Hermite-Hadamard type inequalities for increasing radiant functions

E.V. Sharikov
Tver State University, Tver, Russia

Abstract

We study Hermite-Hadamard type inequalities for increasing radiant functions and give some simple examples of such inequalities.

Keywords: Increasing radiant functions; Abstract convexity; Hermite-Hadamard type inequalities.

1 Introduction

In this paper we consider one generalization of Hermite-Hadamard inequalities for the class InR of increasing radiant functions defined on the cone $\mathbb{R}_{++}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}>\right.$ $0(i=1, \ldots, n)\}$.

Recall that for a function $f:[a, b] \rightarrow \mathbb{R}$, which is convex on $[a, b]$, we have the following:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{1}{2}(f(a)+f(b)) \tag{1}
\end{equation*}
$$

These inequalities are well known as the Hermite-Hadamard inequalities. There are many generalizations of these inequalities for classes of nonconvex functions. For more information see ([2], Section 6.5), [1] and references therein. In this paper we consider generalizations of the inequalities from the both sides of (1). Some technique and notions, which are used here, can be found in [1].

In Section 2 of this paper we give definition if InR functions and recall some results related to these functions. In Section 3 we consider Hermite-Hadamard type inequalities for the class InR. Some examples of such inequalities for functions defined on \mathbb{R}_{++}and \mathbb{R}_{++}^{2} are given in Section 4.

2 Preliminaries

We assume that the cone \mathbb{R}_{++}^{n} is equipped with coordinate-wise order relation.
Recall that a function $f: \mathbb{R}_{++}^{n} \rightarrow \overline{\mathbb{R}}_{+}=[0,+\infty]$ is called increasing radiant (InR) if:

1. f is increasing: $x \geq y \Longrightarrow f(x) \geq f(y)$;
2. f is radiant: $f(\lambda x) \leq \lambda f(x)$ for all $\lambda \in(0,1)$ and $x \in \mathbb{R}_{++}^{n}$.

For example, any function f of the following form belongs to the class InR:

$$
f(x)=\sum_{|k| \geq 1} c_{k} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}
$$

where $k=\left(k_{1}, \ldots, k_{n}\right),|k|=k_{1}+\cdots+k_{n}, k_{i} \geq 0, c_{k} \geq 0$.
For each $f \in \operatorname{In} R$ its conjugate function ([4])

$$
f^{*}(x)=\frac{1}{f(1 / x)},
$$

where $1 / x=\left(1 / x_{1}, \ldots, 1 / x_{n}\right)$, is also increasing and radiant. Hence any function

$$
f(x)=\frac{1}{\sum_{|k| \geq 1} c_{k} x_{1}^{-k_{1}} \cdots x_{n}^{-k_{n}}}
$$

is InR. In more general case we have the following InR functions:

$$
f(x)=\left(\frac{\sum_{|k| \geq u} c_{k} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}}{\sum_{|k| \geq v} d_{k} x_{1}^{-k_{1}} \cdots x_{n}^{-k_{n}}}\right)^{t},
$$

where $u, v>0, t \geq 1 /(u+v)$. Indeed, these functions are increasing and for any $\lambda \in(0,1)$

$$
\begin{gathered}
f(\lambda x)=\left(\frac{\sum_{|k| \geq u} \lambda^{|k|} c_{k} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}}{\sum_{|k| \geq v} \lambda^{-|k|} d_{k} x_{1}^{-k_{1}} \cdots x_{n}^{-k_{n}}}\right)^{t} \leq \\
\left(\frac{\lambda^{u} \sum_{|k| \geq u} c_{k} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}}{\lambda^{-v} \sum_{|k| \geq v} d_{k} x_{1}^{-k_{1}} \cdots x_{n}^{-k_{n}}}\right)^{t}=\lambda^{(u+v) t} f(x) \leq \lambda f(x) .
\end{gathered}
$$

Consider the coupling function φ defined on $\mathbb{R}_{++}^{n} \times \mathbb{R}_{++}^{n}$:

$$
\varphi(h, x)=\left\{\begin{array}{rc}
0, & \text { if }\langle h, x\rangle<1, \tag{2}\\
\langle h, x\rangle, & \text { if }\langle h, x\rangle \geq 1,
\end{array}\right.
$$

where

$$
\langle h, x\rangle=\min \left\{h_{i} x_{i}: i=1, \ldots, n\right\}
$$

is the so-called min-type function.
Denote by φ_{h} the function defined on \mathbb{R}_{++}^{n} by the formula: $\varphi_{h}(x)=\varphi(h, x)$.

It is known (see [4]) that the set

$$
H=\left\{\frac{1}{c} \varphi_{h}: \quad h \in \mathbb{R}_{++}^{n}, \quad c \in(0,+\infty]\right\}
$$

is the supremal generator of the class InR of all increasing radiant functions defined on \mathbb{R}_{++}^{n}.
It is known also that for any InR function f

$$
\begin{equation*}
f(h) \varphi\left(\frac{1}{h}, x\right) \leq f(x) \quad \text { for all } x, h \in \mathbb{R}_{++}^{n} \tag{3}
\end{equation*}
$$

Note that for $c=+\infty$ we set $c \varphi_{h}(x)=\sup _{l>0}\left(l \varphi_{h}(x)\right)$.
Formula (3) implies the following statement.
Proposition 2.1 Let f be an InR function defined on \mathbb{R}_{++}^{n} and $\Delta \subset \mathbb{R}_{++}^{n}$. Then the function

$$
f_{\Delta}(x)=\sup _{h \in \Delta} f(h) \varphi\left(\frac{1}{h}, x\right)
$$

is $I n R$, and it possesses the properties:
1.) $f_{\Delta}(x) \leq f(x)$ for all $x \in \mathbb{R}_{++}^{n}$,
2.) $f_{\Delta}(x)=f(x)$ for all $x \in \Delta$.

