Hermite-Hadamard type inequalities for increasing radiant functions

E.V. Sharikov

Tver State University, Tver, Russia

Abstract

We study Hermite-Hadamard type inequalities for increasing radiant functions and give some simple examples of such inequalities.

Keywords: Increasing radiant functions; Abstract convexity; Hermite-Hadamard type inequalities.

1 Introduction

In this paper we consider one generalization of Hermite-Hadamard inequalities for the class InR of increasing radiant functions defined on the cone $\mathbb{R}^n_{++} = \{x \in \mathbb{R}^n : x_i > 0 \ (i = 1, ..., n)\}.$

Recall that for a function $f:[a,b]\to \mathbb{R}$, which is convex on [a,b], we have the following:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{1}{2} (f(a) + f(b)).$$
 (1)

These inequalities are well known as the Hermite-Hadamard inequalities. There are many generalizations of these inequalities for classes of nonconvex functions. For more information see ([2], Section 6.5), [1] and references therein. In this paper we consider generalizations of the inequalities from the both sides of (1). Some technique and notions, which are used here, can be found in [1].

In Section 2 of this paper we give definition if InR functions and recall some results related to these functions. In Section 3 we consider Hermite-Hadamard type inequalities for the class InR. Some examples of such inequalities for functions defined on \mathbb{R}_{++} and \mathbb{R}^2_{++} are given in Section 4.

2 **Preliminaries**

We assume that the cone \mathbb{R}^n_{++} is equipped with coordinate-wise order relation.

Recall that a function $f: \mathbb{R}^n_{++} \to \overline{\mathbb{R}}_+ = [0, +\infty]$ is called increasing radiant (InR) if: 1. f is increasing: $x \geq y \implies f(x) \geq f(y)$;

- 2. f is radiant: $f(\lambda x) \leq \lambda f(x)$ for all $\lambda \in (0,1)$ and $x \in \mathbb{R}^n_{++}$.

For example, any function f of the following form belongs to the class InR:

$$f(x) = \sum_{|k| > 1} c_k x_1^{k_1} \cdots x_n^{k_n},$$

where $k = (k_1, \dots, k_n), |k| = k_1 + \dots + k_n, k_i \ge 0, c_k \ge 0.$ For each $f \in InR$ its conjugate function ([4])

$$f^*(x) = \frac{1}{f(1/x)},$$

where $1/x = (1/x_1, ..., 1/x_n)$, is also increasing and radiant. Hence any function

$$f(x) = \frac{1}{\sum_{|k|>1} c_k x_1^{-k_1} \cdots x_n^{-k_n}}$$

is InR. In more general case we have the following InR functions:

$$f(x) = \left(\frac{\sum_{|k| \ge u} c_k x_1^{k_1} \cdots x_n^{k_n}}{\sum_{|k| > v} d_k x_1^{-k_1} \cdots x_n^{-k_n}}\right)^t,$$

where $u, v > 0, t \ge 1/(u+v)$. Indeed, these functions are increasing and for any $\lambda \in (0,1)$

$$f(\lambda x) = \left(\frac{\sum_{|k| \ge u} \lambda^{|k|} c_k x_1^{k_1} \cdots x_n^{k_n}}{\sum_{|k| \ge v} \lambda^{-|k|} d_k x_1^{-k_1} \cdots x_n^{-k_n}}\right)^t \le$$

$$\left(\frac{\lambda^u \sum_{|k| \ge u} c_k x_1^{k_1} \cdots x_n^{k_n}}{\lambda^{-v} \sum_{|k| > v} d_k x_1^{-k_1} \cdots x_n^{-k_n}}\right)^t = \lambda^{(u+v)t} f(x) \le \lambda f(x).$$

Consider the coupling function φ defined on $\mathbb{R}^n_{++} \times \mathbb{R}^n_{++}$:

$$\varphi(h,x) = \begin{cases} 0, & \text{if } \langle h, x \rangle < 1, \\ \langle h, x \rangle, & \text{if } \langle h, x \rangle \ge 1, \end{cases}$$
 (2)

where

$$\langle h, x \rangle = \min\{h_i x_i : i = 1, \dots, n\}$$

is the so-called min-type function.

Denote by φ_h the function defined on \mathbb{R}^n_{++} by the formula: $\varphi_h(x) = \varphi(h, x)$.

It is known (see [4]) that the set

$$H = \left\{ \frac{1}{c} \varphi_h : h \in \mathbb{R}^n_{++}, c \in (0, +\infty] \right\}$$

is the supremal generator of the class InR of all increasing radiant functions defined on \mathbb{R}^n_{++} .

It is known also that for any InR function f

$$f(h)\varphi\left(\frac{1}{h},x\right) \le f(x) \quad \text{for all } x,h \in \mathbb{R}^n_{++}.$$
 (3)

Note that for $c = +\infty$ we set $c\varphi_h(x) = \sup_{l>0} (l\varphi_h(x))$.

Formula (3) implies the following statement.

Proposition 2.1 Let f be an InR function defined on \mathbb{R}_{++}^n and $\Delta \subset \mathbb{R}_{++}^n$. Then the function

$$f_{\Delta}(x) = \sup_{h \in \Delta} f(h)\varphi\left(\frac{1}{h}, x\right)$$

is InR, and it possesses the properties:

- 1.) $f_{\Delta}(x) \leq f(x)$ for all $x \in \mathbb{R}^{n}_{++}$,
- 2.) $f_{\Delta}(x) = f(x)$ for all $x \in \Delta$.

3 Hermite-Hadamard type inequalities

Let $D \subset \mathbb{R}^n_{++}$ be a closed domain (in topology of \mathbb{R}^n_{++}), i.e. D is bounded set such that clint D = D. Denote by Q(D) the set of all points $\bar{x} \in D$ such that

$$\frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{x}, x\right) dx = 1, \tag{4}$$

where $A(D) = \int_D dx$, $dx = dx_1 \cdots dx_n$.

