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Abstract. Some inequalities in 2-inner product spaces generalizing Bessel’s

result that are similar to the Boas-Bellman inequality from inner product
spaces, are given. Applications for determinantal integral inequalities are also

provided.

1. Introduction

Let (H; (·, ·)) be an inner product space over the real or complex number field K.
If (ei)1≤i≤n are orthonormal vectors in the inner product space H, i.e., (ei, ej) = δij

for all i, j ∈ {1, . . . , n} where δij is the Kronecker delta, then the following inequality
is well known in the literature as Bessel’s inequality (see for example [9, p. 391]):

n∑
i=1

|(x, ei)|2 ≤ ‖x‖2 ,

for any x ∈ H.
For other results related to Bessel’s inequality, see [5] – [7] and Chapter XV in

the book [9].
In 1941, R.P. Boas [2] and in 1944, independently, R. Bellman [1] proved the

following generalization of Bessel’s inequality (see also [9, p. 392]).

Theorem 1. If x, y1, . . . , yn are elements of an inner product space (H; (·, ·)) , then
the following inequality:

n∑
i=1

|(x, yi)|2 ≤ ‖x‖2

 max
1≤i≤n

‖yi‖2 +

 ∑
1≤i 6=j≤n

|(yi, yj)|2
 1

2
 ,

holds.

It is the main aim of the present paper to point out the corresponding version of
Boas-Bellman inequality in 2-inner product spaces. Some natural generalizations
and related results are also pointed out. Applications for determinantal integral
inequalities are provided.

For a comprehensive list of fundamental results on 2-inner product spaces and
linear 2-normed spaces, see the recent books [3] and [8] where further references are
given.
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2. Bessel’s Inequality in 2-Inner Product Spaces

The concepts of 2-inner products and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presentation
of the recent results related to the theory of 2-inner product spaces as well as an
extensive list of the related references can be found in the book [3]. Here we give
the basic definitions and the elementary properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (·, ·|·) is a K-valued
function defined on X ×X ×X satisfying the following conditions:

(2I1) (x, x|z) ≥ 0 and (x, x|z) = 0 if and only if x and z are linearly dependent,
(2I2) (x, x|z) = (z, z|x),
(2I3) (y, x|z) = (x, y|z),
(2I4) (αx, y|z) = α(x, y|z) for any scalar α ∈ K,
(2I5) (x + x′, y|z) = (x, y|z) + (x′, y|z).
(·, ·|·) is called a 2-inner product on X and (X, (·, ·|·)) is called a 2-inner product

space (or 2-pre-Hilbert space). Some basic properties of 2-inner product (·, ·|·) can
be immediately obtained as follows [4]:

(1) If K = R, then (2I3) reduces to

(y, x|z) = (x, y|z).

(2) From (2I3) and (2I4), we have

(0, y|z) = 0, (x, 0|z) = 0

and also

(2.1) (x, αy|z) = ᾱ(x, y|z).

(3) Using (2I2)–(2I5), we have

(z, z|x± y) = (x± y, x± y|z) = (x, x|z) + (y, y|z)± 2Re(x, y|z)

and

(2.2) Re(x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)].

In the real case, (2.2) reduces to

(2.3) (x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)]

and, using this formula, it is easy to see that, for any α ∈ R,

(2.4) (x, y|αz) = α2(x, y|z).

In the complex case, using (2.1) and (2.2), we have

Im(x, y|z) = Re[−i(x, y|z)] =
1
4
[(z, z|x + iy)− (z, z|x− iy)],

which, in combination with (2.2), yields
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(2.5) (x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)] +

i

4
[(z, z|x + iy)− (z, z|x− iy)].

Using the above formula and (2.1), we have, for any α ∈ C,

(2.6) (x, y|αz) = |α|2(x, y|z).

However, for α ∈ R, (2.6) reduces to (2.4).
Also, from (2.6) it follows that

(x, y|0) = 0.

(4) For any three given vectors x, y, z ∈ X, consider the vector u = (y, y|z)x −
(x, y|z)y. By (2I1), we know that (u, u|z) ≥ 0 with the equality if and only if u and
z are linearly dependent. The inequality (u, u|z) ≥ 0 can be rewritten as

(2.7) (y, y|z)[(x, x|z)(y, y|z)− |(x, y|z)|2] ≥ 0.