3 Hermite-Hadamard type inequalities

Let $D \subset \mathbb{R}_{++}^{n}$ be a closed domain (in topology of \mathbb{R}_{++}^{n}), i.e. D is bounded set such that $\operatorname{cl} \operatorname{int} D=D$. Denote by $Q(D)$ the set of all points $\bar{x} \in D$ such that

$$
\begin{equation*}
\frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1 \tag{4}
\end{equation*}
$$

where $A(D)=\int_{D} d x, \quad d x=d x_{1} \cdots d x_{n}$.
Proposition 3.1 Let f be an $\operatorname{In} R$ function defined on \mathbb{R}_{++}^{n}. If the set $Q(D)$ is nonempty and f is integrable on D then

$$
\begin{equation*}
\sup _{\bar{x} \in Q(D)} f(\bar{x}) \leq \frac{1}{A(D)} \int_{D} f(x) d x \tag{5}
\end{equation*}
$$

Proof: First, let $\bar{x} \in Q(D)$ and $f(\bar{x})<+\infty$. Then $f(\bar{x}) \varphi(1 / \bar{x}, x) \leq f(x)$ for all $x \in D \subset$ \mathbb{R}_{++}^{n} (see (3)). By (4), we get

$$
f(\bar{x})=f(\bar{x}) \frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\frac{1}{A(D)} \int_{D} f(\bar{x}) \varphi\left(\frac{1}{\bar{x}}, x\right) d x \leq \frac{1}{A(D)} \int_{D} f(x) d x
$$

Now, suppose that $f(\bar{x})=+\infty$. Then for all $l>0$ function $l \varphi_{1 / \bar{x}}(x)$ is minorant of f. Hence $l \leq(1 / A(D)) \int_{D} f(x) d x \quad \forall l>0$, that implies that function f is not integrable on D. This contradiction shows that $f(\bar{x})<+\infty$ for any $\bar{x} \in Q(D)$.

As it was done in [1], we may introduce the set $Q_{m}(D)$ of all maximal elements of $Q(D)$. It means that a point $\bar{x} \in Q(D)$ belongs to $Q_{m}(D)$ if and only if for any $\bar{y} \in Q(D)$: $(\bar{y} \geq \bar{x}) \Longrightarrow(\bar{y}=\bar{x})$. Suppose that the set $Q(D)$ is nonempty. It is easy to see that $Q(D)$ is closed set in topology of \mathbb{R}_{++}^{n}. Hence, using Zorn Lemma we conclude that $Q_{m}(D)$ is nonempty closed set and for any $\bar{x} \in Q(D)$ there exists $\bar{y} \in Q_{m}(D)$, for which $\bar{x} \leq \bar{y}$.

So, in assumptions of Proposition 3.1 we have the following estimate:

$$
\begin{equation*}
\sup _{\bar{x} \in Q_{m}(D)} f(\bar{x}) \leq \frac{1}{A(D)} \int_{D} f(x) d x . \tag{6}
\end{equation*}
$$

Since f is increasing function then this inequality implies inequality (5).
Remark 3.1 Let $D \subset \mathbb{R}_{++}^{n}$ be a closed domain and the set $Q(D)$ is nonempty. Then for every $\bar{x} \in Q(D)$ inequality

$$
f(\bar{x}) \leq \frac{1}{A(D)} \int_{D} f(x) d x
$$

is sharp. For example, if we set $f=\varphi_{1 / \bar{x}}$ then (see (4))

$$
f(\bar{x})=\varphi\left(\frac{1}{\bar{x}}, \bar{x}\right)=1=\frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\frac{1}{A(D)} \int_{D} f(x) d x .
$$

Note that here we used only the values of function f on a set D. Therefore we need the following definition.

Definition 3.1 Let $D \subset \mathbb{R}_{++}^{n}$. A function $f: D \rightarrow[0,+\infty]$ is called increasing radiant on D if there exists an InR function F defined on \mathbb{R}_{++}^{n} such that $\left.F\right|_{D}=f$, that is $F(x)=f(x)$ for all $x \in D$.

We assume here, as above, that for $c=+\infty: c \varphi_{h}(x)=\sup _{l>0}\left(l \varphi_{h}(x)\right)$.
Proposition 3.2 Let $f: D \rightarrow[0,+\infty]$ be a function defined on $D \subset \mathbb{R}_{++}^{n}$. Then the following assertions are equivalent:
1.) f is increasing radiant on D,
2.) $f(h) \varphi(1 / h, x) \leq f(x)$ for all $h, x \in D$,
3.) f is abstract convex with respect to the set of functions $(1 / c) \varphi_{(1 / h)}: D \rightarrow[0,+\infty]$ with $h \in D, c \in(0,+\infty]$.

Proof: 1.) $\Longrightarrow 2$ 2.) By Definition 3.1, there exists an InR function $F: \mathbb{R}_{++}^{n} \rightarrow[0,+\infty]$ such that $F(x)=f(x)$ for all $x \in D$. Then Proposition 2.1 implies that the function

$$
F_{D}(x)=\sup _{h \in D} F(h) \varphi\left(\frac{1}{h}, x\right)
$$

interpolates F in all points $x \in D$. Hence

$$
\sup _{h \in D} f(h) \varphi\left(\frac{1}{h}, x\right)=f(x) \text { for all } x \in D
$$

that implies the assertion 2.)
2.) $\Longrightarrow 3$.) Consider the function f_{D} defined on D

$$
f_{D}(x)=\sup _{h \in D} f(h) \varphi\left(\frac{1}{h}, x\right)
$$

First, it is clear that f_{D} is abstract convex with respect to the set of functions defined on $D:\left\{(1 / c) \varphi_{(1 / h)}: h \in D, c \in(0,+\infty]\right\}$. Further, using 2.) we get for all $x \in D$

$$
f_{D}(x) \leq f(x)=f(x) \varphi\left(\frac{1}{x}, x\right) \leq \sup _{h \in D} f(h) \varphi\left(\frac{1}{h}, x\right)=f_{D}(x) .
$$

So, $f_{D}(x)=f(x)$ for all $x \in D$ and we have the desired statement 3.)
3.) \Longrightarrow 1.) It is obvious since any function $(1 / c) \varphi_{h}$ defined on D can be considered as elementary function $(1 / c) \varphi_{h} \in H$ defined on \mathbb{R}_{++}^{n}.

Remark 3.2 We may require in Proposition 3.1, formula (6) and Remark 3.1 only that function f is increasing radiant and integrable on D.

Remark 3.3 We may consider more general case of Hermite-Hadamard type inequalities for InR functions. Let f be an increasing radiant function on D. Then Proposition 3.2 implies that $f(h) \varphi(1 / h, x) \leq f(x)$ for all $h, x \in D$. If $f(\bar{x})<+\infty$ and f is integrable on D then

$$
\begin{equation*}
f(\bar{x}) \int_{D} \varphi(1 / \bar{x}, x) d x \leq \int_{D} f(x) d x . \tag{7}
\end{equation*}
$$

This inequality is sharp for any $\bar{x} \in D$ since we have the equality in (7) for $f=\varphi_{(1 / \bar{x})}$.
Proposition 3.2 implies also that the class InR is broad enough.
Proposition 3.3 Let $S \subset \mathbb{R}_{++}^{n}$ be a set such that every point $x \in S$ is maximal in S. Then for any function $f: S \rightarrow[0,+\infty]$ there exists an increasing radiant function $F: \mathbb{R}_{++}^{n} \rightarrow[0,+\infty]$, for which $\left.F\right|_{S}=f$.

