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Abstract

We study Hermite-Hadamard type inequalities for increasing radiant functions and give some
simple examples of such inequalities.
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1 Introduction

In this paper we consider one generalization of Hermite-Hadamard inequalities for the
class InR of increasing radiant functions defined on the cone R} | = {x € R" : z; >
0(i=1,...,n)}.

Recall that for a function f : [a, b] — IR, which is convex on [a, b], we have the following:

b
F(557) < [ @ < S0 + £0)) (1)
These inequalities are well known as the Hermite-Hadamard inequalities. There are many
generalizations of these inequalities for classes of nonconvex functions. For more informa-
tion see ([2], Section 6.5), [1] and references therein. In this paper we consider general-
izations of the inequalities from the both sides of (1). Some technique and notions, which
are used here, can be found in [1].

In Section 2 of this paper we give definition if InR functions and recall some results
related to these functions. In Section 3 we consider Hermite-Hadamard type inequalities
for the class InR. Some examples of such inequalities for functions defined on IR;; and
IR?F , are given in Section 4.



2 Preliminaries

We assume that the cone IR} , is equipped with coordinate-wise order relation.

Recall that a function f : R, — IRy = [0, +o0] is called increasing radiant (InR) if:

1. fis increasing: * >y = f(z) > f(y);

2. fisradiant: f(Ax) < Af(x) for all A € (0,1) and z € IRY} .

For example, any function f of the following form belongs to the class InR:

fl@)= D7 epay -y,

k|>1

Wherek:(kl,...,kn), “{7’ =ki+--+kn ki >0, ¢, >0.
For each f € InR its conjugate function ([4])

1
(@) = 27,
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where 1/x = (1/x1,...,1/z,), is also increasing and radiant. Hence any function
1

f(z) = &,
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is InR. In more general case we have the following InR functions:

k t
flz) = —kn |

"y
Y kzo k" T

where u,v > 0, ¢t > 1/(u+v). Indeed, these functions are increasing and for any A € (0, 1)
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Consider the coupling function ¢ defined on IR" | x IR | :

0 i) <1,
””@—{<m@,ium@ZL

where
(h,z) = min{h;z; : i=1,...,n}

is the so-called min-type function.

Denote by ¢y, the function defined on R’} | by the formula: ¢ (x) = p(h,x).

) = N f () < M f ().
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It is known (see [4]) that the set
1 n
H={-pn: heRY,, ce (0,400
c

is the supremal generator of the class InR of all increasing radiant functions defined on
RY,.
It is known also that for any InR function f

F(h)e (;L:Q < f(z) forallz,h e R",. (3)

Note that for ¢ = 400 we set cop(z) = sup;so(lon(x)).
Formula (3) implies the following statement.

Proposition 2.1 Let f be an InR function defined on R’ and A C IR"} . Then the
function

fa(@) = sup () (.2)

heA h

is InR, and it possesses the properties:
1) fa(z) < f(z) for allz € RY .,
2.) fa(z) = f(x) for allx € A.

3 Hermite-Hadamard type inequalities

Let D C IR"} | be a closed domain (in topology of IR} | ), i.e. D is bounded set such that
clint D = D. Denote by Q(D) the set of all points Z € D such that

1 1
a5 e (Gr) =1 8
where A(D) = [pdx, dx=dxy---dx,.

Proposition 3.1 Let f be an InR function defined on IR"} . If the set Q(D) is nonempty
and f is integrable on D then

B 1
sw (%) < 5 /D f(z) da. (5)

zeQ(D)

Proof: First, let # € Q(D) and f(Z) < 4o00. Then f(Z)p(1/z,x) < f(z) for all x € D C
IR" | (see (3)). By (4), we get

f<x>:f<x>A(1D) [ (50) da::A(lm [ f@e (5.2) dng(lD) [ f@)dz.



