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Abstract. Some results related to the Bombieri type generalisation of Bessel’s

inequality in 2-inner product spaces are given. The corresponding versions for

Selberg and Heilbronn inequalities for 2-inner products and applications for
determinantal integral inequalities are also pointed out.

1. Introduction

Let (X; (·, ·)) be an inner product space over the real or complex number field K.
If (fi)1≤i≤n are orthonormal vectors in the inner product space X, i.e., (fi, fj) = δij

for all i, j ∈ {1, . . . , n} where δij is the Kronecker delta, then the following inequality
is well known in the literature as Bessel’s inequality (see for example [10, p. 391]):

(1.1)
n∑

i=1

|(x, fi)|2 ≤ ‖x‖2 ,

for any x ∈ X.
For other results related to Bessel’s inequality, see [6] – [8] and Chapter XV in

the book [10].
In 1971, E. Bombieri [3] (see also [10, p. 394]) gave the following generalisation

of Bessel’s inequality.

Theorem 1. If x, y1, . . . , yn are vectors in the inner product space (X; (·, ·)) , then
the following inequality:

(1.2)
n∑

i=1

|(x, yi)|2 ≤ ‖x‖2 max
1≤i≤n


n∑

j=1

|(yi, yj)|

 ,

holds.

It is obvious that if (yi)1≤i≤n are supposed to be orthonormal, then from (1.2)
one would deduce Bessel’s inequality (1.1).

Another generalisation of Bessel’s inequality was obtained by A. Selberg (see for
example [10, p. 394]):

Theorem 2. Let x, y1, . . . , yn be vectors in X with yi 6= 0 (i = 1, . . . , n) , then

(1.3)
n∑

i=1

|(x, yi)|2∑n
j=1 |(yi, yj)|

≤ ‖x‖2 .
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In this case, also, if (yi)1≤i≤n are orthonormal, then one may deduce Bessel’s
inequality.

Another type of inequality related to Bessel’s result, was discovered in 1958 by
H. Heilbronn [9] (see also [10, p. 395]).

Theorem 3. With the assumptions of Theorem 1,

(1.4)
n∑

i=1

|(x, yi)| ≤ ‖x‖

 n∑
i,j=1

|(yi, yj)|

 1
2

.

If in (1.4) one chooses yi = fi (i = 1, . . . , n) , where (fi)1≤i≤n are orthonormal
vectors in X, then

(1.5)
n∑

i=1

|(x, fi)| ≤
√

n ‖x‖ , for any x ∈ X.

In 1992 J.E. Pečarić [12] (see also [10, p. 394]) proved the following general
inequality in inner product spaces.

Theorem 4. Let x, y1, . . . , yn ∈ X and c1, . . . , cn ∈ K. Then∣∣∣∣∣
n∑

i=1

ci (x, yi)

∣∣∣∣∣
2

≤ ‖x‖2
n∑

i=1

|ci|2
 n∑

j=1

|(yi, yj)|

(1.6)

≤ ‖x‖2
n∑

i=1

|ci|2 max
1≤i≤n


n∑

j=1

|(yi, yj)|

 .

He showed that the Bombieri inequality (1.2) may be obtained from (1.6) for the
choice ci = (x, yi) (using the second inequality), the Selberg inequality (1.3) may
be obtained from the first part of (1.6) for the choice

ci =
(x, yi)∑n

j=1 |(yi, yj)|
, i ∈ {1, . . . , n} ;

while the Heilbronn inequality (1.4) may be obtained from the first part of (1.6) if

one chooses ci = (x,yi)
|(x,yi)| , for any i ∈ {1, . . . , n} .

For other results connected with the above, see [7] and [8].
It is the main aim of the present paper to point out the corresponding versions

of Bombieri, Selberg and Heilbronn inequalities in 2-inner product spaces. Some
natural generalizations and related results are also given. Applications for deter-
minantal integral inequalities are provided.

For a comprehensive list of fundamental results on 2-inner product spaces and
linear 2-normed spaces, see the recent books [4] and [11] where further references
are given.

2. Bessel’s Inequality in 2-Inner Product Spaces

The concepts of 2-inner products and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presentation
of the recent results related to the theory of 2-inner product spaces as well as an
extensive list of the related references can be found in [4]. Here we give the basic
definitions and the elementary properties of 2-inner product spaces.
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Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (·, ·|·) is a K-valued
function defined on X ×X ×X satisfying the following conditions:

(2I1) (x, x|z) ≥ 0 and (x, x|z) = 0 if and only if x and z are linearly dependent,
(2I2) (x, x|z) = (z, z|x),
(2I3) (y, x|z) = (x, y|z),
(2I4) (αx, y|z) = α(x, y|z) for any scalar α ∈ K,
(2I5) (x + x′, y|z) = (x, y|z) + (x′, y|z).
(·, ·|·) is called a 2-inner product on X and (X, (·, ·|·)) is called a 2-inner product

space (or 2-pre-Hilbert space). Some basic properties of 2-inner product spaces can
be immediately obtained as follows [5]:

(1) If K = R, then (2I3) reduces to

(y, x|z) = (x, y|z).
(2) From (2I3) and (2I4), we have

(0, y|z) = 0, (x, 0|z) = 0
and also

(2.1) (x, αy|z) = ᾱ(x, y|z).