Proof: It is sufficiently to check only that $f(h) \varphi(1 / h, x) \leq f(x)$ for all $h, x \in S$. If $h=x$ then $\varphi(1 / h, x)=1, f(h)=f(x)$. If $h \neq x$ then $\langle 1 / h, x\rangle=\min _{i} x_{i} / h_{i}<1$ since h is maximal point in S, hence $\varphi(1 / h, x)=0$ and $f(h) \varphi(1 / h, x)=0 \leq f(x)$.

In particular, Proposition 3.3 holds if $S=\left\{x \in \mathbb{R}_{++}^{n}:\left(x_{1}\right)^{p}+\cdots+\left(x_{n}\right)^{p}=1\right\}$, where $p>0$.

Now we present two assertions supported by definition of function φ. Recall that a set $\Omega \subset \mathbb{R}_{++}^{n}$ is called normal if for each $x \in \Omega$ we have ($y \in \Omega$ for all $\left.y \leq x\right)$. Normal hull $N(\Omega)$ of a set Ω is defined as follows: $N(\Omega)=\left\{x \in \mathbb{R}_{++}^{n}:(\exists y \in \Omega) x \leq y\right\}$ (see, for example, [3]).

Proposition 3.4 Let $D, \Omega \subset \mathbb{R}_{++}^{n}$ be a closed domains and $D \subset \Omega$. If the set $Q(\Omega)$ is nonempty and

$$
\begin{equation*}
(\Omega \backslash D) \subset N(Q(\Omega)) \tag{8}
\end{equation*}
$$

then the set $Q(D)$ consists of all points $\bar{x} \in \Omega$ such that

$$
\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1
$$

Proof: If $D=\Omega$ then the assertion is clear. Assume that $D \neq \Omega$. Since D, Ω are closed domains and $D \subset \Omega$ then

$$
\begin{equation*}
A(D)<A(\Omega) \tag{9}
\end{equation*}
$$

Let $\bar{x} \in \Omega$ and

$$
\begin{equation*}
\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1 \tag{10}
\end{equation*}
$$

We show that $\varphi(1 / \bar{x}, x)=0$ for all $x \in \Omega \backslash D$. If $x \in \Omega \backslash D$ then, by (8), there exists a point $\bar{y} \in Q(\Omega): \bar{y} \geq x$; hence $\langle 1 / \bar{x}, x\rangle \leq\langle 1 / \bar{x}, \bar{y}\rangle$. Suppose that $\langle 1 / \bar{x}, \bar{y}\rangle \geq 1$. Then $\bar{y} \geq \bar{x} \Longrightarrow 1 / \bar{y} \leq 1 / \bar{x}$. Since $\bar{y} \in Q(\Omega)$ then, by (9) and (10)

$$
1=\frac{1}{A(\Omega)} \int_{\Omega} \varphi\left(\frac{1}{\bar{y}}, x\right) d x<\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{y}}, x\right) d x \leq \frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1
$$

So, we have the inequalities: $\langle 1 / \bar{x}, x\rangle \leq\langle 1 / \bar{x}, \bar{y}\rangle<1$. Therefore $\varphi(1 / \bar{x}, x)=0$ for all $x \in \Omega \backslash D \Longrightarrow$

$$
1=\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x
$$

The equality $(\varphi(1 / \bar{x}, \cdot)=0$ on $\Omega \backslash D)$ implies also that $\bar{x} \neq x$ for all $x \in \Omega \backslash D$, hence $\bar{x} \notin \Omega \backslash D \Longrightarrow \bar{x} \in D$. Thus, we have the established result: $\bar{x} \in Q(D)$.

Conversely, let $\bar{x} \in Q(D)$. For any $x \in \Omega \backslash D$ there exists $\bar{y} \in Q(\Omega)$ such that $\bar{y} \geq$ $x \Longrightarrow\langle 1 / \bar{x}, x\rangle \leq\langle 1 / \bar{x}, \bar{y}\rangle$. Moreover, we may assume that \bar{y} is maximal point in $Q(\Omega)$, i.e. $\bar{y} \in Q_{m}(\Omega)$. First, we check that

$$
\begin{equation*}
\left\langle\frac{1}{\bar{y}}, x\right\rangle \leq 1 \text { for all } x \in \Omega \backslash D, \bar{y} \in Q_{m}(\Omega) \tag{11}
\end{equation*}
$$

Indeed, if $x \in \Omega \backslash D$ then for some $\bar{z} \in Q_{m}(\Omega): x \leq \bar{z} \Longrightarrow\langle 1 / \bar{y}, x\rangle \leq\langle 1 / \bar{y}, \bar{z}\rangle$. But $\langle 1 / \bar{y}, \bar{z}\rangle \leq 1$ since $\bar{y}, \bar{z} \in Q_{m}(\Omega)$ (otherwise, if $\langle 1 / \bar{y}, \bar{z}\rangle>1$ then $\bar{z}>\bar{y} \Longrightarrow \bar{y} \notin Q_{m}(\Omega)$). Now we verify that $\langle 1 / \bar{x}, x\rangle<1$ for all $x \in \Omega \backslash D$. If $x \in \Omega \backslash D$ then for some $\bar{y} \in Q_{m}(\Omega)$: $\langle 1 / \bar{x}, x\rangle \leq\langle 1 / \bar{x}, \bar{y}\rangle$. Suppose that $\langle 1 / \bar{x}, \bar{y}\rangle \geq 1$. Then $\bar{y} \geq \bar{x}$ and therefore, using inclusion $\bar{x} \in Q(D)$, we get

$$
\begin{equation*}
1=\frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x>\frac{1}{A(\Omega)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x \geq \frac{1}{A(\Omega)} \int_{D} \varphi\left(\frac{1}{\bar{y}}, x\right) d x \tag{12}
\end{equation*}
$$

Let $D_{1}=\{x \in \Omega \backslash D:\langle 1 / \bar{y}, x\rangle<1\}, D_{2}=\{x \in \Omega \backslash D:\langle 1 / \bar{y}, x\rangle=1\}$. It follows from (11) that $\Omega \backslash D=D_{1} \cup D_{2}\left(D_{1} \cap D_{2}=\emptyset\right)$, hence

$$
\int_{\Omega \backslash D} \varphi\left(\frac{1}{\bar{y}}, x\right) d x=\int_{D_{1}} \varphi\left(\frac{1}{\bar{y}}, x\right) d x+\int_{D_{2}} \varphi\left(\frac{1}{\bar{y}}, x\right) d x=\int_{D_{2}} \varphi\left(\frac{1}{\bar{y}}, x\right) d x=\int_{D_{2}} d x
$$