Now, suppose that f(z) = +oo. Then for all [ > 0 function lp;/z(x) is minorant of f.
Hence | < (1/A(D)) [, f(z)dz Y1 > 0, that implies that function f is not integrable on
D. This contradiction shows that f(Z) < 400 for any z € Q(D). O

As it was done in [1], we may introduce the set Q. (D) of all maximal elements of
Q(D). It means that a point z € Q(D) belongs to @, (D) if and only if for any y € Q(D):
(y >z) = (y = ). Suppose that the set Q(D) is nonempty. It is easy to see that Q(D)
is closed set in topology of IR"} , . Hence, using Zorn Lemma we conclude that Q,,(D) is
nonempty closed set and for any z € Q(D) there exists § € @, (D), for which z < g.

So, in assumptions of Proposition 3.1 we have the following estimate:

B 1
iezljnrsz(w) < AD) /D f(z)dz. (6)

Since f is increasing function then this inequality implies inequality (5).

Remark 3.1 Let D C R’} | be a closed domain and the set (D) is nonempty. Then for
every T € (D) inequality

_ 1
1@ < gy [, )

is sharp. For example, if we set f = ¢, /5 then (see (4))

f(x):¢<;a$> =1=A(1D)/D<p<;,x> dﬂs:A(lD)/Df(x)dx.

Note that here we used only the values of function f on a set D. Therefore we need
the following definition.

Definition 3.1 Let D C R" . A function f : D — [0,400] is called increasing radiant
on D if there exists an InR function F defined on R | such that F|p = f, that is
F(z) = f(z) for allz € D.

We assume here, as above, that for ¢ = +oo: cpp(x) = sup;o(lon(z)).

Proposition 3.2 Let f : D — [0,400] be a function defined on D C R . Then the
following assertions are equivalent:

1.) f is increasing radiant on D,

2.) f(h)e(1/h,z) < f(x) for all h,x € D,

3.) f is abstract convexr with respect to the set of functions (1/c)p(1/n) : D — [0, +00] with
h e D, ce (0,400].

Proof: 1.) = 2.) By Definition 3.1, there exists an InR function F' : IR}, — [0, +oc]
such that F(z) = f(z) for all z € D. Then Proposition 2.1 implies that the function

Fp(x) = }SllelgF(h)w (2 x)



interpolates F' in all points x € D. Hence
1
sup f(h)e (,ZL‘) = f(x) for all x € D,
heD h

that implies the assertion 2.)

2.) = 3.) Consider the function fp defined on D

fole) = sup f(e (5.0,

heD h

First, it is clear that fp is abstract convex with respect to the set of functions defined on
D: {(1/c)pasmy: h €D, c€(0,+oc]}. Further, using 2.) we get for all z € D

o) < 1(a) = f(@)e (5.2) < sup f(bg (3.0) = Fola).

heD
So, fp(z) = f(z) for all x € D and we have the desired statement 3.)

3.) = 1.) It is obvious since any function (1/¢)¢y, defined on D can be considered as
elementary function (1/c)¢), € H defined on R’ | . O

Remark 3.2 We may require in Proposition 3.1, formula (6) and Remark 3.1 only that
function f is increasing radiant and integrable on D.

Remark 3.3 We may consider more general case of Hermite-Hadamard type inequalities
for InR functions. Let f be an increasing radiant function on D. Then Proposition 3.2
implies that f(h)e(1/h,z) < f(x) for all h,z € D. If f(Z) < +oo and f is integrable on
D then

1@ [ e(jzayde < [ f@)da. (7)

This inequality is sharp for any Z € D since we have the equality in (7) for f = ©(1/z)-
Proposition 3.2 implies also that the class InR is broad enough.

Proposition 3.3 Let S C R, be a set such that every point x € S is mazximal in
S. Then for any function f : S — [0,400] there exists an increasing radiant function
F:RY, — [0,+00], for which F|s = f.