Proposition 3.1 Let f be an InR function defined on \mathbb{R}^n_{++} . If the set Q(D) is nonempty and f is integrable on D then

$$\sup_{\bar{x}\in Q(D)} f(\bar{x}) \le \frac{1}{A(D)} \int_D f(x) \, dx. \tag{5}$$

Proof: First, let $\bar{x} \in Q(D)$ and $f(\bar{x}) < +\infty$. Then $f(\bar{x})\varphi(1/\bar{x}, x) \leq f(x)$ for all $x \in D \subset \mathbb{R}^n_{++}$ (see (3)). By (4), we get

$$f(\bar{x}) = f(\bar{x}) \frac{1}{A(D)} \int_D \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \frac{1}{A(D)} \int_D f(\bar{x}) \varphi\left(\frac{1}{\bar{x}}, x\right) dx \le \frac{1}{A(D)} \int_D f(x) dx.$$

Now, suppose that $f(\bar{x}) = +\infty$. Then for all l > 0 function $l\varphi_{1/\bar{x}}(x)$ is minorant of f. Hence $l \leq (1/A(D)) \int_D f(x) dx \ \forall l > 0$, that implies that function f is not integrable on D. This contradiction shows that $f(\bar{x}) < +\infty$ for any $\bar{x} \in Q(D)$.

As it was done in [1], we may introduce the set $Q_m(D)$ of all maximal elements of Q(D). It means that a point $\bar{x} \in Q(D)$ belongs to $Q_m(D)$ if and only if for any $\bar{y} \in Q(D)$: $(\bar{y} \geq \bar{x}) \implies (\bar{y} = \bar{x})$. Suppose that the set Q(D) is nonempty. It is easy to see that Q(D) is closed set in topology of \mathbb{R}^n_{++} . Hence, using Zorn Lemma we conclude that $Q_m(D)$ is nonempty closed set and for any $\bar{x} \in Q(D)$ there exists $\bar{y} \in Q_m(D)$, for which $\bar{x} \leq \bar{y}$.

So, in assumptions of Proposition 3.1 we have the following estimate:

$$\sup_{\bar{x} \in Q_m(D)} f(\bar{x}) \le \frac{1}{A(D)} \int_D f(x) \, dx. \tag{6}$$

Since f is increasing function then this inequality implies inequality (5).

Remark 3.1 Let $D \subset \mathbb{R}^n_{++}$ be a closed domain and the set Q(D) is nonempty. Then for every $\bar{x} \in Q(D)$ inequality

$$f(\bar{x}) \le \frac{1}{A(D)} \int_D f(x) \, dx$$

is sharp. For example, if we set $f = \varphi_{1/\bar{x}}$ then (see (4))

$$f(\bar{x}) = \varphi\left(\frac{1}{\bar{x}}, \bar{x}\right) = 1 = \frac{1}{A(D)} \int_D \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \frac{1}{A(D)} \int_D f(x) dx.$$

Note that here we used only the values of function f on a set D. Therefore we need the following definition.

Definition 3.1 Let $D \subset \mathbb{R}^n_{++}$. A function $f: D \to [0, +\infty]$ is called increasing radiant on D if there exists an InR function F defined on \mathbb{R}^n_{++} such that $F|_D = f$, that is F(x) = f(x) for all $x \in D$.

We assume here, as above, that for $c = +\infty$: $c\varphi_h(x) = \sup_{l>0} (l\varphi_h(x))$.

Proposition 3.2 Let $f: D \to [0, +\infty]$ be a function defined on $D \subset \mathbb{R}^n_{++}$. Then the following assertions are equivalent:

- 1.) f is increasing radiant on D,
- 2.) $f(h)\varphi(1/h,x) \leq f(x)$ for all $h, x \in D$,
- 3.) f is abstract convex with respect to the set of functions $(1/c)\varphi_{(1/h)}: D \to [0, +\infty]$ with $h \in D$, $c \in (0, +\infty]$.

Proof: 1.) \Longrightarrow 2.) By Definition 3.1, there exists an InR function $F: \mathbb{R}^n_{++} \to [0, +\infty]$ such that F(x) = f(x) for all $x \in D$. Then Proposition 2.1 implies that the function

$$F_D(x) = \sup_{h \in D} F(h)\varphi\left(\frac{1}{h}, x\right)$$

interpolates F in all points $x \in D$. Hence

$$\sup_{h \in D} f(h)\varphi\left(\frac{1}{h}, x\right) = f(x) \text{ for all } x \in D,$$

that implies the assertion 2.)

 $(2.) \Longrightarrow 3.)$ Consider the function f_D defined on D

$$f_D(x) = \sup_{h \in D} f(h)\varphi\left(\frac{1}{h}, x\right).$$

First, it is clear that f_D is abstract convex with respect to the set of functions defined on D: $\{(1/c)\varphi_{(1/h)}: h \in D, c \in (0, +\infty]\}$. Further, using 2.) we get for all $x \in D$

$$f_D(x) \le f(x) = f(x)\varphi\left(\frac{1}{x}, x\right) \le \sup_{h \in D} f(h)\varphi\left(\frac{1}{h}, x\right) = f_D(x).$$

So, $f_D(x) = f(x)$ for all $x \in D$ and we have the desired statement 3.)

 $3.) \Longrightarrow 1.)$ It is obvious since any function $(1/c)\varphi_h$ defined on D can be considered as elementary function $(1/c)\varphi_h \in H$ defined on \mathbb{R}^n_{++} .

Remark 3.2 We may require in Proposition 3.1, formula (6) and Remark 3.1 only that function f is increasing radiant and integrable on D.

Remark 3.3 We may consider more general case of Hermite-Hadamard type inequalities for InR functions. Let f be an increasing radiant function on D. Then Proposition 3.2 implies that $f(h)\varphi(1/h,x) \leq f(x)$ for all $h,x \in D$. If $f(\bar{x}) < +\infty$ and f is integrable on D then

$$f(\bar{x}) \int_{D} \varphi(1/\bar{x}, x) \, dx \le \int_{D} f(x) \, dx. \tag{7}$$

This inequality is sharp for any $\bar{x} \in D$ since we have the equality in (7) for $f = \varphi_{(1/\bar{x})}$.

Proposition 3.2 implies also that the class InR is broad enough.