But the last integral $\int_{D_{2}} d x$ is also equal to zero, since the set D_{2} has no interior points. Thus, by (12)

$$
1>\frac{1}{A(\Omega)} \int_{D} \varphi\left(\frac{1}{\bar{y}}, x\right) d x=\frac{1}{A(\Omega)} \int_{\Omega} \varphi\left(\frac{1}{\bar{y}}, x\right) d x
$$

This inequality contradicts to the inclusion $\bar{y} \in Q_{m}(\Omega)$. So, we conclude that the inequality $\langle 1 / \bar{x}, \bar{y}\rangle \geq 1$ is impossible. Hence $\langle 1 / \bar{x}, x\rangle \leq\langle 1 / \bar{x}, \bar{y}\rangle<1$ for all $x \in \Omega \backslash D$ and $\bar{y}=\bar{y}(x) \in$ $Q_{m}(\Omega)$, that implies required equality:

$$
1=\frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) d x
$$

Corollary 3.1 Let $D_{1}, D_{2} \subset \mathbb{R}_{++}^{n}$ be a closed domains such that

$$
A\left(D_{1}\right)=A\left(D_{2}\right)
$$

If there exists a closed domain $\Omega \subset \mathbb{R}_{++}^{n}$, for which the set $Q(\Omega)$ is nonempty and

$$
D_{i} \subset \Omega, \quad\left(\Omega \backslash D_{i}\right) \subset N(Q(\Omega)) \quad(i=1,2)
$$

then

$$
Q\left(D_{1}\right)=Q\left(D_{2}\right)
$$

Proposition 3.5 Let $D, \Omega \subset \mathbb{R}_{++}^{n}$ be a closed domains and $D \subset \Omega$. If

$$
\begin{equation*}
N(\Omega \backslash D) \cap D=\emptyset \tag{13}
\end{equation*}
$$

then the set $Q(D)$ consists of all points $\bar{x} \in D$ such that

$$
\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1
$$

Proof: Formula (13) implies that if $\bar{x} \in D$ then $\bar{x} \notin N(\Omega \backslash D)$. It means that for all $x \in \Omega \backslash D: x<\bar{x} \Longrightarrow\langle 1 / \bar{x}, x\rangle<1 \Longrightarrow \varphi(1 / \bar{x}, x)=0$.
Thus, for any $\bar{x} \in D$

$$
\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1 \Longleftrightarrow \frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1 \Longleftrightarrow \bar{x} \in Q(D)
$$

Now consider the generalization of the inequality from the right-hand side of (1). Let f be an increasing radiant function defined on a closed domain $D \subset \mathbb{R}_{++}^{n}$, and f is integrable on D. Then $f(h) \varphi(1 / h, x) \leq f(x)$ for all $h, x \in D$. In particular, $f(h)\langle 1 / h, x\rangle \leq f(x)$ if $\langle 1 / h, x\rangle \geq 1$. Hence for all $x \geq h$

$$
f(h) \leq \frac{f(x)}{\langle 1 / h, x\rangle}=\langle h, 1 / x\rangle^{+} f(x)
$$

where $h(y)=\langle h, y\rangle^{+}=\max _{i} h_{i} y_{i}$ is the so-called max-type function. So, if $\bar{x} \in D$ and $\bar{x} \geq x$ for all $x \in D$, then $f(x) \leq\langle x, 1 / \bar{x}\rangle^{+} f(\bar{x})$ for any $\bar{x} \in D$. This reduces to the following assertion.

Proposition 3.6 Let function f be an increasing radiant and integrable on D. If $\bar{x} \in D$ and $\bar{x} \geq x$ for all $x \in D$, then

$$
\begin{equation*}
\int_{D} f(x) d x \leq f(\bar{x}) \int_{D}\langle x, 1 / \bar{x}\rangle^{+} d x \tag{14}
\end{equation*}
$$

Inequality (14) is sharp since we get equality for $f(x)=\langle x, 1 / \bar{x}\rangle^{+}$.
In more general case we have the following inequalities:

$$
f(x) \leq\langle x, 1 / \bar{x}\rangle^{+} \sup _{y \in D} f(y) \text { for all } \bar{x} \geq x
$$

Hence

$$
f(x) \leq \sup _{y \in D} f(y) \inf \left\{\langle x, 1 / \bar{x}\rangle^{+}: \bar{x} \geq x, \bar{x} \in D\right\} \text { for all } x \in D
$$

and therefore

$$
\begin{equation*}
\int_{D} f(x) d x \leq \sup _{y \in D} f(y) \int_{D} \inf \left\{\langle x, 1 / \bar{x}\rangle^{+}: \bar{x} \geq x, \bar{x} \in D\right\} d x \tag{15}
\end{equation*}
$$

4 Examples

Here we describe the set $Q(D)$ for some special domains D of the cones \mathbb{R}_{++}and \mathbb{R}_{++}^{2}.
Let $a, b \in \mathbb{R}$ be a numbers such that $0 \leq a<b$. We denote by $[a, b]$ the segment $\left\{x \in \mathbb{R}_{++}: a \leq x \leq b\right\}$.

Example 4.1 Let $D=[a, b] \subset \mathbb{R}_{++}$, where $0 \leq a<b$. According to definition, the set $Q(D)$ consists of all points $\bar{x} \in D$, for which

$$
\frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\frac{1}{b-a} \int_{a}^{b} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=1
$$

We have:

$$
\varphi\left(\frac{1}{\bar{x}}, x\right)=\left\{\begin{aligned}
0, & \text { if } x<\bar{x} \\
x / \bar{x}, & \text { if } x \geq \bar{x}
\end{aligned}\right.
$$

Hence, if $\bar{x} \in D=[a, b]$ then

$$
\begin{equation*}
\int_{a}^{b} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\int_{\bar{x}}^{b} \frac{x}{\bar{x}} d x=\frac{1}{2 \bar{x}}\left(b^{2}-\bar{x}^{2}\right) \tag{16}
\end{equation*}
$$

So, a point $\bar{x} \in[a, b]$ belongs to $Q(D)$ if and only if

$$
\frac{1}{2(b-a) \bar{x}}\left(b^{2}-\bar{x}^{2}\right)=1 \Longleftrightarrow \bar{x}^{2}+2(b-a) \bar{x}-b^{2}=0
$$

We get

$$
\begin{equation*}
\bar{x}=\sqrt{(b-a)^{2}+b^{2}}-(b-a) \tag{17}
\end{equation*}
$$

Show that for the point (17)

$$
\begin{equation*}
a<\bar{x}<\frac{a+b}{2} \tag{18}
\end{equation*}
$$

Since $b>a \geq 0$ then $\bar{x}=\sqrt{(b-a)^{2}+b^{2}}-(b-a)>\sqrt{b^{2}}-(b-a)=a$. Further,

$$
\begin{gathered}
\bar{x}<\frac{a+b}{2} \Longleftrightarrow \sqrt{(b-a)^{2}+b^{2}}<(b-a)+\frac{a+b}{2}=\frac{3 b-a}{2} \Longleftrightarrow \\
4(b-a)^{2}+4 b^{2}<(3 b-a)^{2} \Longleftrightarrow 0<b^{2}+2 a b-3 a^{2}
\end{gathered}
$$

The last inequality follows from the same conditions $b>a \geq 0$.
Thus, $Q([a, b])=\left\{\sqrt{(b-a)^{2}+b^{2}}-(b-a)\right\}$. Remark 3.1 implies that for every InR function $f \in L_{1}[a, b]$

$$
f\left(\sqrt{(b-a)^{2}+b^{2}}-(b-a)\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and this inequality is sharp. (Compare it with the corresponding estimate for convex functions (1), see also (18)).

