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ABSTRACT. Some results related to the Bombieri type generalisation of Bessel’s
inequality in 2-inner product spaces are given. The corresponding versions for
Selberg and Heilbronn inequalities for 2-inner products and applications for
determinantal integral inequalities are also pointed out.

1. INTRODUCTION

Let (X; (-,-)) be an inner product space over the real or complex number field K.
If (fi)1 <;<, are orthonormal vectors in the inner product space X, i.e., (f;, f;) = 0;;
foralli,j e {1,...,n} where d,; is the Kronecker delta, then the following inequality
is well known in the literature as Bessel’s inequality (see for example [10, p. 391]):

(1.1) Zl(x, FPE < Jall?

for any =z € X.

For other results related to Bessel’s inequality, see [6] — [8] and Chapter XV in
the book [10].

In 1971, E. Bombieri [3] (see also [10, p. 394]) gave the following generalisation
of Bessel’s inequality.

Theorem 1. If z,y1,...,yn are vectors in the inner product space (X;(-,)), then
the following inequality:

n n
2 2
(12) Z|(m7yl)| < ”xH max Z‘ ywy] )
i=1 j=1

1<i<n

holds.

It is obvious that if (y;),-,~,, are supposed to be orthonormal, then from (1.2)
one would deduce Bessel’s inequality (1.1).

Another generalisation of Bessel’s inequality was obtained by A. Selberg (see for
example [10, p. 394]):

Theorem 2. Let z,y1,...,Yyn be vectors in X withy; 20 (i =1,...,n), then

(1.3) Zz (z.9:) |_H z]?

j=1 yﬂyj)
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In this case, also, if (y;);<;<,, are orthonormal, then one may deduce Bessel’s
inequality. T

Another type of inequality related to Bessel’s result, was discovered in 1958 by
H. Heilbronn [9] (see also [10, p. 395]).

Theorem 3. With the assumptions of Theorem 1,

[N

n

(1.4) ZI(%%)I < el | D i)

ij=1

If in (1.4) one chooses y; = f; (i =1,...,n), where (f;),,, are orthonormal
vectors in X, then o

n
(1.5) Dol f)l < Vel forany x € X.
i=1

In 1992 J.E. Pecari¢ [12] (see also [10, p. 394]) proved the following general
inequality in inner product spaces.

Theorem 4. Let x,y1,...,yn € X and c1,...,c, € K. Then

n 2 n n

2 2
dociley)| < lel® D lel® | D 1w y)l
i=1 i=1 j=1

(1.6)

n n
2 2
< l® - el max §3 (v w)]
i=1 ==" =1

He showed that the Bombieri inequality (1.2) may be obtained from (1.6) for the

choice ¢; = (z,y;) (using the second inequality), the Selberg inequality (1.3) may
be obtained from the first part of (1.6) for the choice

S (i )
while the Heilbronn inequality (1.4) may be obtained from the first part of (1.6) if

_ (=)
= =yl
For other results connected with the above, see [7] and [8].

It is the main aim of the present paper to point out the corresponding versions
of Bombieri, Selberg and Heilbronn inequalities in 2-inner product spaces. Some
natural generalizations and related results are also given. Applications for deter-
minantal integral inequalities are provided.

For a comprehensive list of fundamental results on 2-inner product spaces and
linear 2-normed spaces, see the recent books [4] and [11] where further references
are given.

C; = ,iE{l,...,n};

one chooses ¢; for any i € {1,...,n}.

2. BESSEL’S INEQUALITY IN 2-INNER PRODUCT SPACES

The concepts of 2-inner products and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presentation
of the recent results related to the theory of 2-inner product spaces as well as an
extensive list of the related references can be found in [4]. Here we give the basic
definitions and the elementary properties of 2-inner product spaces.
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Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (-, |-) is a K-valued
function defined on X x X x X satisfying the following conditions:

(2I) (x,z|z) > 0 and (z,z|z) = 0 if and only if 2 and z are linearly dependent,

2L,) (z,x|2) = (2, z|x),

(2I2)

(213) (y,x|z) = (x,ylz),
(214) (

(215)

21,) (ax,ylz) = a(z,y|z) for any scalar o € K|
215 (:L' + I/7y|2’) = (I,y|Z) + (Ila y|Z)