Proposition 3.3 Let $S \subset \mathbb{R}^n_{++}$ be a set such that every point $x \in S$ is maximal in S. Then for any function $f: S \to [0, +\infty]$ there exists an increasing radiant function $F: \mathbb{R}^n_{++} \to [0, +\infty]$, for which $F|_S = f$.

Proof: It is sufficiently to check only that $f(h)\varphi(1/h,x) \leq f(x)$ for all $h,x \in S$. If h=x then $\varphi(1/h,x)=1$, f(h)=f(x). If $h\neq x$ then $\langle 1/h,x\rangle=\min_i x_i/h_i < 1$ since h is maximal point in S, hence $\varphi(1/h,x)=0$ and $f(h)\varphi(1/h,x)=0 \leq f(x)$.

In particular, Proposition 3.3 holds if $S = \{x \in \mathbb{R}^n_{++} : (x_1)^p + \cdots + (x_n)^p = 1\}$, where p > 0.

Now we present two assertions supported by definition of function φ . Recall that a set $\Omega \subset \mathbb{R}^n_{++}$ is called normal if for each $x \in \Omega$ we have $(y \in \Omega \text{ for all } y \leq x)$. Normal hull $N(\Omega)$ of a set Ω is defined as follows: $N(\Omega) = \{x \in \mathbb{R}^n_{++} : (\exists y \in \Omega) \ x \leq y\}$ (see, for example, [3]).

Proposition 3.4 Let $D, \Omega \subset \mathbb{R}^n_{++}$ be a closed domains and $D \subset \Omega$. If the set $Q(\Omega)$ is nonempty and

$$(\Omega \backslash D) \subset N(Q(\Omega)) \tag{8}$$

then the set Q(D) consists of all points $\bar{x} \in \Omega$ such that

$$\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = 1.$$

Proof: If $D=\Omega$ then the assertion is clear. Assume that $D\neq \Omega$. Since D,Ω are closed domains and $D\subset \Omega$ then

$$A(D) < A(\Omega). \tag{9}$$

Let $\bar{x} \in \Omega$ and

$$\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = 1. \tag{10}$$

We show that $\varphi(1/\bar{x}, x) = 0$ for all $x \in \Omega \backslash D$. If $x \in \Omega \backslash D$ then, by (8), there exists a point $\bar{y} \in Q(\Omega)$: $\bar{y} \geq x$; hence $\langle 1/\bar{x}, x \rangle \leq \langle 1/\bar{x}, \bar{y} \rangle$. Suppose that $\langle 1/\bar{x}, \bar{y} \rangle \geq 1$. Then $\bar{y} \geq \bar{x} \implies 1/\bar{y} \leq 1/\bar{x}$. Since $\bar{y} \in Q(\Omega)$ then, by (9) and (10)

$$1 = \frac{1}{A(\Omega)} \int_{\Omega} \varphi\left(\frac{1}{\bar{y}}, x\right) \, dx < \frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{y}}, x\right) \, dx \leq \frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) \, dx = 1.$$

So, we have the inequalities: $\langle 1/\bar{x}, x \rangle \leq \langle 1/\bar{x}, \bar{y} \rangle < 1$. Therefore $\varphi(1/\bar{x}, x) = 0$ for all $x \in \Omega \backslash D \Longrightarrow$

$$1 = \frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\overline{x}}, x\right) \, dx = \frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\overline{x}}, x\right) \, dx.$$

The equality $(\varphi(1/\bar{x},\cdot) = 0 \text{ on } \Omega \backslash D)$ implies also that $\bar{x} \neq x$ for all $x \in \Omega \backslash D$, hence $\bar{x} \notin \Omega \backslash D \implies \bar{x} \in D$. Thus, we have the established result: $\bar{x} \in Q(D)$.

Conversely, let $\bar{x} \in Q(D)$. For any $x \in \Omega \backslash D$ there exists $\bar{y} \in Q(\Omega)$ such that $\bar{y} \ge x \implies \langle 1/\bar{x}, x \rangle \le \langle 1/\bar{x}, \bar{y} \rangle$. Moreover, we may assume that \bar{y} is maximal point in $Q(\Omega)$, i.e. $\bar{y} \in Q_m(\Omega)$. First, we check that

$$\langle \frac{1}{\bar{y}}, x \rangle \le 1 \text{ for all } x \in \Omega \backslash D, \ \bar{y} \in Q_m(\Omega).$$
 (11)

Indeed, if $x \in \Omega \backslash D$ then for some $\bar{z} \in Q_m(\Omega)$: $x \leq \bar{z} \implies \langle 1/\bar{y}, x \rangle \leq \langle 1/\bar{y}, \bar{z} \rangle$. But $\langle 1/\bar{y}, \bar{z} \rangle \leq 1$ since $\bar{y}, \bar{z} \in Q_m(\Omega)$ (otherwise, if $\langle 1/\bar{y}, \bar{z} \rangle > 1$ then $\bar{z} > \bar{y} \implies \bar{y} \notin Q_m(\Omega)$). Now we verify that $\langle 1/\bar{x}, x \rangle < 1$ for all $x \in \Omega \backslash D$. If $x \in \Omega \backslash D$ then for some $\bar{y} \in Q_m(\Omega)$: $\langle 1/\bar{x}, x \rangle \leq \langle 1/\bar{x}, \bar{y} \rangle$. Suppose that $\langle 1/\bar{x}, \bar{y} \rangle \geq 1$. Then $\bar{y} \geq \bar{x}$ and therefore, using inclusion $\bar{x} \in Q(D)$, we get

$$1 = \frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) dx > \frac{1}{A(\Omega)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) dx \ge \frac{1}{A(\Omega)} \int_{D} \varphi\left(\frac{1}{\bar{y}}, x\right) dx. \tag{12}$$

Let $D_1 = \{x \in \Omega \backslash D : \langle 1/\bar{y}, x \rangle < 1\}$, $D_2 = \{x \in \Omega \backslash D : \langle 1/\bar{y}, x \rangle = 1\}$. It follows from (11) that $\Omega \backslash D = D_1 \cup D_2$ $(D_1 \cap D_2 = \emptyset)$, hence

$$\int_{\Omega \backslash D} \varphi\left(\frac{1}{\bar{y}}, x\right) \, dx = \int_{D_1} \varphi\left(\frac{1}{\bar{y}}, x\right) \, dx + \int_{D_2} \varphi\left(\frac{1}{\bar{y}}, x\right) \, dx = \int_{D_2} \varphi\left(\frac{1}{\bar{y}}, x\right) \, dx = \int_{D_2} dx.$$