Proof: Tt is sufficiently to check only that f(h)p(1/h,z) < f(z) for all h,x € S. If h = x
then p(1/h,x) = 1, f(h) = f(z). If h # x then (1/h,z) = min; z;/h; < 1 since h is
maximal point in S, hence ¢(1/h,z) =0 and f(h)p(1/h,z) =0 < f(x). O

In particular, Proposition 3.3 holds if S = {z € R}, : (21)P+ -+ (2,)? = 1}, where
p > 0.

Now we present two assertions supported by definition of function . Recall that a set
Q C R, is called normal if for each = € €2 we have (y € Q for all y < z). Normal hull
N(Q) of a set 2 is defined as follows: N(Q2) = {z € R}, : (3y € Q) = < y} (see, for
example, [3]).



Proposition 3.4 Let D,Q) C IR}, be a closed domains and D C €. If the set Q(L2) is
nonempty and

(\D) € N(Q(2)) (8)
then the set Q(D) consists of all points T € Q such that

A(lD)/QSO<;’$> dx = 1.

Proof: If D = () then the assertion is clear. Assume that D # Q. Since D, 2 are closed
domains and D C €2 then
A(D) < A(Q). 9)

Let 7 € Q and

A(lD)/Qq)(i,w) dr =1. (10)

We show that ¢(1/z,2) = 0 for all z € Q\D. If z € Q\D then, by (8), there exists a
point y € Q(): y > z; hence (1/z,z) < (1/Z,y). Suppose that (1/z,y) > 1. Then
y>r = 1/y<1/z. Since y € Q(Q?) then, by (9) and (10)

-ty () <y o () 5 i [ ().

So, we have the inequalities: (1/z,x) < (1/z,y) < 1. Therefore ¢(1/z,x) = 0 for all

reN\D = , 1 1 ,
1:14(D)/QSO<.T’:L‘> da::A(D)/Dgp(@,a:) dz.

The equality (¢(1/Z,-) = 0 on Q\D) implies also that z # =z for all z € Q\D, hence
T ¢ QO\D = Z € D. Thus, we have the established result: z € Q(D).

Conversely, let 7 € Q(D). For any = € Q\D there exists § € Q(€2) such that § >
r = (1/z,z) < (1/z,y). Moreover, we may assume that y is maximal point in Q(),
ie. g€ Qm(Q). First, we check that

<;,x) <1forall z € Q\D, § € Qmn(9). (11)
Indeed, if x € Q\D then for some z € Qn(Q): v <z = (1/y,z) < (1/y,z). But
(1/9,z) <1 since g,z € Qn(Q) (otherwise, if (1/7,2z) > 1then z >§ = 7§ & Qm(Q)).
Now we verify that (1/z,x) < 1 for all z € Q\D. If z € Q\D then for some § € Q,,():
(1/z,z) < (1/z,y). Suppose that (1/Z,y) > 1. Then y > = and therefore, using inclusion
z € Q(D), we get

1:14(11))/Dg0<915,3:> dx>A(1m/Dg0<:16,:c> dmzA(lm/Dgo(gl/,m) dx. (12)



Let D1 = {x € O\D : (1/g,z) < 1}, Do = {x € Q\D : (1/y,z) = 1}. It follows from
(11) that Q\D = Dy U Dy (D1 N Dy = (), hence

1 1 1 1
/ ‘P<_,x> dac:/ <P<_7$> dl"—F/ <P<_7$) df:/ 90(_733) dx = dz.
Q\D Z/ Dy y Do y Do y Do

But the last integral [ D, dx 1s also equal to zero, since the set Dy has no interior points.