For x = z, (2.7) becomes

−(y, y|z)|(z, y|z)|2 ≥ 0,

which implies that

(2.8) (z, y|z) = (y, z|z) = 0

provided y and z are linearly independent. Obviously, when y and z are linearly
dependent, (2.8) holds too. Thus (2.8) is true for any two vectors y, z ∈ X. Now, if
y and z are linearly independent, then (y, y|z) > 0 and, from (2.7), it follows that

(2.9) |(x, y|z)|2 ≤ (x, x|z)(y, y|z).

Using (2.8), it is easy to check that (2.9) is trivially fulfilled when y and z are linearly
dependent. Therefore, the inequality (2.9) holds for any three vectors x, y, z ∈ X
and is strict unless the vectors u = (y, y|z)x−(x, y|z)y and z are linearly dependent.
In fact, we have the equality in (2.9) if and only if the three vectors x, y and z are
linearly dependent.

In any given 2-inner product space (X, (·, · | ·)), we can define a function ‖ · | · ‖
on X ×X by

(2.10) ‖x|z‖ =
√

(x, x|z),

for all x, z ∈ X.
It is easy to see that this function satisfies the following conditions:
(2N1) ‖x|z‖ ≥ 0 and ‖x|z‖ = 0 if and only if x and z are linearly dependent,
(2N2) ‖z|x‖ = ‖x|z‖,
(2N3) ‖αx|z‖ = |α|‖x|z‖ for any scalar α ∈ K,
(2N4) ‖x + x′|z‖ ≤ ‖x|z‖+ ‖x′|z‖.
Any function ‖ · | · ‖ defined on X×X and satisfying the conditions (2N1)–(2N4)

is called a 2-norm on X and (X, ‖ · | · ‖) is called a linear 2-normed space [8].
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Whenever a 2-inner product space (X, (·, ·|·)) is given, we consider it as a linear
2-normed space (X, ‖ · | · ‖) with the 2-norm defined by (2.10).

Let (X; (·, ·|·)) be a 2-inner product space over the real or complex number field
K. If (ei)1≤i≤n are linearly independent vectors in the 2-inner product space X,

and, for a given z ∈ X, (ei, ej |z) = δij for all i, j ∈ {1, . . . , n} where δij is the
Kronecker delta (we say that the family (ei)1≤i≤n is z−orthonormal), then the
following inequality is the corresponding Bessel’s inequality (see for example [4])
for z−orthonormal family (ei)1≤i≤n in the 2-inner product space (X; (·, ·|·)):

(2.11)
n∑

i=1

|(x, ei|z)|2 ≤ ‖x|z‖2 ,

for any x ∈ X. For more details on this inequality, see the recent paper [4] and the
references therein.

3. Some Inequalities for 2-Norms

We start with the following lemma which is also interesting in itself.

Lemma 1. Let z1, . . . , zn, z ∈ X and µ1, . . . , µn ∈ K. Then one has the inequality:

(3.1)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤



max
1≤i≤n

|µi|
2

n∑
i=1

‖zi|z‖2 ;

(
n∑

i=1

|µi|
2α

) 1
α
(

n∑
i=1

‖zi|z‖2β

) 1
β

, where α > 1, 1
α + 1

β = 1;

n∑
i=1

|µi|
2 max

1≤i≤n
‖zi|z‖2 ,

+



max
1≤i 6=j≤n

{∣∣µiµj

∣∣} ∑
1≤i 6=j≤n

|(zi, zj |z)| ;

[(
n∑

i=1

|µi|
γ

)2

−
(

n∑
i=1

|µi|
2γ

)] 1
γ
( ∑

1≤i 6=j≤n

|(zi, zj |z)|δ
) 1

δ

,

where γ > 1, 1
γ + 1

δ = 1;[(
n∑

i=1

|µi|
)2

−
n∑

i=1

|µi|
2

]
max

1≤i 6=j≤n
|(zi, zj |z)| .
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Proof. We observe that

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

=

 n∑
i=1

µizi,
n∑

j=1

µjzj |z

(3.2)

=
n∑

i=1

n∑
j=1

µiµj (zi, zj |z) =

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

µiµj (zi, zj |z)

∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|µi|
∣∣µj

∣∣ |(zi, zj |z)|

=
n∑

i=1

|µi|
2 ‖zi|z‖2 +

∑
1≤i 6=j≤n

|µi|
∣∣µj

∣∣ |(zi, zj |z)| .

Using Hölder’s inequality, we may write that

n∑
i=1

|µi|
2 ‖zi|z‖2(3.3)

≤



max
1≤i≤n

|µi|
2

n∑
i=1

‖zi|z‖2 ;

(
n∑

i=1

|µi|
2α

) 1
α
(

n∑
i=1

‖zi|z‖2β

) 1
β

, where α > 1, 1
α + 1

β = 1;

n∑
i=1

|µi|
2 max

1≤i≤n
‖zi|z‖2 .