(+,+]-) is called a 2-inner product on X and (X, (-, -|)) is called a 2-inner product
space (or 2-pre-Hilbert space). Some basic properties of 2-inner product spaces can
be immediately obtained as follows [5]:

(1) If K = R, then (2I3) reduces to

(y, 2|2) = (2,y]2).
(2) From (2I3) and (2I4), we have

(0,yl2) =0, (z,0]z) =0
and also

(2.1) (z, ay|z) = a(z,y[2).
(3) Using (215)—(21I5), we have

(2,2l £ y) = (z £y, £ y[z) = (z,2]2) + (y,y|2) £ 2Re(z,y|2)
and

(22) Re(z,3l2) = (2. 2l +9) — (2, 2la — )]

In the real case K =R, (2.2) reduces to

1
(23) (r,12) = 31z, 2lo + ) — (2,2l — )]
and, using this formula, it is easy to see that, for any a € R,
(24) (z,ylaz) = a*(z,yl2).

In the complex case, using (2.1) and (2.2), we have

(e, y12) = Reli(e, yl2)] = 71(z. 2l + i) — (2,2l — i),

which, in combination with (2.2), yields

(25)  (@4l2) = 7l 2l +y) = (2,2 — )] + 2l 2l + i) = (2l — i),

Using the above formula and (2.1), we have, for any a € C,

(2.6) (z,ylaz) = |al*(z, y|2).
However, for o € R, (2.6) reduces to (2.4).
Also, from (2.6) it follows that
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(z,y[0) =0.

(4) For any three given vectors z,y, z € X, consider the vector u = (y,y|z)x —
(z,y|2)y. By (211), we know that (u,u|z) > 0 with the equality if and only if v and
z are linearly dependent. The inequality (u,u|z) > 0 can be rewritten as,

(2.7) (v, yl2)(z, z[2) (y, y12) — |(z, y[2)[*] = 0.

For z = z, (2.7) becomes

~(,yl2)|(z,9]2)* > 0,
which implies that

(2.8) (z,ylz) = (y,2[2) =0

provided y and z are linearly independent. Obviously, when y and z are linearly
dependent, (2.8) holds too. Thus (2.8) is true for any two vectors y, z € X. Now, if
y and z are linearly independent, then (y,y|z) > 0 and, from (2.7), it follows that

(2.9) |(z,yl2)|* < (2, 2]2)(y, yl2).

Using (2.8), it is easy to check that (2.9) is trivially fulfilled when y and z are linearly
dependent. Therefore, the inequality (2.9) holds for any three vectors z,y,z € X
and is strict unless the vectors u = (y,y|z)x— (x, y|2)y and z are linearly dependent.
In fact, we have the equality in (2.9) if and only if the three vectors z,y and z are
linearly dependent.

In any given 2-inner product space (X, (+,-|-)), we can define a function || - |- ||
on X x X by
(2.10) z]z]] = V/(z, z|2)

for all z,z € X.

It is easy to see that this function satisfies the following conditions:

(2N1) ||z|z|| = 0 and ||z|z|| = 0 if and only if 2 and z are linearly dependent,

(2N2) [|z[x[| = ||z[=],

(2N3) |laz|z]| = |a|||z|z|| for any scalar « € K,

(2N4) [lz -+ 2/|2]] < llof2ll + /]

Any function ||+ ||| defined on X x X and satisfying the conditions (2N7)—(2Ny)
is called a 2-norm on X and (X, || -|-||) is called a linear 2-normed space [11].
Whenever a 2-inner product space (X, (-,-|-)) is given, we consider it as a linear
2-normed space (X, || - |- ||) with the 2-norm defined by (2.10).

Let (X;(-,+]-)) be a 2-inner product space over the real or complex number field
K. If (fi);<;<, are linearly independent vectors in the 2-inner product space X,
and, for a given z € X, (fi, filz) = 6;; for all ¢,j € {1,...,n} where §;; is the
Kronecker delta (we say that the family (f;);<;<, is z—orthonormal), then the
following inequality is the corresponding Bessel’s inequality (see for example [5])
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for the z—orthonormal family (f;),,,, in the 2-inner product space (X; (-, -|)):

n
(2.11) Dol fil2)P < ),
1=1

for any x € X. For more details on this inequality, see the recent paper [5] and the
references therein.