Thus, by (12) X X | X
v g e (52) do = e () o

This inequality contradicts to the inclusion § € @Q,,(2). So, we conclude that the inequality
(1/Z,y) > 1 is impossible. Hence (1/z,z) < (1/z,y) < 1 for all z € Q\D and §y = y(z) €
Qm (), that implies required equality:

=y o () =y ()

O

Corollary 3.1 Let D1, Dy C IRy, be a closed domains such that

A(Dy) = A(Dy).
If there exists a closed domain  C IRYy , , for which the set Q(S2) is nonempty and

DicQ (D) CNQEQ) (i=1.2),

then

Q(D1) = Q(D2).
Proposition 3.5 Let D,Q2 C R, be a closed domains and D C €. If

NOQ\D)ND =10 (13)

then the set Q(D) consists of all points T € D such that

fl(lD)/Q(P(;:’x) dx = 1.

Proof: Formula (13) implies that if Z € D then z ¢ N(Q\D). It means that for all
reND: <z = (1/z,2) <1 = ¢(1/z,2) =0.
Thus, for any z € D

A(lD)/QSO(alU’m) dr =1 — fl(lD)//jSO(alf’x) dr =1 <= 7z € Q(D).



Now consider the generalization of the inequality from the right-hand side of (1). Let f
be an increasing radiant function defined on a closed domain D C IR'} |, and f is integrable
on D. Then f(h)p(1/h,x) < f(x) for all h,z € D. In particular, f(h)(1/h,z) < f(z) if
(1/h,2z) > 1. Hence for all z > h

f(z)
(1/h, x)
where h(y) = (h,y)T = max; h;y; is the so-called max-type function. So, if z € D and

T > x for all x € D, then f(z) < (x,1/Z)" f(Z) for any £ € D. This reduces to the
following assertion.

f(h> < = <h’ 1/$>+f($),

Proposition 3.6 Let function f be an increasing radiant and integrable on D. If T € D
and x > x for all x € D, then

| t@da < @) [ (@17 do. (14)
D D

Inequality (14) is sharp since we get equality for f(z) = (x,1/z)7.

In more general case we have the following inequalities:

f(z) < {x,1/2)" sup f(y) for all z > x.

yeD
Hence
f(z) <sup f(y)inf{(z,1/2)" : 2>2, 2€ D} forallz € D
yeD
and therefore
/ f(z)dx < sup f(y)/ inf{(z,1/z)": 2>z, ¥ € D}dx. (15)
D yeD D

4 Examples

Here we describe the set Q(D) for some special domains D of the cones R4 and IR% .

Let a,b € IR be a numbers such that 0 < a < b. We denote by [a,b] the segment
{r €eRst: a <z <b}.

Example 4.1 Let D = [a,b] C R4y, where 0 < a < b. According to definition, the set
Q(D) consists of all points z € D, for which

oo (e o= [ o (Gor) =
AD) JpP\#") " T —a ), P\F") T

lx _ 0, ifz<uz,
LA x/z, ifz>z.

We have:



Hence, if £ € D = [a, b] then

/abcp<31_c,x> d:c:/;;d:c:;j(bQ—a_cQ). (16)
So, a point Z € [a, b] belongs to Q(D) if and only if
M(b2—x2) =1 < 22 +20b—a)z—b*=0.
We get
T=4/(b—a)>+b>—(b—a). (17)
Show that for the point (17)
a<z<? ; b (18)

Since b > a > 0 then 7 = /(b — a)2 + 0% — (b —a) > Vb2 — (b — a) = a. Further,

j<a;b — (b—a)2+62<(b—a)+a;b:3b2_a —

4(b—a)* + 4b* < (3b — a)* < 0 < b* + 2ab — 3a*.
The last inequality follows from the same conditions b > a > 0.

Thus, Q([a,b]) = {/(b—a)?>+b*> — (b —a)}. Remark 3.1 implies that for every InR
function f € Li[a, b]

/abf(x) dx

and this inequality is sharp. (Compare it with the corresponding estimate for convex
functions (1), see also (18)).

f( (b—a)2+62—(b—a)) <

b—a

Remark 3.3 and formula (16) imply the following inequalities

U b
f) < s [ (@) do (19)

which are sharp in the class of all InR functions f € Li[a,b] and hold for any u € [a,b).
In particular, we get for u = (a + b)/2

f (a;b> ~ f(gflﬂbb)_ a) /abf(m) da.