But the last integral $\int_{D_2} dx$ is also equal to zero, since the set D_2 has no interior points. Thus, by (12)

$$1 > \frac{1}{A(\Omega)} \int_{\Omega} \varphi\left(\frac{1}{\bar{y}}, x\right) dx = \frac{1}{A(\Omega)} \int_{\Omega} \varphi\left(\frac{1}{\bar{y}}, x\right) dx.$$

This inequality contradicts to the inclusion $\bar{y} \in Q_m(\Omega)$. So, we conclude that the inequality $\langle 1/\bar{x}, \bar{y} \rangle \geq 1$ is impossible. Hence $\langle 1/\bar{x}, x \rangle \leq \langle 1/\bar{x}, \bar{y} \rangle < 1$ for all $x \in \Omega \setminus D$ and $\bar{y} = \bar{y}(x) \in Q_m(\Omega)$, that implies required equality:

$$1 = \frac{1}{A(D)} \int_D \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) dx.$$

Corollary 3.1 Let $D_1, D_2 \subset \mathbb{R}^n_{++}$ be a closed domains such that

$$A(D_1) = A(D_2).$$

If there exists a closed domain $\Omega \subset \mathbb{R}^n_{++}$, for which the set $Q(\Omega)$ is nonempty and

$$D_i \subset \Omega$$
, $(\Omega \backslash D_i) \subset N(Q(\Omega))$ $(i = 1, 2)$,

then

$$Q(D_1) = Q(D_2).$$

Proposition 3.5 Let $D, \Omega \subset \mathbb{R}^n_{++}$ be a closed domains and $D \subset \Omega$. If

$$N(\Omega \backslash D) \cap D = \emptyset \tag{13}$$

then the set Q(D) consists of all points $\bar{x} \in D$ such that

$$\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = 1.$$

Proof: Formula (13) implies that if $\bar{x} \in D$ then $\bar{x} \notin N(\Omega \backslash D)$. It means that for all $x \in \Omega \backslash D$: $x < \bar{x} \Longrightarrow \langle 1/\bar{x}, x \rangle < 1 \Longrightarrow \varphi(1/\bar{x}, x) = 0$. Thus, for any $\bar{x} \in D$

$$\frac{1}{A(D)} \int_{\Omega} \varphi\left(\frac{1}{\bar{x}}, x\right) \, dx = 1 \iff \frac{1}{A(D)} \int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) \, dx = 1 \iff \bar{x} \in Q(D).$$

Now consider the generalization of the inequality from the right-hand side of (1). Let f be an increasing radiant function defined on a closed domain $D \subset \mathbb{R}^n_{++}$, and f is integrable on D. Then $f(h)\varphi(1/h,x) \leq f(x)$ for all $h,x \in D$. In particular, $f(h)\langle 1/h,x\rangle \leq f(x)$ if $\langle 1/h,x\rangle \geq 1$. Hence for all $x \geq h$

$$f(h) \le \frac{f(x)}{\langle 1/h, x \rangle} = \langle h, 1/x \rangle^+ f(x),$$

where $h(y) = \langle h, y \rangle^+ = \max_i h_i y_i$ is the so-called max-type function. So, if $\bar{x} \in D$ and $\bar{x} \geq x$ for all $x \in D$, then $f(x) \leq \langle x, 1/\bar{x} \rangle^+ f(\bar{x})$ for any $\bar{x} \in D$. This reduces to the following assertion.

Proposition 3.6 Let function f be an increasing radiant and integrable on D. If $\bar{x} \in D$ and $\bar{x} \geq x$ for all $x \in D$, then

$$\int_{D} f(x) dx \le f(\bar{x}) \int_{D} \langle x, 1/\bar{x} \rangle^{+} dx. \tag{14}$$

Inequality (14) is sharp since we get equality for $f(x) = \langle x, 1/\bar{x} \rangle^+$.

In more general case we have the following inequalities:

$$f(x) \le \langle x, 1/\bar{x} \rangle^+ \sup_{y \in D} f(y)$$
 for all $\bar{x} \ge x$.

Hence

$$f(x) \le \sup_{y \in D} f(y) \inf\{\langle x, 1/\bar{x} \rangle^+ : \bar{x} \ge x, \bar{x} \in D\}$$
 for all $x \in D$

and therefore

$$\int_{D} f(x) \, dx \le \sup_{y \in D} f(y) \int_{D} \inf \{ \langle x, 1/\bar{x} \rangle^{+} : \ \bar{x} \ge x, \ \bar{x} \in D \} \, dx. \tag{15}$$

4 Examples

Here we describe the set Q(D) for some special domains D of the cones \mathbb{R}_{++} and \mathbb{R}^2_{++} .

Let $a, b \in \mathbb{R}$ be a numbers such that $0 \le a < b$. We denote by [a, b] the segment $\{x \in \mathbb{R}_{++}: a \le x \le b\}$.

Example 4.1 Let $D = [a, b] \subset \mathbb{R}_{++}$, where $0 \le a < b$. According to definition, the set Q(D) consists of all points $\bar{x} \in D$, for which

$$\frac{1}{A(D)} \int_D \varphi\left(\frac{1}{x}, x\right) dx = \frac{1}{b-a} \int_a^b \varphi\left(\frac{1}{x}, x\right) dx = 1.$$

We have:

$$\varphi\left(\frac{1}{\bar{x}}, x\right) = \begin{cases} 0, & \text{if } x < \bar{x}, \\ x/\bar{x}, & \text{if } x \ge \bar{x}. \end{cases}$$

Hence, if $\bar{x} \in D = [a, b]$ then

$$\int_{a}^{b} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \int_{\bar{x}}^{b} \frac{x}{\bar{x}} dx = \frac{1}{2\bar{x}} (b^{2} - \bar{x}^{2}). \tag{16}$$