Remark 3.3 and formula (16) imply the following inequalities

$$
\begin{equation*}
f(u) \leq \frac{2 u}{b^{2}-u^{2}} \int_{a}^{b} f(x) d x \tag{19}
\end{equation*}
$$

which are sharp in the class of all InR functions $f \in L_{1}[a, b]$ and hold for any $u \in[a, b)$. In particular, we get for $u=(a+b) / 2$

$$
f\left(\frac{a+b}{2}\right) \leq \frac{4(a+b)}{(a+3 b)(b-a)} \int_{a}^{b} f(x) d x
$$

Note that here

$$
\frac{4(a+b)}{(a+3 b)(b-a)}>\frac{1}{b-a}
$$

Further, Proposition 3.6 implies that

$$
\int_{a}^{b} f(x) d x \leq f(b) \int_{a}^{b} \frac{x}{b} d x=\frac{b^{2}-a^{2}}{2 b} f(b)
$$

hence

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{a+b}{2 b} f(b)
$$

for every InR function $f \in L_{1}[a, b]$.

Let $D \subset \mathbb{R}_{++}^{2}, \bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right) \in D$. We denote by $D(\bar{x})$ the set $\left\{x \in D: x_{1} \geq \bar{x}_{1}, x_{2} \geq\right.$ $\left.\bar{x}_{2}\right\}$. It is clear that

$$
\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\int_{D(\bar{x})}\left\langle\frac{1}{\bar{x}}, x\right\rangle d x=\int_{D(\bar{x})} \min \left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}\right) d x_{1} d x_{2}
$$

In order to calculate such integral we represent the set $D(\bar{x})$ as union $D_{1}(\bar{x}) \cup D_{2}(\bar{x})$, where

$$
D_{1}(\bar{x})=\left\{x \in D(\bar{x}): \frac{x_{2}}{\bar{x}_{2}} \leq \frac{x_{1}}{\bar{x}_{1}}\right\}, \quad D_{2}(\bar{x})=\left\{x \in D(\bar{x}): \frac{x_{1}}{\bar{x}_{1}} \leq \frac{x_{2}}{\bar{x}_{2}}\right\}
$$

Then

$$
\begin{gathered}
\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\int_{D_{1}(\bar{x})}\langle 1 / \bar{x}, x\rangle d x+\int_{D_{2}(\bar{x})}\langle 1 / \bar{x}, x\rangle d x= \\
\frac{1}{\bar{x}_{2}} \int_{D_{1}(\bar{x})} x_{2} d x_{1} d x_{2}+\frac{1}{\bar{x}_{1}} \int_{D_{2}(\bar{x})} x_{1} d x_{1} d x_{2} .
\end{gathered}
$$

In the next examples we will use the number k, which possesses properties:

$$
\begin{equation*}
2 k^{3}-3 k^{2}-3 k+1=0, \quad 0<k<1 \tag{20}
\end{equation*}
$$

Let $g(k)=2 k^{3}-3 k^{2}-3 k+1$. We have: $g(0)>0, g(1)<0, g^{\prime}(k)=6 k^{2}-6 k-3<$ $6 k-6 k-3<0$ for all $k \in(0,1)$. So, there exists unique solution of the equation (20), which belongs to interval $(0,1)$. We denote this solution by the same symbol k.

Example 4.2 Let $D \subset \mathbb{R}_{++}^{2}$ be the triangle with vertices $(0,0),(a, 0)$ and $(0, b)$, that is

$$
D=\left\{x \in \mathbb{R}_{++}^{2}: \frac{x_{1}}{a}+\frac{x_{2}}{b} \leq 1\right\}
$$

If $\bar{x} \in D$ then we get

$$
\begin{aligned}
& D_{1}(\bar{x})=\left\{x \in \mathbb{R}_{++}^{2}: \quad \bar{x}_{2} \leq x_{2} \leq \frac{a b \bar{x}_{2}}{a \bar{x}_{2}+b \bar{x}_{1}}, \quad \frac{\bar{x}_{1}}{\bar{x}_{2}} x_{2} \leq x_{1} \leq a-\frac{a}{b} x_{2}\right\} \\
& D_{2}(\bar{x})=\left\{x \in \mathbb{R}_{++}^{2}: \quad \bar{x}_{1} \leq x_{1} \leq \frac{a b \bar{x}_{1}}{a \bar{x}_{2}+b \bar{x}_{1}}, \quad \frac{\bar{x}_{2}}{\bar{x}_{1}} x_{1} \leq x_{2} \leq b-\frac{b}{a} x_{1}\right\}
\end{aligned}
$$

Therefore

$$
\int_{D_{1}(\bar{x})}\langle 1 / \bar{x}, x\rangle d x=\frac{1}{\bar{x}_{2}} \int_{\bar{x}_{2}}^{\left(a b \bar{x}_{2}\right) /\left(a \bar{x}_{2}+b \bar{x}_{1}\right)} d x_{2} \int_{\left(\bar{x}_{1} / \bar{x}_{2}\right) x_{2}}^{a-(a / b) x_{2}} x_{2} d x_{1}
$$

This redices to

$$
\int_{D_{1}(\bar{x})}\langle 1 / \bar{x}, x\rangle d x=\frac{a b}{6} \frac{\bar{x}_{2} / b}{\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right)^{2}}-\frac{a b}{2} \frac{\bar{x}_{2}}{b}+\frac{a b}{3} \frac{\bar{x}_{2}}{b}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right) .
$$

By analogy,

$$
\int_{D_{2}(\bar{x})}\langle 1 / \bar{x}, x\rangle d x=\frac{a b}{6} \frac{\bar{x}_{1} / a}{\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right)^{2}}-\frac{a b}{2} \frac{\bar{x}_{1}}{a}+\frac{a b}{3} \frac{\bar{x}_{1}}{a}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right) .
$$

