac{1}{2}+t_{0}, t_{0} \in\left(0, \frac{1}{2}\right)$, we obtain that [1]:

$$
\begin{equation*}
R\left[M_{\frac{1}{2}+t_{0}}(a, b)\right]=M_{\frac{1}{2}-t_{0}}=M_{\bar{x}}(a, b), \tag{10}
\end{equation*}
$$

where $\bar{x}=\frac{1}{2}-t_{0} \in\left(0, \frac{1}{2}\right)$. Thus, the perpendicular from the point C onto y-axis in the intersection with the graph of the function $y=M_{x}(a, b)$, brings us to the value $\bar{M}(a, b)$ where

$$
\begin{equation*}
\bar{M}=M_{\bar{x}}(a, b), \bar{x} \in\left(0, \frac{1}{2}\right) \quad \text { and } \quad H(a, b)<M_{\bar{x}}(a, b)<G(a, b) \tag{11}
\end{equation*}
$$

- point D on the graph of function $y=M_{x}(a, b)$ (figure).

Figure

We are going to determine the numerical value for \bar{x}. The function

$$
\begin{equation*}
y=\frac{a^{x}+b^{x}}{a^{x-1}+b^{x-1}} \tag{12}
\end{equation*}
$$

is an increasing one, so it has the inverse function which is also increasing. From (12) it follows that

$$
\begin{equation*}
\left(\frac{a}{b}\right)^{1-x}=\frac{b-y}{y-a} . \tag{13}
\end{equation*}
$$

In our case

$$
\begin{equation*}
y=\frac{4 a b(a+b)}{a^{2}+6 a b+b^{2}}, \tag{14}
\end{equation*}
$$

according to the relation (13), we obtain that

$$
\begin{equation*}
\bar{x}=\frac{\log (a+3 b)-\log (b+3 a)}{\log b-\log a} \tag{15}
\end{equation*}
$$

where $\bar{x} \in\left(0, \frac{1}{2}\right)$. Namely, the following inequality is true:

$$
\begin{equation*}
0<\frac{\log (a+3 b)-\log (b+3 a)}{\log b-\log a}<\frac{1}{2}, \quad b>a>0 . \tag{16}
\end{equation*}
$$

Index x_{0} is determined by the relation: $x_{0}=1-\bar{x}$.
$\mathbf{3}^{\mathbf{0}}$. To estimate the complementary mean value for the mean $\bar{M}(a, b)$, and the reciprocal mean value for the mean $K[\bar{M}(a, b)]$ there is the following calculation:

$$
\begin{aligned}
K[\bar{M}(a, b)]=K[H(A, H)] & =K\left[\frac{2 A H}{A+H}\right]=2 A-\frac{2 A H}{A+H}=2 A\left(1-\frac{H}{A+H}\right) \\
& =\frac{A}{H} \cdot \frac{2 A H}{A+H}=\frac{A}{H} \cdot H(A, H)=\frac{A}{H} \cdot \bar{M}(a, b),
\end{aligned}
$$

and

$$
R[K[\bar{M}(a, b)]]=R\left[\frac{A}{H} \cdot \bar{M}(a, b)\right]=\frac{H}{A} \cdot R[\bar{M}(a, b)]=\frac{H}{A} \cdot A(A, H)=\frac{H}{A} \cdot \bar{A}(a, b),
$$

where $\bar{A}(a, b)=A(A, H)$. Finally

$$
\begin{equation*}
K[\bar{M}(a, b)]=\frac{A}{H} \cdot \bar{M}(a, b) \quad \text { and } \quad R[K[\bar{M}(a, b)]]=\frac{H}{A} \cdot \bar{A}(a, b) . \tag{17}
\end{equation*}
$$

REFERENCES

[1] J. V. Malešević: On a mean value on the interval $[a, b]$, classic mean values and geometric interpretation; Glasnik Šumarskog fakulteta, Beograd, 1996-1997, №. 78 79, pg. 79 - 90. (in Serbian)
[2] J. V. Malešević: On an inequality and a mean value; RGMIA Research Reports Collection, Vol. 3, №. 2, 2000, pg 281 - 287.

Jovan V. Malešević
Futoška 60
21000 Novi Sad
Yugoslavia
E-mail: malesh@EUnet.yu