So, a point $\bar{x} \in [a, b]$ belongs to Q(D) if and only if

$$\frac{1}{2(b-a)\bar{x}}(b^2 - \bar{x}^2) = 1 \iff \bar{x}^2 + 2(b-a)\bar{x} - b^2 = 0.$$

We get

$$\bar{x} = \sqrt{(b-a)^2 + b^2} - (b-a).$$
 (17)

Show that for the point (17)

$$a < \bar{x} < \frac{a+b}{2}.\tag{18}$$

Since $b > a \ge 0$ then $\bar{x} = \sqrt{(b-a)^2 + b^2} - (b-a) > \sqrt{b^2} - (b-a) = a$. Further,

$$\bar{x} < \frac{a+b}{2} \iff \sqrt{(b-a)^2 + b^2} < (b-a) + \frac{a+b}{2} = \frac{3b-a}{2} \iff 4(b-a)^2 + 4b^2 < (3b-a)^2 \iff 0 < b^2 + 2ab - 3a^2.$$

The last inequality follows from the same conditions $b > a \ge 0$.

Thus, $Q([a,b]) = {\sqrt{(b-a)^2 + b^2} - (b-a)}$. Remark 3.1 implies that for every InR function $f \in L_1[a,b]$

$$f\left(\sqrt{(b-a)^2 + b^2} - (b-a)\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx$$

and this inequality is sharp. (Compare it with the corresponding estimate for convex functions (1), see also (18)).

Remark 3.3 and formula (16) imply the following inequalities

$$f(u) \le \frac{2u}{b^2 - u^2} \int_a^b f(x) \, dx,$$
 (19)

which are sharp in the class of all InR functions $f \in L_1[a, b]$ and hold for any $u \in [a, b)$. In particular, we get for u = (a + b)/2

$$f\left(\frac{a+b}{2}\right) \le \frac{4(a+b)}{(a+3b)(b-a)} \int_a^b f(x) \, dx.$$

Note that here

$$\frac{4(a+b)}{(a+3b)(b-a)} > \frac{1}{b-a}.$$

Further, Proposition 3.6 implies that

$$\int_{a}^{b} f(x) dx \le f(b) \int_{a}^{b} \frac{x}{b} dx = \frac{b^{2} - a^{2}}{2b} f(b),$$

hence

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{a+b}{2b} f(b)$$

for every InR function $f \in L_1[a, b]$.

Let $D \subset \mathbb{R}^2_{++}$, $\bar{x} = (\bar{x}_1, \bar{x}_2) \in D$. We denote by $D(\bar{x})$ the set $\{x \in D : x_1 \geq \bar{x}_1, x_2 \geq \bar{x}_2\}$. It is clear that

$$\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \int_{D(\bar{x})} \langle \frac{1}{\bar{x}}, x \rangle dx = \int_{D(\bar{x})} \min\left(\frac{x_1}{\bar{x}_1}, \frac{x_2}{\bar{x}_2}\right) dx_1 dx_2.$$

In order to calculate such integral we represent the set $D(\bar{x})$ as union $D_1(\bar{x}) \cup D_2(\bar{x})$, where

$$D_1(\bar{x}) = \left\{ x \in D(\bar{x}) : \frac{x_2}{\bar{x}_2} \le \frac{x_1}{\bar{x}_1} \right\}, \quad D_2(\bar{x}) = \left\{ x \in D(\bar{x}) : \frac{x_1}{\bar{x}_1} \le \frac{x_2}{\bar{x}_2} \right\}.$$

Then

$$\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \int_{D_{1}(\bar{x})} \langle 1/\bar{x}, x \rangle dx + \int_{D_{2}(\bar{x})} \langle 1/\bar{x}, x \rangle dx =$$

$$\frac{1}{\bar{x}_{2}} \int_{D_{1}(\bar{x})} x_{2} dx_{1} dx_{2} + \frac{1}{\bar{x}_{1}} \int_{D_{2}(\bar{x})} x_{1} dx_{1} dx_{2}.$$

In the next examples we will use the number k, which possesses properties:

$$2k^3 - 3k^2 - 3k + 1 = 0, \quad 0 < k < 1.$$
 (20)

Let $g(k) = 2k^3 - 3k^2 - 3k + 1$. We have: g(0) > 0, g(1) < 0, $g'(k) = 6k^2 - 6k - 3 < 6k - 6k - 3 < 0$ for all $k \in (0,1)$. So, there exists unique solution of the equation (20), which belongs to interval (0,1). We denote this solution by the same symbol k.

Example 4.2 Let $D \subset \mathbb{R}^2_{++}$ be the triangle with vertices (0,0), (a,0) and (0,b), that is

$$D = \left\{ x \in \mathbb{R}^2_{++} : \frac{x_1}{a} + \frac{x_2}{b} \le 1 \right\}.$$

If $\bar{x} \in D$ then we get

$$D_1(\bar{x}) = \left\{ x \in \mathbb{R}_{++}^2 : \ \bar{x}_2 \le x_2 \le \frac{ab\bar{x}_2}{a\bar{x}_2 + b\bar{x}_1}, \ \frac{\bar{x}_1}{\bar{x}_2} x_2 \le x_1 \le a - \frac{a}{b} x_2 \right\},\,$$

$$D_2(\bar{x}) = \left\{ x \in \mathbb{R}_{++}^2 : \ \bar{x}_1 \le x_1 \le \frac{ab\bar{x}_1}{a\bar{x}_2 + b\bar{x}_1}, \ \frac{\bar{x}_2}{\bar{x}_1} x_1 \le x_2 \le b - \frac{b}{a} x_1 \right\}.$$

Therefore

$$\int_{D_1(\bar{x})} \langle 1/\bar{x}, x \rangle \, dx = \frac{1}{\bar{x}_2} \int_{\bar{x}_2}^{(ab\bar{x}_2)/(a\bar{x}_2 + b\bar{x}_1)} dx_2 \int_{(\bar{x}_1/\bar{x}_2)x_2}^{a - (a/b)x_2} x_2 \, dx_1.$$