By Hölder’s inequality for double sums, we also have

(3.4)
∑

1≤i 6=j≤n

|µi|
∣∣µj

∣∣ |(zi, zj |z)|
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≤



max
1≤i 6=j≤n

∣∣µiµj

∣∣ ∑
1≤i 6=j≤n

|(zi, zj |z)| ;

( ∑
1≤i 6=j≤n

|µi|
γ ∣∣µj

∣∣γ) 1
γ
( ∑

1≤i 6=j≤n

|(zi, zj |z)|δ
) 1

δ

,

where γ > 1, 1
γ + 1

δ = 1;∑
1≤i 6=j≤n

|µi|
∣∣µj

∣∣ max
1≤i 6=j≤n

|(zi, zj |z)| ,

=



max
1≤i 6=j≤n

{∣∣µiµj

∣∣} ∑
1≤i 6=j≤n

|(zi, zj |z)| ;

[(
n∑

i=1

|µi|
γ

)2

−
(

n∑
i=1

|µi|
2γ

)] 1
γ
( ∑

1≤i 6=j≤n

|(zi, zj |z)|δ
) 1

δ

,

where γ > 1, 1
γ + 1

δ = 1;[(
n∑

i=1

|µi|
)2

−
n∑

i=1

|µi|
2

]
max

1≤i 6=j≤n
|(zi, zj |z)| .

Utilizing (3.3) and (3.4) in (3.2), we may deduce the desired result (3.1).

Remark 1. Inequality (3.1) contains in fact 9 different inequalities which may be
obtained combining the first 3 ones with the last 3 ones.

A particular result is embodied in the following inequality.

Corollary 1. With the assumptions in Lemma 1, we have

(3.5)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤
n∑

i=1

|µi|
2

 max
1≤i≤n

‖zi|z‖2 +

[(∑n
i=1 |µi|

2
)2

−
∑n

i=1 |µi|
4

] 1
2

∑n
i=1 |µi|

2

 ∑
1≤i 6=j≤n

|(zi, zj |z)|2
 1

2


≤

n∑
i=1

|µi|
2

 max
1≤i≤n

‖zi|z‖2 +

 ∑
1≤i 6=j≤n

|(zi, zj |z)|2
 1

2

 .

The first inequality follows by taking the third branch in the first curly bracket
with the second branch in the second curly bracket for γ = δ = 2.

The second inequality in (3.5) follows by the fact that( n∑
i=1

|µi|
2

)2

−
n∑

i=1

|µi|
4

 1
2

≤
n∑

i=1

|µi|
2
.
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Applying the following Cauchy-Bunyakovsky-Schwarz inequality

(3.6)

(
n∑

i=1

ai

)2

≤ n
n∑

i=1

a2
i , ai ∈ R+, 1 ≤ i ≤ n,

we may write that

(3.7)

(
n∑

i=1

|µi|
γ

)2

−
n∑

i=1

|µi|
2γ ≤ (n− 1)

n∑
i=1

|µi|
2γ (n ≥ 1)

and

(3.8)

(
n∑

i=1

|µi|

)2

−
n∑

i=1

|µi|
2 ≤ (n− 1)

n∑
i=1

|µi|
2 (n ≥ 1) .

Also, it is obvious that:

(3.9) max
1≤i 6=j≤n

{∣∣µiµj

∣∣} ≤ max
1≤i≤n

|µi|
2
.

Consequently, we may state the following coarser upper bounds for ‖
∑n

i=1 µizi|z‖
2

that may be useful in applications.

Corollary 2. With the assumptions in Lemma 1, we have the inequalities:

(3.10)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤



max
1≤i≤n

|µi|
2

n∑
i=1

‖zi|z‖2 ;

(
n∑

i=1

|µi|
2α

) 1
α
(

n∑
i=1

‖zi|z‖2β

) 1
β

, where α > 1, 1
α + 1

β = 1;

n∑
i=1

|µi|
2 max

1≤i≤n
‖zi|z‖2 ,

+



max
1≤i≤n

|µi|
2 ∑

1≤i 6=j≤n

|(zi, zj |z)| ;

(n− 1)
1
γ

(
n∑

i=1

|µi|
2γ

) 1
γ

( ∑
1≤i 6=j≤n

|z (i, zj |z)|δ
) 1

δ

,

where γ > 1, 1
γ + 1

δ = 1;

(n− 1)
n∑

i=1

|µi|
2 max

1≤i 6=j≤n
|(zi, zj |z)| .