3. SOME INEQUALITIES FOR 2-NORMS

We start with the following lemma which is also interesting in itself.

Lemma 1. Let (X, (-,-|-)) be a 2-inner product space over K and z1,...,2,,2 € X,
ai,...,a, € K then
(3.1) i2i|z

max Jasf? 3 (i 212)]

1<k<n 521

1 s
n S\ i
; i\ % 1
i ol (o) (£ (S]] oo

n
max |a| Z lax| max (Z |(Zi72j|2)|> ;

It
M=
=
|=
+
o |
Il
=

1<k<n 1<i<n \ /=4

<.

n z n n q%
(1) |az|<zl<zl<zi,zjz>|>> Cops1 lylon
> sl 2 (2
w 1
n n n E “
p (zw) o) 2(2|zuzj|z>|Q> S ope1 Ll
- k=1 i=1 \j=1
t>1, ++1=1;
. :
n P n
()" £ fol o Z%%I@) el iyl
k=1 =1

n n
S lol max lai] 3 [max |<z“zj|z>];
k=1 i=1 <

1<i<n

1<5<

n n # n l %
> la] (Z|ai|m> <Z [max |(2i, 2|2 )@ ) , m>1, %‘i’%:l;
k=1 i=1

(3 iml) sl s



6 N.S. BARNETT, Y.J. CHO*, S.S. DRAGOMIR, S.M. KANG, AND S.S. KIM*

Proof. We observe that

n 2 n n
(3.2) Zaizi|z = Zaizi,Zajzﬂz
i=1 i=1 j=1
:ZZa,aJ (2, zj]%) Zzaz% (2, 2j]2)
i=1 j=1 i=1j=1
<ZZI%H%II zi, 252 I—Zlazl Zlajll zi, 2j12)|
=1 j=1
= M.
Using Holder’s inequality, we may write,
(3.3)

e lan] 331025, 512)

n n L v
> sl (21, 202)] < <z|ak|”> <Z|(zi,zj|z)|q> L p>1,
j=1 k=1 j=1

n
k; |a| max |(2i, 252)]

for any i € {1,...,n}, giving

n
max. |ay| Zl |a] Z |(2i, 251 2) | =2 Mi;

1

(84)  M< (zu)Zl(g(n) = M,

k=1 =1
1,1 _ 4.
N N p > 17 5 + 6 - 17
> lak] 3- lai| max |(2, 2;]2)] = M.
k=1 i=1 1<j<n

By Holder’s inequality we also have:

n n
D lail { D 1z, 252)
i=1 j=1

max |a;| Z [ENABIE

1<i<n ;52

1

(1§:1 |ai|r)r (él:l (g:l |(Zi,Zj|Z)|> S) , r>1, %-5- % =1,

n n
3 foi] max, <];|<zi,zj|z>|>;

ol

IN
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and thus

n
max. i 21|(2i7Zj|Z)\;

1
n r % n n ° °
My <4 max |a| (Z |aq ) > | 2 1z, 242)] ;T
i=1 i=1 \j=1

max Jax] 3. [ail max (Z (23, 2512 )I)

AN

Y
\'l—‘
S =
_|_
w =
Il

\.l—‘

1<k<n =1

and the first 3 inequalities in (3.1) are obtained.
By Hoélder’s inequality we also have:

X
TN
1=
B
T
N——
sl
’—\. —_—
NE '
P
1=
o
&
~
N~—
=
N——
Qg
~
vV
\.H
=
+
g =
I
\:—‘

and the next 3 inequalities in (3.1) are proved.
Finally, by the same Holder inequality we may state that:

s o (max (2ir 2512 >|);

S n m wf o N 1,1
< laled (Shad™)” (£ (o lalal) ) oo ke
k=1 i=1

n
z; |ai 1g7§>§<n|(2i>zj|z)|;

and the last 3 inequalities in (3.1) are proved. I

To obtain some bounds for |7, a;zi|z||” in terms of S lai)?, then the fol-

lowing corollaries may be used.
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Corollary 1. Let z1,...,2p,2 and ay,...,a, be as in Lemma 1. If 1 < p < 2,
1 <t <2, then one has the inequality

Qe
¢

n

2 n n
1,1
<Y a0 D0 1G22l
k=1 1

i=1 \j=

(3.6)

n
Zaizﬂz
i=1

1,1 1 1,.1_
where;—&—g—l,;—i—a—l.