4(a+b) - 1
(a+3b)(b—a) = b—a
Further, Proposition 3.6 implies that

Note that here

b by b2 — a?
| @< o) [ 5= 510,



hence . )
| f@de < 2w

for every InR function f € Li[a, b].

Let D C ]R%FJF, T = (Z1,T2) € D. We denote by D(z) the set {zx € D: x; > &1, x9 >
Zo}. It is clear that

1 1
/ SO <_7m) dIEZ/ <j,$> dl': / min (%.17%.2> dl‘ldl’Q-
p \z D) T D(z) L T2

In order to calculate such integral we represent the set D(z) as union D;(Z)UD2(Z), where
_ _ xT9 1 _ _ I )
D = eD(x): =< — D = eD(x): —<—=5.
1(@) {x @ T2 I }’ 2(7) {x @ Ty :1:2}
Then

/ (p(1,$> d:z::/ (1/z,x) dx + (1/z,x)dx =
p’ \ZT Dy () Do (2)

1 1
— To dridxy + — / x1 dr1dxs.
T2 JD1(7) L1 JD2(Z)

In the next examples we will use the number k, which possesses properties:
2k3 —3k? —3k+1=0, 0<k<l. (20)

Let g(k) = 2k® — 3k? — 3k + 1. We have: g(0) > 0, g(1) < 0, ¢'(k) = 6k* — 6k — 3 <
6k — 6k —3 < 0 for all £ € (0,1). So, there exists unique solution of the equation (20),
which belongs to interval (0,1). We denote this solution by the same symbol k.

Example 4.2 Let D C ]R%rJr be the triangle with vertices (0,0), (a,0) and (0,b), that is

I xI9
D={zecR? : = <@.
{Jf ++ a + b >~

If x € D then we get

abx T a
Dl(x):{a:eIRi+: Ty S wg < 2 _1$2§$1§a—b$2},

alo + b{f17 T2
abTy T2 b
—r1 ST <b——-x1¢.
a

D.f'=$€IR2:J_I<JZ<7,
2( ) { o ! b= aZo +bxr1’ T

Therefore

1 (abZ2)/(aZ2+bz1) a—(a/b)xs
/ (1/z,2) de = — da:g/ xo dxy.
Dl(i‘)

T2 Jzg (5:1/52)I2

10



This redices to

_ ab ifg/b ab o ab o (T T2
1 de = ———"—— — ——— 4+ ——— | — + — ).
/Dl(x)< [T de = e e e 2 b T3 b (a b)
By analogy,
_ ab fl/a ab 71 ab 1 (ml 332)
1 de = ———"——— — —— + —— | — + — ).
/Dz(gg)< /% @) d 6 (Z1/a+72/b)> 2 a 3 a \a b

Thus, the sum of these quantities is

1 ab 1 ab (T .’fg) ab (.fl .f'2>2
—a)de="——— (2 2) (2 02 (g
/1790<:z’$> Y76 (31 /a+ 3afb) 2 <a )3 \a T 1)
Since A(D) = (ab)/2 then for z € D
_ 1 1 T f2> 2<.T1 .i'2>2
D - — | =+ = “l—=+=) =1
e )(:}3(531/(1—1—:%2/6) (a+b +3 a+b
T T2 3 T T2 2 T T2
— 2(+> —3<+) —3(+>+1:0.
a b a b a b
Using inequalities 0 < (Z1/a + Z2/b) < 1 for z € D we get
Q(D):{;ﬁEIRfLJF: ”;1+x;=k},

where k is the solution of (20).

In more general case we have inequality (see (7) and (21))

o 6u
f(Z1,%2) < ab(1 = 3u2 + 209) /D f(z)dx,

where v = u(Z1,%2) = Z1/a+ T2/b < 1, function f is increasing radiant and integrable on
D.