This redices to

$$\int_{D_1(\bar{x})} \langle 1/\bar{x}, x \rangle \, dx = \frac{ab}{6} \frac{\bar{x}_2/b}{(\bar{x}_1/a + \bar{x}_2/b)^2} - \frac{ab}{2} \frac{\bar{x}_2}{b} + \frac{ab}{3} \frac{\bar{x}_2}{b} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right).$$

By analogy,

$$\int_{D_2(\bar{x})} \langle 1/\bar{x}, x \rangle \, dx = \frac{ab}{6} \frac{\bar{x}_1/a}{(\bar{x}_1/a + \bar{x}_2/b)^2} - \frac{ab}{2} \frac{\bar{x}_1}{a} + \frac{ab}{3} \frac{\bar{x}_1}{a} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right).$$

Thus, the sum of these quantities is

$$\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \frac{ab}{6} \frac{1}{(\bar{x}_1/a + \bar{x}_2/b)} - \frac{ab}{2} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b}\right) + \frac{ab}{3} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b}\right)^2. \tag{21}$$

Since A(D) = (ab)/2 then for $\bar{x} \in D$

$$\bar{x} \in Q(D) \iff \frac{1}{3} \frac{1}{(\bar{x}_1/a + \bar{x}_2/b)} - \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b}\right) + \frac{2}{3} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b}\right)^2 = 1$$

$$\iff 2\left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b}\right)^3 - 3\left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b}\right)^2 - 3\left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b}\right) + 1 = 0.$$

Using inequalities $0 < (\bar{x}_1/a + \bar{x}_2/b) \le 1$ for $\bar{x} \in D$ we get

$$Q(D) = \left\{ \bar{x} \in \mathbb{R}^2_{++} : \ \frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} = k \right\},$$

where k is the solution of (20).

In more general case we have inequality (see (7) and (21))

$$f(\bar{x}_1, \bar{x}_2) \le \frac{6u}{ab(1 - 3u^2 + 2u^3)} \int_D f(x) dx,$$

where $u = u(\bar{x}_1, \bar{x}_2) = \bar{x}_1/a + \bar{x}_2/b < 1$, function f is increasing radiant and integrable on D.

Consider now inequality (15) for our triangle D. We show that $\inf\{\langle x, 1/\bar{x}\rangle^+: \bar{x} \geq x, \ \bar{x} \in D\} = (x_1/a + x_2/b)$. Let $\bar{x} = (\bar{x}_1, \bar{x}_2) = (x_1/(x_1/a + x_2/b), x_2/(x_1/a + x_2/b))$. Then $\bar{x} \geq x$ and $\bar{x} \in D$ since $\bar{x}_1/a + \bar{x}_2/b = 1$. Hence

$$\inf\{\langle x, 1/\bar{x}\rangle^+: \ \bar{x} \ge x, \ \bar{x} \in D\} \le \max\left\{x_1 \frac{(x_1/a + x_2/b)}{x_1}, x_2 \frac{(x_1/a + x_2/b)}{x_2}\right\} = \frac{x_1}{a} + \frac{x_2}{b}.$$

Suppose that the converse inequality does not hold, then $\langle x, 1/\bar{x} \rangle^+ < x_1/a + x_2/b$ for some $\bar{x} \ge x$, $\bar{x} \in D$, hence $x/(x_1/a + x_2/b) < \bar{x}$. But this implies that $\bar{x} \notin D$. So, it follows from (15) that

$$\int_{D} f(x) dx \le \sup_{y \in D} f(y) \int_{D} \left(\frac{x_1}{a} + \frac{x_2}{b} \right) dx.$$

Calculation gives the quantity

$$\int_{D} \left(\frac{x_1}{a} + \frac{x_2}{b} \right) \, dx = \frac{ab}{3}.$$

Since A(D) = ab/2 then the final result is

$$\frac{1}{A(D)} \int_D f(x) \, dx \le \frac{2}{3} \sup_{y \in D} f(y).$$

Example 4.3 Let now Ω be the triangle from the Example 4.2:

$$\Omega = \left\{ x \in \mathbb{R}^2_{++} : \frac{x_1}{a} + \frac{x_2}{b} \le 1 \right\}.$$

Denote by D the subset of Ω such that

$$\Omega \backslash D = \left\{ x \in \Omega : \ \frac{k}{3} < \frac{x_1}{a}, \ \frac{k}{3} < \frac{x_2}{b}, \ \frac{x_1}{a} + \frac{x_2}{b} < k \right\}.$$

Then $(\Omega \backslash D) \subset N(Q(\Omega)) = \{x \in \mathbb{R}^2_{++} : x_1/a + x_2/b \leq k\}$. Note that $A(\Omega \backslash D) = (1/18)k^2ab$, hence $A(D) = (ab)/2 - (1/18)k^2ab = ab(1/2 - k^2/18)$. It follows from Proposition 3.4 and formula (21) (with Ω instead of D) that a point $\bar{x} \in \Omega$ belongs to Q(D) if and only if

$$\frac{1}{ab(1/2 - k^2/18)} \left[\frac{ab}{6} \frac{1}{(\bar{x}_1/a + \bar{x}_2/b)} - \frac{ab}{2} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right) + \frac{ab}{3} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right)^2 \right] = 1 \iff 2 \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right)^3 - 3 \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right)^2 - \left(3 - \frac{k^2}{3} \right) \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right) + 1 = 0.$$

It is easy to check that there exists unique solution s of the equation:

$$2s^3 - 3s^2 - (3 - k^2/3)s + 1 = 0, \quad 0 < s < 1.$$

Hence

$$Q(D) = \left\{ \bar{x} \in \mathbb{R}^2_{++} : \ \frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} = s \right\}.$$

We may establish also that s > k.

Remark 4.1 For any other closed domain D' such that $(\Omega \backslash D') \subset N(Q(\Omega)) = \{x \in \mathbb{R}^2_{++}: x_1/a + x_2/b \le k\}$ the set Q(D') has the same form, i.e. it is intersection of \mathbb{R}^2_{++} and a line $(\bar{x}_1/a + \bar{x}_2/b) = s'$ with some s': k < s' < 1.