Proof. By the monotonicity of power means, we may write,

n i n 2 %
(St <Zk=1|ak| ) C1<p<,
n n

1 1
n t\ t n 2\ 2
(M) S(Ell) Cl<i<o,
n n

from which we get
n % ) 1 n
<Z|ak|p> snr? < |ak|2> ,
k=1 k=1
1

(£

Using the fifth inequality in (3.1), we deduce (3.6). 1

=

~1
IA
3\
|
(S
-~
-
B
=
~
§]

Remark 1. An interesting particular case is the one forp =q =1t =u = 2, giving

n 2 n n
D azlz|| <Dl | Y (i 702))
i=1 k=1

ij=1
Corollary 2. With the assumptions of Lemma 1 and if 1 < p < 2, then

1
n
g a;zi|z
i=1

1,1
where;+§—1.

1
2

(3.7)

q

2 L n
P 2 L q
(33) <nd Yl max | (Yol zll | |,
k=1 Jj=1

Proof. Since

1
2

n % . n
1_1
(mw) <t (z w) ,
k=1 k=1

n n %
> Jag| <n? (Z |ak|2> :
k=1 k=1

then by the sixth inequality in (3.1) we deduce (3.8). 1

and

In a similar fashion, one may prove the following two corollaries.
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Corollary 3. With the assumptions of Lemma 1 and if 1 <m < 2, then

1
n N 7
zam <t 3 el (Z | [0 ) ,

k=1 i=1
1 _
where =+ T =1.

(3.9)

Corollary 4. With the assumptions of Lemma 1, we have:

n
Zaizi|z
i=1

The following lemma may be of interest as well.

(3.10) < nz |ax|? max \(zl, zjl2)] .

Lemma 2. With the assumptions of Lemma 1, one has the inequalities,

2 n n
(3.11) < ail* > (i, 2412)
i=1 j=1

n 2 n
> lail” max | 37 [(zi, 2;(2)]] ;
i=1 j=1

1<i<n

n H n q %
S Jai*? S (21, 2412)) . op>1, iyl
i=1 j=1 P g

2 n
max fai|” >0 [(2i25]2)]-

1<i< 521

IN

Proof. As in Lemma 1, we know that,

2 n n
<> laillagli(zi, 212)]

i=1 j=1

(3.12)

Using the simple observation that (see also [5, p. 394])

1 2 2 -
aillagl < 5 (lail’ +lasf?) . g € {1,...m)

we have,
n n 1 n
IICECDES DN (laal? + a1 124 2512)]
i=1 j=1 ij=
1 = 2
= [Z jaif? 1 23120 + D lag 120, 2412)]
=1 i,j=1

= Z |ai|2 |(Zl>Z]|Z)| )

ij=1
which proves the first inequality in (3.11).
The second part follows by Hélder’s inequality and we omit the details. |
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4. SOME INEQUALITIES FOR FOURIER COEFFICIENTS IN 2-INNER PRODUCT
SPACES

We are now able to point out the following result.

Theorem 5. Let z,y1,...,Yn, 2 be vectors of a 2-inner product space (X; (-, -|-))
and c1,...,c, € K. Then one has the inequalities:

2

(4.1)  (2,9il2)

n
1r<nka§( |Ck| ;;1 |(viryi12)| 5

1

1 s1%
o ol (1) [2 <J§1|<yi7yj|z>|ﬂ e

n
max el Z e max <E (43,9512 )

S =
+
» =
I
\.D—‘

Jj=1

1
- p » - - N\ 1 1
(S1ar) ool (£ (S loemll) ) o o1 2=,

i= j=

e

wn L
n » z% n AN n n . q | X X
S EER (kill%l) (Zl) S Slwewl”) | op>1 pag=1
- z

=1 \j=1

Q=

o1 1<i<n

1
n Pn n
(zw) S* Je] max (zwi,yjz)r?) Cop>1 iete
k=1 j=1

n n
5 lel g el 35 | o Gl
k=1 <isn i=1

1<5<
1

3 o (iw):" (z (0 >|Dl, m>1,

o1 1<

+
o~
I
=

3=
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Using Schwarz’s inequality in 2-inner product spaces, we have

Zci (z,yil2) ZCTMZ
i=1 i=1

Finally, using Lemma 1 with a; =¢;, z; =y; (i=1,...,n), we deduce the desired
inequality (4.1). We omit the details. Il

2
(4.2) < [l =]l

The following corollaries may be useful if one needs bounds in terms of 37 |¢;|* .