The proof is obvious by Lemma 1 on applying the inequalities (3.7) – (3.9).

Remark 2. The following inequalities which are incorporated in (3.10) are of spe-
cial interest:

(3.11)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤ max
1≤i≤n

|µi|
2

 n∑
i=1

‖zi|z‖2 +
∑

1≤i 6=j≤n

|(zi, zj |z)|

 ;
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(3.12)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤

(
n∑

i=1

|µi|
2p

) 1
p

( n∑
i=1

‖zi|z‖2q

) 1
q

+ (n− 1)
1
p

 ∑
1≤i 6=j≤n

|(zi, zj |z)|q
 1

q

 ,

where p > 1, 1
p + 1

q = 1; and

(3.13)

∥∥∥∥∥
n∑

i=1

µizi|z

∥∥∥∥∥
2

≤
n∑

i=1

|µi|
2

[
max

1≤i≤n
‖zi|z‖2 + (n− 1) max

1≤i 6=j≤n
|(zi, zj |z)|

]
.

4. Some Inequalities for Fourier Coefficients

The following results holds

Theorem 2. Let x, y1, . . . , yn, z be vectors of a 2-inner product space (X; (·, ·|·))
and c1, . . . , cn ∈ K (K = C, R) . Then one has the inequalities:

(4.1)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2 ×



max
1≤i≤n

|ci|2
n∑

i=1

‖yi|z‖2 ;

(
n∑

i=1

|ci|2α

) 1
α
(

n∑
i=1

‖yi|z‖2β

) 1
β

, where α > 1, 1
α + 1

β = 1;

n∑
i=1

|ci|2 max
1≤i≤n

‖yi|z‖2 ;

+ ‖x|z‖2 ×



max
1≤i 6=j≤n

{|cicj |}
∑

1≤i 6=j≤n

|(yi, yj |z)| ;

[(
n∑

i=1

|ci|γ
)2

−
(

n∑
i=1

|ci|2γ

)] 1
γ
( ∑

1≤i 6=j≤n

|(yi, yj |z)|δ
) 1

δ

,

where γ > 1, 1
γ + 1

δ = 1;[(
n∑

i=1

|ci|
)2

−
n∑

i=1

|ci|2
]

max
1≤i 6=j≤n

|(yi, yj |z)| .

Proof. We note that
n∑

i=1

ci (x, yi|z) =

(
x,

n∑
i=1

ciyi|z

)
.

Using Schwarz’s inequality in 2-inner product spaces, we have∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2
∥∥∥∥∥

n∑
i=1

ciyi|z

∥∥∥∥∥
2

.
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Now using Lemma 1 with µi = ci, zi = yi (i = 1, . . . , n) , we deduce the desired
inequality (4.1).

The following particular inequalities that may be obtained by the Corollaries 1,
2, and Remark 2, hold.

Corollary 3. With the assumptions in Theorem 2, one has the inequalities:

(4.2)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2×



n∑
i=1

|ci|2
 max

1≤i≤n
‖yi|z‖2 +

( ∑
1≤i 6=j≤n

|(yi, yj |z)|2
) 1

2

 ;

max
1≤i≤n

|ci|2
{

n∑
i=1

‖yi|z‖2 +
∑

1≤i 6=j≤n

|(yi, yj |z)|

}
;

(
n∑

i=1

|ci|2p

) 1
p


(

n∑
i=1

‖yi|z‖2q

) 1
q

+ (n− 1)
1
p

( ∑
1≤i 6=j≤n

|(yi, yj |z)|q
) 1

q

 ,

where p > 1, 1
p + 1

q = 1;
n∑

i=1

|ci|2
{

max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i 6=j≤n

|(yi, yj |z)|
}

.

5. Some Boas-Bellman Type Inequalities in 2-Inner Product Spaces

If one chooses ci = (x, yi|z) (i = 1, . . . , n) in (4.1), then it is possible to obtain 9
different inequalities between the Fourier coefficients (x, yi|z) and the 2-norms and
2-inner products of the vectors yi (i = 1, . . . , n) . We restrict ourselves only to those
inequalities that may be obtained from (4.2).