Thus, the sum of these quantities is

$$
\begin{equation*}
\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\frac{a b}{6} \frac{1}{\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right)}-\frac{a b}{2}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)+\frac{a b}{3}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{2} . \tag{21}
\end{equation*}
$$

Since $A(D)=(a b) / 2$ then for $\bar{x} \in D$

$$
\begin{aligned}
& \bar{x} \in Q(D) \Longleftrightarrow \frac{1}{3} \frac{1}{\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right)}-\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)+\frac{2}{3}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{2}=1 \\
& \Longleftrightarrow 2\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{3}-3\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{2}-3\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)+1=0 .
\end{aligned}
$$

Using inequalities $0<\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right) \leq 1$ for $\bar{x} \in D$ we get

$$
Q(D)=\left\{\bar{x} \in \mathbb{R}_{++}^{2}: \frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}=k\right\},
$$

where k is the solution of (20).
In more general case we have inequality (see (7) and (21))

$$
f\left(\bar{x}_{1}, \bar{x}_{2}\right) \leq \frac{6 u}{a b\left(1-3 u^{2}+2 u^{3}\right)} \int_{D} f(x) d x,
$$

where $u=u\left(\bar{x}_{1}, \bar{x}_{2}\right)=\bar{x}_{1} / a+\bar{x}_{2} / b<1$, function f is increasing radiant and integrable on D.

Consider now inequality (15) for our triangle D. We show that $\inf \left\{\langle x, 1 / \bar{x}\rangle^{+}: \bar{x} \geq\right.$ $x, \bar{x} \in D\}=\left(x_{1} / a+x_{2} / b\right)$. Let $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)=\left(x_{1} /\left(x_{1} / a+x_{2} / b\right), x_{2} /\left(x_{1} / a+x_{2} / b\right)\right)$. Then $\bar{x} \geq x$ and $\bar{x} \in D$ since $\bar{x}_{1} / a+\bar{x}_{2} / b=1$. Hence

$$
\inf \left\{\langle x, 1 / \bar{x}\rangle^{+}: \bar{x} \geq x, \bar{x} \in D\right\} \leq \max \left\{x_{1} \frac{\left(x_{1} / a+x_{2} / b\right)}{x_{1}}, x_{2} \frac{\left(x_{1} / a+x_{2} / b\right)}{x_{2}}\right\}=\frac{x_{1}}{a}+\frac{x_{2}}{b} .
$$

Suppose that the converse inequality does not hold, then $\langle x, 1 / \bar{x}\rangle^{+}<x_{1} / a+x_{2} / b$ for some $\bar{x} \geq x, \bar{x} \in D$, hence $x /\left(x_{1} / a+x_{2} / b\right)<\bar{x}$. But this implies that $\bar{x} \notin D$.
So, it follows from (15) that

$$
\int_{D} f(x) d x \leq \sup _{y \in D} f(y) \int_{D}\left(\frac{x_{1}}{a}+\frac{x_{2}}{b}\right) d x .
$$

Calculation gives the quantity

$$
\int_{D}\left(\frac{x_{1}}{a}+\frac{x_{2}}{b}\right) d x=\frac{a b}{3} .
$$

Since $A(D)=a b / 2$ then the final result is

$$
\frac{1}{A(D)} \int_{D} f(x) d x \leq \frac{2}{3} \sup _{y \in D} f(y) .
$$

Example 4.3 Let now Ω be the triangle from the Example 4.2:

$$
\Omega=\left\{x \in \mathbb{R}_{++}^{2}: \frac{x_{1}}{a}+\frac{x_{2}}{b} \leq 1\right\} .
$$

Denote by D the subset of Ω such that

$$
\Omega \backslash D=\left\{x \in \Omega: \frac{k}{3}<\frac{x_{1}}{a}, \frac{k}{3}<\frac{x_{2}}{b}, \frac{x_{1}}{a}+\frac{x_{2}}{b}<k\right\} .
$$

Then $(\Omega \backslash D) \subset N(Q(\Omega))=\left\{x \in \mathbb{R}_{++}^{2}: x_{1} / a+x_{2} / b \leq k\right\}$. Note that $A(\Omega \backslash D)=$ $(1 / 18) k^{2} a b$, hence $A(D)=(a b) / 2-(1 / 18) k^{2} a b=a b\left(1 / 2-k^{2} / 18\right)$. It follows from Proposition 3.4 and formula (21) (with Ω instead of D) that a point $\bar{x} \in \Omega$ belongs to $Q(D)$ if and only if

$$
\begin{gathered}
\frac{1}{a b\left(1 / 2-k^{2} / 18\right)}\left[\frac{a b}{6} \frac{1}{\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right)}-\frac{a b}{2}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)+\frac{a b}{3}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{2}\right]=1 \Longleftrightarrow \\
2\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{3}-3\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{2}-\left(3-\frac{k^{2}}{3}\right)\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)+1=0 .
\end{gathered}
$$

It is easy to check that there exists unique solution s of the equation:

$$
2 s^{3}-3 s^{2}-\left(3-k^{2} / 3\right) s+1=0, \quad 0<s \leq 1 .
$$

Hence

$$
Q(D)=\left\{\bar{x} \in \mathbb{R}_{++}^{2}: \frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}=s\right\} .
$$

We may establish also that $s>k$.

Remark 4.1 For any other closed domain D^{\prime} such that $\left(\Omega \backslash D^{\prime}\right) \subset N(Q(\Omega))=\{x \in$ $\left.\mathbb{R}_{++}^{2}: x_{1} / a+x_{2} / b \leq k\right\}$ the set $Q\left(D^{\prime}\right)$ has the same form, i.e. it is intersection of \mathbb{R}_{++}^{2} and a line $\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right)=s^{\prime}$ with some $s^{\prime}: k<s^{\prime}<1$.