Consider now inequality (15) for our triangle D. We show that inf{(z,1/z)" : z >
x, T € D} = (x1/a+x2/b). Let T = (T1,%2) = (z1/(x1/a+x2/b),22/(x1/a+x2/b)). Then
T >xand T € D since T1/a + T2/b = 1. Hence
(x1/a + x2/b) (a:l/a—i-a:g/b)}: )

inf{(z,1/2)": >, z € D} < max {xl , T2
T T2

a b’

Suppose that the converse inequality does not hold, then (z,1/Z)* < x1/a+z2/b for some
z>ux,% €D, hence x/(x1/a+ x2/b) < Z. But this implies that z ¢ D.
So, it follows from (15) that

/Df(rc)dxﬁilelgf(y)/[)(?Jr?) dz.

11



Calculation gives the quantity

1 X9 ab
— + =) dr=—.
/D<a+b) T3

Since A(D) = ab/2 then the final result is

/f ) do < > sup 7(y).

yED
Example 4.3 Let now {2 be the triangle from the Example 4.2:
Q:{melR2++: 3;1+”’:§1}.
Denote by D the subset of €2 such that

k 1 k Tro I i)
3% 4 b<k}'

ON\D = Q: —<—
\ {x € 3 < _
Then (Q\D) C N(Q(Q) = {z € R%, : z1/a+ x2/b < k}. Note that A(Q\D) =
(1/18)k2ab, hence A(D) = (ab)/2 — (1/18)k%ab = ab(1/2 — k?/18). Tt follows from Propo-
sition 3.4 and formula (21) (with Q instead of D) that a point Z € 2 belongs to Q(D) if
and only if

! D _cw(m:vz)w(mwa)?_“:)
ab(1/2 — k2/18) | 6 (Z1/a+Z2/b) 2 \a b 3\a b B

= = 3 2 2

T ) X1 T2 k €2
20—+ —| — - — — 1=
<a+b) 3((], b) (3 3><a+b)+ 0.

It is easy to check that there exists unique solution s of the equation:

253 — 352 — (3—k?/3)s+1=0, 0<s<l1.
Hence

Q(D):{xEIR?H: ?—F?zs}.

We may establish also that s > k.
Remark 4.1 For any other closed domain D’ such that (Q2\D') € N(Q(R)) = {z €

R, : z1/a+ x2/b <k} the set Q(D’') has the same form, i.e. it is intersection of IR?
and a line (Z1/a + T2/b) = s’ with some s: k < s’ < 1.

Example 4.4 Let Q be the same triangle: Q = {x € R3, : (21/a + 22/b) < 1}. Let
D C Q2 and
ND={zeQ: z1<a/2, z2 <b/2}.

12



Then Q\D is the normal set, hence N(Q\D) N D = (Q\D) N D is the empty set. Since
A(Q\D) = ab/4 then A(D) = ab/2 — ab/4 = ab/4. By Proposition 3.5, we have for z € D

B 1 ab 1 ab (T T2 ab (T T2 2
D - - | =4+ = — | —+ == =1
"”GQU‘:’ab/da(m/amz/b) 2(a+b>+3(a+b>] =

_ _ 3 _ _ 2 _ _

T1  To T1 o 3 (T1 T2
2 2) (2 e22) o (2 1=0.
<a+b) 3(a+b) 2<a+b)+ 0

So,
Q(D):Dﬂ{i”GIR?H_ fl/a+:f2/b:p}:
{.fEIRiJr: 5512@/2, fl/a+f2/b:p}U{fEIRi+: jZZb/27 f]/a'i‘.fg/b:p},
where 2p3 — 3p? — (3/2)p+1=0,0<p < 1.

The following two examples were considered in [1] for ICAR functions defined on IR?.
Note that the coefficient k& plays here the same role as the number (1/3) in [1].