Example 4.4 Let Ω be the same triangle: $\Omega = \{x \in \mathbb{R}^2_{++} : (x_1/a + x_2/b) \leq 1\}$. Let $D \subset \Omega$ and

$$\Omega \backslash D = \{ x \in \Omega : \ x_1 < a/2, \ x_2 < b/2 \}.$$

Then $\Omega \backslash D$ is the normal set, hence $N(\Omega \backslash D) \cap D = (\Omega \backslash D) \cap D$ is the empty set. Since $A(\Omega \backslash D) = ab/4$ then A(D) = ab/2 - ab/4 = ab/4. By Proposition 3.5, we have for $\bar{x} \in D$

$$\bar{x} \in Q(D) \iff \frac{1}{ab/4} \left[\frac{ab}{6} \frac{1}{(\bar{x}_1/a + \bar{x}_2/b)} - \frac{ab}{2} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right) + \frac{ab}{3} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right)^2 \right] = 1 \iff 2 \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right)^3 - 3 \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right)^2 - \frac{3}{2} \left(\frac{\bar{x}_1}{a} + \frac{\bar{x}_2}{b} \right) + 1 = 0.$$

So,

$$Q(D) = D \cap \{\bar{x} \in \mathbb{R}^2_{++} : \bar{x}_1/a + \bar{x}_2/b = p\} =$$

 $\{\bar{x} \in \mathbb{R}^2_{++}: \ \bar{x}_1 \ge a/2, \ \bar{x}_1/a + \bar{x}_2/b = p\} \cup \{\bar{x} \in \mathbb{R}^2_{++}: \ \bar{x}_2 \ge b/2, \ \bar{x}_1/a + \bar{x}_2/b = p\},$ where $2p^3 - 3p^2 - (3/2)p + 1 = 0, \ 0$

The following two examples were considered in [1] for ICAR functions defined on \mathbb{R}^2_+ . Note that the coefficient k plays here the same role as the number (1/3) in [1].

Example 4.5 Consider the triangle D with vertices (0,0), (a,0) and (a,va):

$$D = \{ x \in \mathbb{R}^2_{++} : x_1 \le a, x_2 \le vx_1 \}.$$

If $\bar{x} \in D$ then

$$D_1(\bar{x}) = \{ x \in \mathbb{R}^2_{++} : \bar{x}_1 \le x_1 \le a, \bar{x}_2 \le x_2 \le (\bar{x}_2/\bar{x}_1)x_1 \},$$

$$D_2(\bar{x}) = \{ x \in \mathbb{R}^2_{++} : \bar{x}_1 \le x_1 \le a, (\bar{x}_2/\bar{x}_1)x_1 \le x_2 \le vx_1 \}.$$

Calculation gives the following quantities

$$\frac{1}{\bar{x}_2} \int_{D_1(\bar{x})} x_2 \, dx_1 dx_2 = \frac{1}{\bar{x}_2} \int_{\bar{x}_1}^a dx_1 \int_{\bar{x}_2}^{(\bar{x}_2/\bar{x}_1)x_1} x_2 \, dx_2 = \bar{x}_2 \left(\frac{a^3}{6\bar{x}_1^2} - \frac{a}{2} + \frac{\bar{x}_1}{3} \right),$$

$$\frac{1}{\bar{x}_1} \int_{D_2(\bar{x})} x_1 \, dx_1 dx_2 = \frac{1}{\bar{x}_1} \int_{\bar{x}_1}^a dx_1 \int_{(\bar{x}_2/\bar{x}_1)x_1}^{vx_1} x_1 \, dx_2 = \left(\frac{va^3}{3\bar{x}_1} - \frac{v\bar{x}_1^2}{3}\right) - \bar{x}_2 \left(\frac{a^3}{3\bar{x}_1^2} - \frac{\bar{x}_1}{3}\right).$$

Further,

$$\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) dx = \left(\frac{va^{3}}{3\bar{x}_{1}} - \frac{v\bar{x}_{1}^{2}}{3}\right) + \bar{x}_{2} \left(\frac{2\bar{x}_{1}}{3} - \frac{a}{2} - \frac{a^{3}}{6\bar{x}_{1}^{2}}\right).$$

Since $A(D) = va^2/2$ then a point $\bar{x} \in D$ belongs to Q(D) if and only if

$$\left(\frac{2}{3}\frac{a}{\bar{x}_1} - \frac{2}{3}\frac{\bar{x}_1^2}{a^2}\right) + \frac{\bar{x}_2}{va}\left(\frac{4}{3}\frac{\bar{x}_1}{a} - 1 - \frac{1}{3}\frac{a^2}{\bar{x}_1^2}\right) = 1 \iff$$

$$\bar{x}_2 \left(1 + 3\frac{\bar{x}_1^2}{a^2} - 4\frac{\bar{x}_1^3}{a^3} \right) = v\bar{x}_1 \left(2 - 3\frac{\bar{x}_1}{a} - 2\frac{\bar{x}_1^3}{a^3} \right).$$

In particular, if $\bar{x}_2 = v\bar{x}_1$ then we get the equation $2(\bar{x}_1/a)^3 - 3(\bar{x}_1/a)^2 - 3(\bar{x}_1/a) + 1 = 0$, hence $(\bar{x}_1/a) = k$. So, the point (ka, vka) belongs to Q(D). This implies that for each InR function f, which is integrable on D:

$$f(ka, vka) \le \frac{1}{A(D)} \int_D f(x) dx.$$

If $\bar{x}_2 = v\bar{x}_1/2$ then equation has the form $(\bar{x}_1/a)^2 + 2(\bar{x}_1/a) - 1 = 0$. This shows that $(\bar{x}_1/a) = \sqrt{2} - 1$, therefore $((\sqrt{2} - 1)a, v(\sqrt{2} - 1)a/2) \in Q(D)$.