Example 4.4 Let Ω be the same triangle: $\Omega=\left\{x \in \mathbb{R}_{++}^{2}:\left(x_{1} / a+x_{2} / b\right) \leq 1\right\}$. Let $D \subset \Omega$ and

$$
\Omega \backslash D=\left\{x \in \Omega: x_{1}<a / 2, x_{2}<b / 2\right\} .
$$

Then $\Omega \backslash D$ is the normal set, hence $N(\Omega \backslash D) \cap D=(\Omega \backslash D) \cap D$ is the empty set. Since $A(\Omega \backslash D)=a b / 4$ then $A(D)=a b / 2-a b / 4=a b / 4$. By Proposition 3.5, we have for $\bar{x} \in D$

$$
\begin{aligned}
\bar{x} \in Q(D) \Longleftrightarrow & \frac{1}{a b / 4}\left[\frac{a b}{6} \frac{1}{\left(\bar{x}_{1} / a+\bar{x}_{2} / b\right)}-\frac{a b}{2}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)+\frac{a b}{3}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{2}\right]=1 \Longleftrightarrow \\
& 2\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{3}-3\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)^{2}-\frac{3}{2}\left(\frac{\bar{x}_{1}}{a}+\frac{\bar{x}_{2}}{b}\right)+1=0 .
\end{aligned}
$$

So,

$$
\begin{gathered}
Q(D)=D \cap\left\{\bar{x} \in \mathbb{R}_{++}^{2}: \bar{x}_{1} / a+\bar{x}_{2} / b=p\right\}= \\
\left\{\bar{x} \in \mathbb{R}_{++}^{2}: \bar{x}_{1} \geq a / 2, \quad \bar{x}_{1} / a+\bar{x}_{2} / b=p\right\} \cup\left\{\bar{x} \in \mathbb{R}_{++}^{2}: \bar{x}_{2} \geq b / 2, \quad \bar{x}_{1} / a+\bar{x}_{2} / b=p\right\}
\end{gathered}
$$

where $2 p^{3}-3 p^{2}-(3 / 2) p+1=0,0<p \leq 1$.

The following two examples were considered in [1] for ICAR functions defined on \mathbb{R}_{+}^{2}. Note that the coefficient k plays here the same role as the number $(1 / 3)$ in [1].

Example 4.5 Consider the triangle D with vertices $(0,0),(a, 0)$ and $(a, v a)$:

$$
D=\left\{x \in \mathbb{R}_{++}^{2}: \quad x_{1} \leq a, x_{2} \leq v x_{1}\right\}
$$

If $\bar{x} \in D$ then

$$
\begin{aligned}
& D_{1}(\bar{x})=\left\{x \in \mathbb{R}_{++}^{2}: \quad \bar{x}_{1} \leq x_{1} \leq a, \quad \bar{x}_{2} \leq x_{2} \leq\left(\bar{x}_{2} / \bar{x}_{1}\right) x_{1}\right\} \\
& D_{2}(\bar{x})=\left\{x \in \mathbb{R}_{++}^{2}: \quad \bar{x}_{1} \leq x_{1} \leq a, \quad\left(\bar{x}_{2} / \bar{x}_{1}\right) x_{1} \leq x_{2} \leq v x_{1}\right\}
\end{aligned}
$$

Calculation gives the following quantities

$$
\begin{gathered}
\frac{1}{\bar{x}_{2}} \int_{D_{1}(\bar{x})} x_{2} d x_{1} d x_{2}=\frac{1}{\bar{x}_{2}} \int_{\bar{x}_{1}}^{a} d x_{1} \int_{\bar{x}_{2}}^{\left(\bar{x}_{2} / \bar{x}_{1}\right) x_{1}} x_{2} d x_{2}=\bar{x}_{2}\left(\frac{a^{3}}{6 \bar{x}_{1}^{2}}-\frac{a}{2}+\frac{\bar{x}_{1}}{3}\right) \\
\frac{1}{\bar{x}_{1}} \int_{D_{2}(\bar{x})} x_{1} d x_{1} d x_{2}=\frac{1}{\bar{x}_{1}} \int_{\bar{x}_{1}}^{a} d x_{1} \int_{\left(\bar{x}_{2} / \bar{x}_{1}\right) x_{1}}^{v x_{1}} x_{1} d x_{2}=\left(\frac{v a^{3}}{3 \bar{x}_{1}}-\frac{v \bar{x}_{1}^{2}}{3}\right)-\bar{x}_{2}\left(\frac{a^{3}}{3 \bar{x}_{1}^{2}}-\frac{\bar{x}_{1}}{3}\right) .
\end{gathered}
$$

Further,

$$
\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\left(\frac{v a^{3}}{3 \bar{x}_{1}}-\frac{v \bar{x}_{1}^{2}}{3}\right)+\bar{x}_{2}\left(\frac{2 \bar{x}_{1}}{3}-\frac{a}{2}-\frac{a^{3}}{6 \bar{x}_{1}^{2}}\right)
$$

Since $A(D)=v a^{2} / 2$ then a point $\bar{x} \in D$ belongs to $Q(D)$ if and only if

$$
\begin{gathered}
\left(\frac{2}{3} \frac{a}{\bar{x}_{1}}-\frac{2}{3} \frac{\bar{x}_{1}^{2}}{a^{2}}\right)+\frac{\bar{x}_{2}}{v a}\left(\frac{4}{3} \frac{\bar{x}_{1}}{a}-1-\frac{1}{3} \frac{a^{2}}{\bar{x}_{1}^{2}}\right)=1 \Longleftrightarrow \\
\bar{x}_{2}\left(1+3 \frac{\bar{x}_{1}^{2}}{a^{2}}-4 \frac{\bar{x}_{1}^{3}}{a^{3}}\right)=v \bar{x}_{1}\left(2-3 \frac{\bar{x}_{1}}{a}-2 \frac{\bar{x}_{1}^{3}}{a^{3}}\right) .
\end{gathered}
$$

In particular, if $\bar{x}_{2}=v \bar{x}_{1}$ then we get the equation $2\left(\bar{x}_{1} / a\right)^{3}-3\left(\bar{x}_{1} / a\right)^{2}-3\left(\bar{x}_{1} / a\right)+1=0$, hence $\left(\bar{x}_{1} / a\right)=k$. So, the point $(k a, v k a)$ belongs to $Q(D)$. This implies that for each InR function f, which is integrable on D :

$$
f(k a, v k a) \leq \frac{1}{A(D)} \int_{D} f(x) d x
$$

If $\bar{x}_{2}=v \bar{x}_{1} / 2$ then equation has the form $\left(\bar{x}_{1} / a\right)^{2}+2\left(\bar{x}_{1} / a\right)-1=0$. This shows that $\left(\bar{x}_{1} / a\right)=\sqrt{2}-1$, therefore $((\sqrt{2}-1) a, v(\sqrt{2}-1) a / 2) \in Q(D)$.