Example 4.5 Consider the triangle D with vertices (0,0), (a,0) and (a,va):
D:{:L‘EIR?H: z1 <a, xo <vri}.
If z € D then
Di(z)={x € ]R%rJr T <z <a, Tag <wxo < (To/T1)11},

Dg(f) = {J} € 1R3_+ 21 <z <a, (.f'g/.fl)xl < a9 < vxl}.

Calculation gives the following quantities

1 1 o (Z2/Z1)z1 3 -
— rodridre = — d:(}l/ To dTo = To % _a 4 1 7
€2 Dl(j) T2 Jzy T2 6:1:1 2 3

1 1 ra VT va®  vE? a’ T
X1 D2(53) ! ! 2 Tl Jzq ! (i‘z/i‘l)ajl ! 2 (3113]_ 3 > 2 (31‘% 3

Further,

2a 272 Ty (474 1a?
e et 1 e I R I B
(3351 3a2> T e (3 a 312



In particular, if Zo = vZ; then we get the equation 2(Z1/a)? — 3(%1/a)? — 3(z1/a) +1 = 0,
hence (z1/a) = k. So, the point (ka,vka) belongs to Q(D). This implies that for each
InR function f, which is integrable on D:

1
f(ka,vka) < A(D)/Df(:c) dz.

If Z5 = v¥/2 then equation has the form (z1/a)? + 2(Z1/a) — 1 = 0. This shows that

(#1/a) = V2 — 1, therefore ((v2 = 1)a,0(v2 —1)a/2) € Q(D).
Further, we may set in (14) Z = (a,va):

T2

/Df(ﬂv) dzx < f(a, Ua)/Dmax{xl,w} dxidxe = f(a, U(I)/D%diUlde

a

a vy 2
= f(a’ML)/ d:cl/ r1dre = Ef(a,va).
a 0 0 3

Thus, . )
A0) /Df(:c) dx < gf(a,fua).

Example 4.6 Let D be the square:
D:{xEIRiJr: x1 <1, o <1}.

We consider two possible cases for z € D: (Z2/71) < 1 and (Z2/%1) > 1.
a.) If (z2/Z1) < 1 then we have

1 1 /! (Z2/71)z1 7 1 27

— rodridry = — dzq xzdl‘zzﬂ f_1_|_ﬂ ,
2

L2 JD1(z) T2 Jzy Zo 2 \ 377 3

1 1 1 1 1/1 T 1
— z1 dridxs = 7/ d:El/ T dry = = < — x1> + T2 (.751 — _2> .
Z1 JDy(3) 1 Jz (Z2/71)71 2 \1 3 z]

Hence . L1 ) Ty [ .
Jor o)t =3 (5 -2)+ 3 (m-3-3)
Since A(D) = 1 then we get the equation for z € Q(D)
(3 on) o)
To (1 + 377 — 4@?) = 3% (1 — 27 — f%) .
b.) If (zo/Z1) > 1 then we get the symmetric equation
7 (1 + 323 — 4:53) = 3%, (1 — 27, — j:%) .

14



So, the set Q(D) can be represented as the union of two sets:
{a?EIRiJr: To<T1 <1, Ty (1+3§:§—4j§’) = 37, (1—2@1—33%)}
and
{FeR,: 21 <2 <1, 21 (14353 —433) =35, (1- 280 - 73) }.
In particular, if 1 = Zo then
TeQD) « (0<zm <1, (14331 -43}) =3(1- 221 - 7}))
— (0<z <1, 223 - 37 - 371 +1=0).
This implies that (k, k) € Q(D).
At last we investigate inequality (14) with z = (1,1) for the square D:
/ f(z)dz < f(l,l)/ max{z,x2} dridzs.
D D
Since A(D) =1 and

/max{a:l,xg}dmdxg /d:zl/ :clde—}—/ dazl/ T dTo
1 1

B 1—1:1) B
+/ dy = 6_3

w\
NM

then ) 5
(D) [, F@dr < 550,

and this estimate holds for every increasing radiant and integrable on D function f.
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