From the first inequality in (4.2) for ci = (x, yi|z), we get

(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2
n∑

i=1

|(x, yi|z)|2

 max
1≤i≤n

‖yi|z‖2 +

 ∑
1≤i 6=j≤n

|(yi, yj |z)|2
 1

2

 ,

which is clearly equivalent to the following Boas-Bellman type inequality for 2-inner
products:

(5.1)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2

 max
1≤i≤n

‖yi|z‖2 +

 ∑
1≤i 6=j≤n

|(yi, yj |z)|2
 1

2

 .
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From the second inequality in (4.2) for ci = (x, yi|z) , we get(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2 max
1≤i≤n

|(x, yi|z)|2


n∑
i=1

‖yi|z‖2 +
∑

1≤i 6=j≤n

|(yi, yj |z)|

 .

Taking the square root in this inequality, we obtain

n∑
i=1

|(x, yi|z)|2(5.2)

≤ ‖x|z‖ max
1≤i≤n

|(x, yi|z)|


n∑

i=1

‖yi|z‖2 +
∑

1≤i 6=j≤n

|(yi, yj |z)|


1
2

,

for any x, y1, . . . , yn, z vectors in the 2-inner product space (X; (·, ·|·)) .
If we assume that (ei)1≤i≤n is an orthonormal family in X with respect with

the vector z, i.e., (ei, ej |z) = δij for all i, j ∈ {1, . . . , n}, then by (5.1) we deduce
Bessel’s inequality (2.11), while from (5.2) we have

(5.3)
n∑

i=1

|(x, ei|z)|2 ≤
√

n ‖x|z‖ max
1≤i≤n

|(x, ei|z)| , x ∈ X.

From the third inequality in (4.2) for ci = (x, yi|z) , we deduce

(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2
(

n∑
i=1

|(x, yi|z)|2p

) 1
p

×


(

n∑
i=1

‖yi|z‖2q

) 1
q

+ (n− 1)
1
p

 ∑
1≤i 6=j≤n

|(yi, yj |z)|q
 1

q

 ,

for p > 1, with 1
p + 1

q = 1. Taking the square root in this inequality, we get

(5.4)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖

(
n∑

i=1

|(x, yi|z)|2p

) 1
2p

×


(

n∑
i=1

‖yi|z‖2q

) 1
q

+ (n− 1)
1
p

 ∑
1≤i 6=j≤n

|(yi, yj |z)|q
 1

q


1
2

,

for any x, y1, . . . , yn, z ∈ X, and p > 1, with 1
p + 1

q = 1.

The above inequality (5.4) becomes, for an orthornormal family (ei)1≤i≤n with
respect of the vector z,

(5.5)
n∑

i=1

|(x, ei|z)|2 ≤ n
1
q ‖x|z‖

(
n∑

i=1

|(x, ei|z)|2p

) 1
2p

, x ∈ X.
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Finally, the choice ci = (x, yi|z) (i = 1, . . . , n) will produce in the last inequality in
(4.2) (

n∑
i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2
n∑

i=1

|(x, yi|z)|2
{

max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i 6=j≤n

|(yi, yj |z)|
}

,

which gives the following inequality

(5.6)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2
{

max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i 6=j≤n

|(yi, yj |z)|
}

,

for any x, y1, . . . , yn, z ∈ X.
It is obvious that (5.6) will give for z−orthonormal families, the Bessel inequality

mentioned in (2.11) from Introduction.

Remark 3. Observe that, both Boas-Bellman type inequality for 2-inner prod-
ucts incorporated in (5.1) and the inequality (5.6) become in the particular case
of z−orthonormal families, the regular Bessel’s inequality. Consequently, a com-
parison of the upper bounds is necessary.

It suffices to consider the quantities

An :=

 ∑
1≤i 6=j≤n

|(yi, yj |z)|2
 1

2

and
Bn := (n− 1) max

1≤i 6=j≤n
|(yi, yj |z)| ,

where n ≥ 1, and y1, . . . , yn, z ∈ X.
If we choose n = 3, we have

A3 =
√

2
(
(y1, y2|z)2 + (y2, y3|z)2 + (y3,y1|z)2

)1/2

and
B3 = 2max {|(y1, y2|z)| , |(y2, y3|z)| , |(y3,y1|z)|}

where y1, y2, y3, z ∈ X.
If we consider a := |(y1, y2|z)| ≥ 0, b := |(y2, y3|z)| ≥ 0 and c := |(y3,y1|z)| ≥ 0,

then we have to compare

A :=
√

2
(
a2 + b2 + c2

)1/2

with
B3 = 2max {a, b, c} .