Further, we may set in (14) $\bar{x}=(a, v a)$:

$$
\begin{aligned}
\int_{D} f(x) d x \leq & f(a, v a) \int_{D} \max \left\{\frac{x_{1}}{a}, \frac{x_{2}}{v a}\right\} d x_{1} d x_{2}=f(a, v a) \int_{D} \frac{x_{1}}{a} d x_{1} d x_{2} \\
& =\frac{f(a, v a)}{a} \int_{0}^{a} d x_{1} \int_{0}^{v x_{1}} x_{1} d x_{2}=\frac{v a^{2}}{3} f(a, v a)
\end{aligned}
$$

Thus,

$$
\frac{1}{A(D)} \int_{D} f(x) d x \leq \frac{2}{3} f(a, v a)
$$

Example 4.6 Let D be the square:

$$
D=\left\{x \in \mathbb{R}_{++}^{2}: \quad x_{1} \leq 1, x_{2} \leq 1\right\}
$$

We consider two possible cases for $\bar{x} \in D:\left(\bar{x}_{2} / \bar{x}_{1}\right) \leq 1$ and $\left(\bar{x}_{2} / \bar{x}_{1}\right) \geq 1$.
a.) If $\left(\bar{x}_{2} / \bar{x}_{1}\right) \leq 1$ then we have

$$
\begin{gathered}
\frac{1}{\bar{x}_{2}} \int_{D_{1}(\bar{x})} x_{2} d x_{1} d x_{2}=\frac{1}{\bar{x}_{2}} \int_{\bar{x}_{1}}^{1} d x_{1} \int_{\bar{x}_{2}}^{\left(\bar{x}_{2} / \bar{x}_{1}\right) x_{1}} x_{2} d x_{2}=\frac{\bar{x}_{2}}{2}\left(\frac{1}{3 \bar{x}_{1}^{2}}-1+\frac{2 \bar{x}_{1}}{3}\right) \\
\frac{1}{\bar{x}_{1}} \int_{D_{2}(\bar{x})} x_{1} d x_{1} d x_{2}=\frac{1}{\bar{x}_{1}} \int_{\bar{x}_{1}}^{1} d x_{1} \int_{\left(\bar{x}_{2} / \bar{x}_{1}\right) x_{1}}^{1} x_{1} d x_{2}=\frac{1}{2}\left(\frac{1}{\bar{x}_{1}}-\bar{x}_{1}\right)+\frac{\bar{x}_{2}}{3}\left(\bar{x}_{1}-\frac{1}{\bar{x}_{1}^{2}}\right) .
\end{gathered}
$$

Hence

$$
\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) d x=\frac{1}{2}\left(\frac{1}{\bar{x}_{1}}-\bar{x}_{1}\right)+\frac{\bar{x}_{2}}{6}\left(4 \bar{x}_{1}-3-\frac{1}{\bar{x}_{1}^{2}}\right) .
$$

Since $A(D)=1$ then we get the equation for $\bar{x} \in Q(D)$

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{\bar{x}_{1}}-\bar{x}_{1}\right)+\frac{\bar{x}_{2}}{6}\left(4 \bar{x}_{1}-3-\frac{1}{\bar{x}_{1}^{2}}\right)=1 \Longleftrightarrow \\
& \quad \bar{x}_{2}\left(1+3 \bar{x}_{1}^{2}-4 \bar{x}_{1}^{3}\right)=3 \bar{x}_{1}\left(1-2 \bar{x}_{1}-\bar{x}_{1}^{2}\right)
\end{aligned}
$$

b.) If $\left(\bar{x}_{2} / \bar{x}_{1}\right) \geq 1$ then we get the symmetric equation

$$
\bar{x}_{1}\left(1+3 \bar{x}_{2}^{2}-4 \bar{x}_{2}^{3}\right)=3 \bar{x}_{2}\left(1-2 \bar{x}_{2}-\bar{x}_{2}^{2}\right)
$$

So, the set $Q(D)$ can be represented as the union of two sets:

$$
\left\{\bar{x} \in \mathbb{R}_{++}^{2}: \quad \bar{x}_{2} \leq \bar{x}_{1} \leq 1, \quad \bar{x}_{2}\left(1+3 \bar{x}_{1}^{2}-4 \bar{x}_{1}^{3}\right)=3 \bar{x}_{1}\left(1-2 \bar{x}_{1}-\bar{x}_{1}^{2}\right)\right\}
$$

and

$$
\left\{\bar{x} \in \mathbb{R}_{++}^{2}: \quad \bar{x}_{1} \leq \bar{x}_{2} \leq 1, \quad \bar{x}_{1}\left(1+3 \bar{x}_{2}^{2}-4 \bar{x}_{2}^{3}\right)=3 \bar{x}_{2}\left(1-2 \bar{x}_{2}-\bar{x}_{2}^{2}\right)\right\}
$$

In particular, if $\bar{x}_{1}=\bar{x}_{2}$ then

$$
\begin{aligned}
\bar{x} \in Q(D) & \Longleftrightarrow\left(0<\bar{x}_{1} \leq 1, \quad\left(1+3 \bar{x}_{1}^{2}-4 \bar{x}_{1}^{3}\right)=3\left(1-2 \bar{x}_{1}-\bar{x}_{1}^{2}\right)\right) \\
& \Longleftrightarrow\left(0<\bar{x}_{1} \leq 1, \quad 2 \bar{x}_{1}^{3}-3 \bar{x}_{1}^{2}-3 \bar{x}_{1}+1=0\right)
\end{aligned}
$$

This implies that $(k, k) \in Q(D)$.
At last we investigate inequality (14) with $\bar{x}=(1,1)$ for the square D :

$$
\int_{D} f(x) d x \leq f(1,1) \int_{D} \max \left\{x_{1}, x_{2}\right\} d x_{1} d x_{2}
$$

Since $A(D)=1$ and

$$
\begin{gathered}
\int_{D} \max \left\{x_{1}, x_{2}\right\} d x_{1} d x_{2}=\int_{0}^{1} d x_{1} \int_{0}^{x_{1}} x_{1} d x_{2}+\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} x_{2} d x_{2} \\
=\frac{1}{3}+\int_{0}^{1} \frac{\left(1-x_{1}^{2}\right)}{2} d x_{1}=\frac{1}{3}+\frac{1}{2}-\frac{1}{6}=\frac{2}{3}
\end{gathered}
$$

then

$$
\frac{1}{A(D)} \int_{D} f(x) d x \leq \frac{2}{3} f(1,1)
$$

and this estimate holds for every increasing radiant and integrable on D function f.

Acknowledgement

The author is very grateful to A. M. Rubinov for formulation of the tasks and very useful discussions.

References

[1] S.S. Dragomir, J. Dutta and A.M. Rubinov. Hermite-Hadamard-type inequalities for increasing convex-along-rays functions, (submitted to Real Analysis Exchange).
[2] A.M. Rubinov (2000). Abstract convexity and global optimization. Kluwer Academic Publishers, Boston-Dordrecht-London.
[3] A.M. Rubinov and B.M. Glover (1998). Duality for increasing positively homogeneous functions and normal sets. RAIRO-Operations Research, 32, 105-123.
[4] E.V. Sharikov. Increasing radiant functions, (submitted to Optimization).