Corollary 5. With the assumptions in Theorem 5 and if 1 <p < 2,1 <t < 2,
% + % =1, % + % =1, one has the inequality:

NS

(4.3)

n
Z & (xayl|z)
=1

and, in particular, forp=q=t=u= 2,

n
141
<l e ety el Z Zlywyj ;
i=1

i=1 Jj=1

n

Zci (x,yil2)

i=1

n

n
2 2 2
<elzl® Y leil” | D 1w w512l
i=1

ij=1

(4.4)

The proof is similar to that of Corollary 1.

Corollary 6. With the assumptions in Theorem 5 and if 1 < p < 2, then,

1

q

2 n n
2 1 2
(45) )| < lelelfnd Sl e | Sl

1,1
where;—&—a—l.

The proof is similar to that of Corollary 2.
The following two inequalities also hold.

Corollary 7. With the above assumptions for X,y;,c; and if 1 <m < 2, then,

n 2 n n l %
2 1 2

e ale)| < lalelP % 3 el (Z (02 >|]> ,

=1

k=1 i=1
1 1 _
where —+7=1

(4.6)

Corollary 8. With the above assumptions for X, y;, c;, one has

(4.7) <IIxIZII HZICkI max |(yi,y;12)] -

‘($7yilz i1<j<n

Using Lemma 2, we may state the following result as well.

Remark 2. With the assumptions of Theorem 5,

2 n n
2 2

< el 2l el > (i ys12))
i=1 j=1

(4.8) i (z,9i]2)
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3
| I

§|c| max [z (i, 512)

1<i<n | /2

1
1 a\ ¢
< 2 n D n n
<l 0 (e <§<2|<yi,yj|z>|>> N

i=1

Hax lei|? JZE |(yir yj12)] -

5. BOMBIERI, SELBERG AND HEILBRONN INEQUALITIES IN 2-INNER PRODUCT
SPACES

We first note the following Bombieri type inequality for 2-inner products as an
important consequence of the second part of (4.8),

2 2
(1) Sl wil2) P < ol max 4 37 (5 w5le)
i=1 == =1

This result can be easily derived from the first branch of that inequality for the
choice ¢; = (z,y;]z) (i=1,...,n).

It is obvious that if (y;),,~,, is a z—orthonormal family in the 2-inner product
space (X;(+,+]-)), then (5.1) will produce Bessel’s inequality (2.11).

If one chooses in the first inequality of (4.8),

(= wwla) Ly

n
> |(wis ys12)]
j=1
then one can state the following inequadity7

JJ yz 2
(5.2) YL a2 € X,
Z i1 yuyyl )l

provided that > (s, y,|2)| # O.
=1

When (¥;),<;<,, is a z—orthonormal family in the 2-inner product space (X; (-, -|-)),
then (5.1) will produce Bessel’s inequality (2.11) as well.

The inequality (5.2) is the corresponding version for 2-inner product spaces of
the Selberg inequality.

Finally, if one considers

ci = zyil2) vi=1,...,n
| (i, y512)]

in the first inequality of (4.8), then after simple computation we deduce the following
result,

Cx) Sl wilo)l < lalell | 2 w2l |

ij=1
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which is the corresponding version for 2-inner products of Heilbronn’s result.