Further, we may set in (14) $\bar{x} = (a, va)$:

$$\int_{D} f(x) dx \le f(a, va) \int_{D} \max \left\{ \frac{x_1}{a}, \frac{x_2}{va} \right\} dx_1 dx_2 = f(a, va) \int_{D} \frac{x_1}{a} dx_1 dx_2$$
$$= \frac{f(a, va)}{a} \int_{0}^{a} dx_1 \int_{0}^{vx_1} x_1 dx_2 = \frac{va^2}{3} f(a, va).$$

Thus,

$$\frac{1}{A(D)} \int_D f(x) \, dx \le \frac{2}{3} f(a, va).$$

Example 4.6 Let D be the square:

$$D = \{ x \in \mathbb{R}^2_{++} : x_1 \le 1, x_2 \le 1 \}.$$

We consider two possible cases for $\bar{x} \in D$: $(\bar{x}_2/\bar{x}_1) \leq 1$ and $(\bar{x}_2/\bar{x}_1) \geq 1$.

a.) If $(\bar{x}_2/\bar{x}_1) \leq 1$ then we have

$$\frac{1}{\bar{x}_2} \int_{D_1(\bar{x})} x_2 \, dx_1 dx_2 = \frac{1}{\bar{x}_2} \int_{\bar{x}_1}^1 dx_1 \int_{\bar{x}_2}^{(\bar{x}_2/\bar{x}_1)x_1} x_2 \, dx_2 = \frac{\bar{x}_2}{2} \left(\frac{1}{3\bar{x}_1^2} - 1 + \frac{2\bar{x}_1}{3} \right),$$

$$\frac{1}{\bar{x}_1} \int_{D_2(\bar{x})} x_1 \, dx_1 dx_2 = \frac{1}{\bar{x}_1} \int_{\bar{x}_1}^1 dx_1 \int_{(\bar{x}_2/\bar{x}_1)x_1}^1 x_1 \, dx_2 = \frac{1}{2} \left(\frac{1}{\bar{x}_1} - \bar{x}_1 \right) + \frac{\bar{x}_2}{3} \left(\bar{x}_1 - \frac{1}{\bar{x}_1^2} \right).$$

Hence

$$\int_{D} \varphi\left(\frac{1}{\bar{x}}, x\right) \, dx = \frac{1}{2} \left(\frac{1}{\bar{x}_{1}} - \bar{x}_{1}\right) + \frac{\bar{x}_{2}}{6} \left(4\bar{x}_{1} - 3 - \frac{1}{\bar{x}_{1}^{2}}\right).$$

Since A(D) = 1 then we get the equation for $\bar{x} \in Q(D)$

$$\frac{1}{2} \left(\frac{1}{\bar{x}_1} - \bar{x}_1 \right) + \frac{\bar{x}_2}{6} \left(4\bar{x}_1 - 3 - \frac{1}{\bar{x}_1^2} \right) = 1 \iff$$
$$\bar{x}_2 \left(1 + 3\bar{x}_1^2 - 4\bar{x}_1^3 \right) = 3\bar{x}_1 \left(1 - 2\bar{x}_1 - \bar{x}_1^2 \right).$$

b.) If $(\bar{x}_2/\bar{x}_1) \geq 1$ then we get the symmetric equation

$$\bar{x}_1 \left(1 + 3\bar{x}_2^2 - 4\bar{x}_2^3 \right) = 3\bar{x}_2 \left(1 - 2\bar{x}_2 - \bar{x}_2^2 \right).$$

So, the set Q(D) can be represented as the union of two sets:

$$\left\{ \bar{x} \in \mathbb{R}_{++}^2 : \ \bar{x}_2 \le \bar{x}_1 \le 1, \ \bar{x}_2 \left(1 + 3\bar{x}_1^2 - 4\bar{x}_1^3 \right) = 3\bar{x}_1 \left(1 - 2\bar{x}_1 - \bar{x}_1^2 \right) \right\}$$

and

$$\left\{ \bar{x} \in \mathbb{R}^2_{++} : \ \bar{x}_1 \le \bar{x}_2 \le 1, \ \bar{x}_1 \left(1 + 3\bar{x}_2^2 - 4\bar{x}_2^3 \right) = 3\bar{x}_2 \left(1 - 2\bar{x}_2 - \bar{x}_2^2 \right) \right\}$$

In particular, if $\bar{x}_1 = \bar{x}_2$ then

$$\bar{x} \in Q(D) \iff \left(0 < \bar{x}_1 \le 1, \ \left(1 + 3\bar{x}_1^2 - 4\bar{x}_1^3\right) = 3\left(1 - 2\bar{x}_1 - \bar{x}_1^2\right)\right)$$

 $\iff \left(0 < \bar{x}_1 \le 1, \ 2\bar{x}_1^3 - 3\bar{x}_1^2 - 3\bar{x}_1 + 1 = 0\right).$

This implies that $(k, k) \in Q(D)$.

At last we investigate inequality (14) with $\bar{x} = (1, 1)$ for the square D:

$$\int_D f(x) \, dx \le f(1,1) \int_D \max\{x_1, x_2\} \, dx_1 dx_2.$$

Since A(D) = 1 and

$$\int_{D} \max\{x_{1}, x_{2}\} dx_{1} dx_{2} = \int_{0}^{1} dx_{1} \int_{0}^{x_{1}} x_{1} dx_{2} + \int_{0}^{1} dx_{1} \int_{x_{1}}^{1} x_{2} dx_{2}$$

$$= \frac{1}{3} + \int_{0}^{1} \frac{(1 - x_{1}^{2})}{2} dx_{1} = \frac{1}{3} + \frac{1}{2} - \frac{1}{6} = \frac{2}{3}$$

$$\frac{1}{A(D)} \int_{D} f(x) dx \leq \frac{2}{3} f(1, 1),$$

then

and this estimate holds for every increasing radiant and integrable on D function f.

Acknowledgement

The author is very grateful to A. M. Rubinov for formulation of the tasks and very useful discussions.

References

- [1] S.S. Dragomir, J. Dutta and A.M. Rubinov. Hermite-Hadamard-type inequalities for increasing convex-along-rays functions, (submitted to Real Analysis Exchange).
- [2] A.M. Rubinov (2000). Abstract convexity and global optimization. Kluwer Academic Publishers, Boston-Dordrecht-London.
- [3] A.M. Rubinov and B.M. Glover (1998). Duality for increasing positively homogeneous functions and normal sets. *RAIRO-Operations Research*, **32**, 105-123.
- [4] E.V. Sharikov. Increasing radiant functions, (submitted to Optimization).