If we assume that b = c = 1, then A :=
√

2
(
a2 + 2

)1/2
, B3 = 2 max {a, 1} . Finally,

for a = 1, we get A =
√

6, B = 2 showing that A > B, while for a = 2 we have
A =

√
12, B = 4 showing that B > A.

In conclusion, we may state that the bounds

M1 := ‖x|z‖2

 max
1≤i≤n

‖yi|z‖2 +

 ∑
1≤i 6=j≤n

|(yi, yj |z)|2
 1

2
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and

M2 := ‖x|z‖2
{

max
1≤i≤n

‖yi|z‖2 + (n− 1) max
1≤i 6=j≤n

|(yi, yj |z)|
}

for the Bessel’s sum
∑n

i=1 |(x, yi|z)|2, cannot be compared in general, meaning that
some time one is better than the other.

6. Applications for Determinantal Integral Inequalities

Let (Ω,Σ, µ) be a measure space consisting of a set Ω, a σ−algebra Σ of subsets
of Ω and a countably additive and positive measure µ on Σ with values in R ∪ {∞}.

Denote by L2
ρ (Ω) the Hilbert space of all real-valued functions f defined on Ω

that are 2−ρ−integrable on Ω, i.e.,
∫
Ω

ρ (s) |f (s)|2 dµ (s) < ∞, where ρ : Ω → [0,∞)
is a measurable function on Ω.

We can introduce the following 2-inner product on L2
ρ (Ω) by formula

(6.1) (f, g|h)ρ :=
1
2

∫
Ω

∫
Ω

ρ (s) ρ (t)
∣∣∣∣ f (s) f (t)

h (s) h (t)

∣∣∣∣ ∣∣∣∣ g (s) g (t)
h (s) h (t)

∣∣∣∣ dµ (s) dµ (t) ,

where by ∣∣∣∣ f (s) f (t)
h (s) h (t)

∣∣∣∣ ,
we denote the determinant of the matrix[

f (s) f (t)
h (s) h (t)

]
,

generating the 2-norm on L2
ρ (Ω) expressed by

(6.2) ‖f |h‖ρ :=

(
1
2

∫
Ω

∫
Ω

ρ (s) ρ (t)
∣∣∣∣ f (s) f (t)

h (s) h (t)

∣∣∣∣2 dµ (s) dµ (t)

)1/2

.

A simple calculation with integrals reveals that

(6.3) (f, g|h)ρ =
∣∣∣∣ ∫

Ω
ρfgdµ

∫
Ω

ρfhdµ∫
Ω

ρghdµ
∫
Ω

ρh2dµ

∣∣∣∣
and

(6.4) ‖f |h‖ρ =
∣∣∣∣ ∫

Ω
ρf2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣1/2

,

where, for simplicity, instead of
∫
Ω

ρ (s) f (s) g (s) dµ (s) , we have written
∫
Ω

ρfgdµ.
Using the representations (6.3), (6.4) and the inequalities for 2-inner products

and 2-norms established in the previous sections, one may state some interesting
determinantal integral inequalities, as follows.
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Proposition 1. Let f, g1, ..., gn, h ∈ L2
ρ (Ω) , where ρ : Ω → [0,∞) is a measurable

function on Ω. Then we have the inequality

n∑
i=1

∣∣∣∣ ∫
Ω

ρfgidµ
∫
Ω

ρfhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣2
≤

∣∣∣∣ ∫
Ω

ρf2dµ
∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣×{ max
1≤i≤n

∣∣∣∣ ∫
Ω

ρg2
i dµ

∫
Ω

ρgihdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣
+

 n∑
1≤i 6=j≤n

∣∣∣∣ ∫
Ω

ρgjgidµ
∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣2
1/2

 .

The proof follows by the inequality (5.1) applied for the 2-inner product and
2-norm defined in (6.1) and (6.2) , and utilizing the identities (6.3) and (6.4) .

If one uses the inequality (5.6), then that one may state the following result as
well

Proposition 2. Let f, g1, ..., gn, h ∈ L2
ρ (Ω) , where ρ : Ω → [0,∞) is a measurable

function on Ω. Then we have the inequality

n∑
i=1

∣∣∣∣ ∫
Ω

ρfgidµ
∫
Ω

ρfhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣2
≤

∣∣∣∣ ∫
Ω

ρf2dµ
∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣×{ max
1≤i≤n

∣∣∣∣ ∫
Ω

ρg2
i dµ

∫
Ω

ρgihdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣
+(n− 1) max

1≤i 6=j≤n

∣∣∣∣ ∫
Ω

ρgjgidµ
∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣} .
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