6. MORE INEQUALITIES OF THE BOMBIERI TYPE IN 2-INNER PRODUCT SPACES

Further, we point out other inequalities of Bombieri type that may be obtained
from (4.1) on choosing ¢; = (x,y;|2) (i=1,...,n).
If the above choice is made in the first inequality of (4.1), then one obtains:

2
n
2
(ZI(%%IZ)I > < Jlzlz]” max x |(@, yilz Z (i 512
i=1

1,0=1

giving,

Nl

n

(6.1) Y lzwile)’ < lzlell max [(z,yil)] Z l(irysl2)l ], z€X.

i=1 1,j=1

If the same choice for ¢; is made in the second inequality of (4.1), then

<Z|<x,yi|z>|2>

n % n n
< lzlz)® max x |(,yil2 (Z x,yilz )Ir> > (i ys12)] :
K3

i=1 =1 \ j=1

|~

implying that,

> I w:l2)

|
Bl

S

1
N n 27
S Hx\z” 1121ia‘<xn‘(x7yi‘z)|2 (Zl(xvyllz)r> Z Z| yzayj 3

=1 =1 \j=1

Where%+%:1,s>1.
The other inequalities in (4.1) will produce the following results, respectively

n

>l yilz)l

1=1
1
1 n 2 n
< el e, Gl <§;|<x,yz-|z>|> e, | Sl ) |
1= j=
n
63) > |(x,uil2)]
i=1
B H 3
. n 2p n n
< RPANE 1P
< el s et (S o) | Stonntor ) |
1= 1= J=
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1 1 _ 1.
Wherep>1,;+g—17

Z|(w,yz|z)

B 1 27 74
n 2p n 2t n n q
< ) (z 2,31 ) (z il ) S (Sl |
=1 i=1 i=1 \j=1
wherep>1, s +1=1,t>1,{+4=1;
n
> @, vil2)
=1
< ||=z|z]| (Z |<w7yi|z)|”> <Zl(x,yilz)l> max > i yslz :
i=1 i=1 - j=1
1 1 _
where p > 1, 5—}—5—1
n
2
> I, il2)]
=1
1 1
n 2 n 2
< alzll D@ wil2)l|  max |(= )| max i12)] ;
< 2 »Yi max. L Yilz 2, [(yi> y; ;
1= =

3
N

66) Y l(ewil2) < o] [Zw |] L@azyuyjlzﬂﬂ ,

1=1

b

(6.7) Dl wil2)l” < llalzll Y (@, vilo)l . max |(yi,y502)]
i=1 i=1

4,1<j<n

—

wherem>17i+%:1;and

Nl

If in the above inequalities we assume that (vi),<;<,, = (fi)1<;<, » Where (fi); <,
are z—orthonormal vectors in the 2-inner product space (X, (-, |-)) , then from (6.1)
~ (6.7) we may deduce the following inequalities similar, in a sense to Bessel’s in-
equality:

(6.8) Yol filz))” < villzlzl max {|(z, fil2)[};

=1

n

6.9 Y (@ fil2)] <n

i=1

Wherer>1,%+é:1;

olzl| max {|(e. fl2)]* | <Z| z, fil2 |)

610) Yol Al < llale]l max {|Ge fil2) %}<Z|xfl >;
i=1
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(6.11) il(wafiIZ)IQS\/ﬁIlellfgiagxn{lwfl 5}<Z|wfz ) ,

where p > 1;

6.12) Nl fil2)* < n el <Z|<x,fi|z>|”) (Dwmz) :
=1 =1 )

Wherep>1,t>1,%+%:1;

(613) D | i) <||:U|Z||<Z|frfz ) (foz >,p>1
614) >l Sl < Virfale] (Zmz ) max {|(@. £}

n L n . m 1 1
(6.15) D"l fil) < o |jalz [D(x,mzn] com> Loy

i=1 =1

(6.16) Y@ fil2)* < Dalzll D |, fil)]
i=1 1=1

Corollaries 5 — 8 will produce the following results which do not contain the
Fourier coeflicients in the right side of the inequality.
Indeed, if one chooses ¢; = (z,y;|z) in (4.3), then,

1
n 2 N 1 n n ? “
2 2 1 2
(Soea) < bt 2 Sl | 32 Sttesior) |
i=1 i=1 \j—=1
giving the following Bombieri type inequality:
n N N n n % B
2 141 2
(6.17) Do l@ gil2)* < et a2 > (i ys12)| ;
i=1 =1 \j=1
Wherel<p§2,1<t§2,%+%:1,%+%:1.

If in this inequality we consider p = ¢

N

2 2
(6.18) Dol w2 < lal=ll” | D i yylz
i=1

3,7=1

In a similar way, if ¢; = (z,y;]2) in (4.6), then,

1
1

ol (; (012 >|D ,

(6.19) S @ wil2)P < noe
=1

1 1 _
where m > 1, —+7=1
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Finally, if ¢; = (z,:]2) (i =1,...,n), is taken in (4.7), then
(6.20) Do l@wl2)ff <njelz)?  tmax (i y512)] -
i=1 Y=

Remark 3. We now compare,

(6.21) > l@ il < llalz]® max Zlyz,y]
i=1

with,

3
N

(6.22) o l@ il < llzlzl® § D 1wisysl2)

i=1 ij=1
Denote
n
T P
and
Z (i, 9512
1,j=1
If we choosen = 2, then for a := |(y1,y1|2)], b := |(y1, y2|2)|, ¢ .= [(y2,9212)|, @, b, ¢ >
0, we have

M; = max{a+b,b+ c},
1
My = (a® +2b* + ¢%)*

Assume that a = 2,b = 1 and ¢ = 3. Then M, = 4 > /15 = My, showing
that, in this case, the bound provided by (6.22) is better than the bound provided by
(6.21). If (Yi)1<;<, are z—orthonormal vectors, then My = 1, My = \/n, showing
that in this case the Bombieri type inequality (which becomes Bessel’s inequality)
provides a better bound than (6.22).

7. APPLICATIONS FOR DETERMINANTAL INTEGRAL INEQUALITIES

Let (2,3, 1) be a measure space consisting of a set 2, a o—algebra 3 of subsets
of 2 and a countably additive and positive measure p on ¥ with values in R U {oo}.

Denote by L% (©) the Hilbert space of all real-valued functions f defined on 2
that are 2—p—integrable on Q, i.e., [, p(s)|f (s)|? dp (s) < oo, where p : Q — [0, 0)
is a measurable function on €.

We can introduce the following 2-inner product on L2 (Q) by formula

@) o, =g [ [o@ew] 18 T[40 20 awan,

where,
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denotes the determinant of the matrix

[ 1 1],

generating the 2-norm on L2 (Q) expressed by

(7.2) IR, = (; /Q/Qp(s)p(t)’ £Ez§ ig;

A simple calculation with integrals reveals that

2

1/2
dpi (s) dp (t)) .

fod fhd
(7.3) (f9lh), = ﬁzg;gldz ﬁ,p;thZ ‘
and

) 1/2
(.4 Il =| et Jprlicn

where, for simplicity, instead of [, p (s) f (s) g (s) du (s), we have written [, pfgdp.

Using the representations (7.3), (7.4) and the inequalities for 2-inner products
and 2-norms established in the previous sections, we have some interesting deter-
minantal integral inequalities.

Proposition 1. Let f,g1,...,9n,h € L% (Q), where p: Q — [0,00) is a measurable
function on Q, then we have the inequality,

n 2
id Jo pfhdp
5 Jopfgidp [
(7:5) z_;‘ Jopgihdp — [q ph*dp

Jopfdu  [opfhdp
Jo pfhdp Jo ph?dp

- Jopgigid [o, pgihdp
1<% ; | det [ Jo pgihdyp Jo PR dp |

The proof follows by the Bombieri type inequality for 2-inner products incorpo-
rated in 5.1.

Proposition 2. Let f,g1,...,9n,h € Li (Q), where p: Q — [0,00) is a measurable
function on ), then,

i ‘ Jorfaidu — [opfhdu ‘
Jopgihdp [, phdu
~ gid Jo pgihdp
i=1 5™ | det Jo paigidp Q PYj
2 lde [ Jo pgihdp Jo ph*dp |

<’ JopfPdu  [opfhdp ‘
= Japfhdu [ ph*dp

(7.6)

provided that

- g:d Jo pgihdp
qot | Jargigidn Jq pg; 0
2 |de { Jopgihdu [ ph*dp #

j=1
for each i € {1,....,n}.

This result follows by the Selberg type inequality (5.2).
Finally, by the use of the Heilbronn type inequality (5.3), we have:
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Proposition 3. With the above assumptions for f, g1, ..., gn, h,

- id Jo pfhdu
7.7 det | Jarfodn  Jo
(7.7) ;‘ e[ Japgihdp — [o ph?dp |
1/2
Jorf2dp  Jypfhdu |
Jopfhdy [ ph*du

En: det [ Jorasgidn — Jopgshdn 1|
| Jo pgihdp Jo PR dp
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