(3) Using (2I2)–(2I5), we have

(z, z|x± y) = (x± y, x± y|z) = (x, x|z) + (y, y|z)± 2Re(x, y|z)
and

(2.2) Re(x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)].

In the real case K = R, (2.2) reduces to

(2.3) (x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)]

and, using this formula, it is easy to see that, for any α ∈ R,

(2.4) (x, y|αz) = α2(x, y|z).

In the complex case, using (2.1) and (2.2), we have

Im(x, y|z) = Re[−i(x, y|z)] =
1
4
[(z, z|x + iy)− (z, z|x− iy)],

which, in combination with (2.2), yields

(2.5) (x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)] +

i

4
[(z, z|x + iy)− (z, z|x− iy)].

Using the above formula and (2.1), we have, for any α ∈ C,

(2.6) (x, y|αz) = |α|2(x, y|z).

However, for α ∈ R, (2.6) reduces to (2.4).
Also, from (2.6) it follows that
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(x, y|0) = 0.

(4) For any three given vectors x, y, z ∈ X, consider the vector u = (y, y|z)x −
(x, y|z)y. By (2I1), we know that (u, u|z) ≥ 0 with the equality if and only if u and
z are linearly dependent. The inequality (u, u|z) ≥ 0 can be rewritten as,

(2.7) (y, y|z)[(x, x|z)(y, y|z)− |(x, y|z)|2] ≥ 0.

For x = z, (2.7) becomes

−(y, y|z)|(z, y|z)|2 ≥ 0,

which implies that

(2.8) (z, y|z) = (y, z|z) = 0

provided y and z are linearly independent. Obviously, when y and z are linearly
dependent, (2.8) holds too. Thus (2.8) is true for any two vectors y, z ∈ X. Now, if
y and z are linearly independent, then (y, y|z) > 0 and, from (2.7), it follows that

(2.9) |(x, y|z)|2 ≤ (x, x|z)(y, y|z).

Using (2.8), it is easy to check that (2.9) is trivially fulfilled when y and z are linearly
dependent. Therefore, the inequality (2.9) holds for any three vectors x, y, z ∈ X
and is strict unless the vectors u = (y, y|z)x−(x, y|z)y and z are linearly dependent.
In fact, we have the equality in (2.9) if and only if the three vectors x, y and z are
linearly dependent.

In any given 2-inner product space (X, (·, · | ·)), we can define a function ‖ · | · ‖
on X ×X by

(2.10) ‖x|z‖ =
√

(x, x|z)

for all x, z ∈ X.
It is easy to see that this function satisfies the following conditions:
(2N1) ‖x|z‖ ≥ 0 and ‖x|z‖ = 0 if and only if x and z are linearly dependent,
(2N2) ‖z|x‖ = ‖x|z‖,
(2N3) ‖αx|z‖ = |α|‖x|z‖ for any scalar α ∈ K,
(2N4) ‖x + x′|z‖ ≤ ‖x|z‖+ ‖x′|z‖.
Any function ‖ · | · ‖ defined on X×X and satisfying the conditions (2N1)–(2N4)

is called a 2-norm on X and (X, ‖ · | · ‖) is called a linear 2-normed space [11].
Whenever a 2-inner product space (X, (·, ·|·)) is given, we consider it as a linear
2-normed space (X, ‖ · | · ‖) with the 2-norm defined by (2.10).

Let (X; (·, ·|·)) be a 2-inner product space over the real or complex number field
K. If (fi)1≤i≤n are linearly independent vectors in the 2-inner product space X,

and, for a given z ∈ X, (fi, fj |z) = δij for all i, j ∈ {1, . . . , n} where δij is the
Kronecker delta (we say that the family (fi)1≤i≤n is z−orthonormal), then the
following inequality is the corresponding Bessel’s inequality (see for example [5])
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for the z−orthonormal family (fi)1≤i≤n in the 2-inner product space (X; (·, ·|·)):

(2.11)
n∑

i=1

|(x, fi|z)|2 ≤ ‖x|z‖2 ,

for any x ∈ X. For more details on this inequality, see the recent paper [5] and the
references therein.

3. Some Inequalities for 2-Norms

We start with the following lemma which is also interesting in itself.

Lemma 1. Let (X, (·, ·|·)) be a 2-inner product space over K and z1, . . . , zn, z ∈ X,
a1, . . . , an ∈ K, then

(3.1)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤



max
1≤k≤n

|ak|2
n∑

i,j=1

|(zi, zj |z)| ;

max
1≤k≤n

|ak|
(

n∑
i=1

|ai|r
) 1

r

(
n∑

i=1

(
n∑

j=1

|(zi, zj |z)|

)s) 1
s

, r > 1, 1
r + 1

s = 1;

max
1≤k≤n

|ak|
n∑

k=1

|ak| max
1≤i≤n

(
n∑

j=1

|(zi, zj |z)|

)
;

(
n∑

k=1

|ak|p
) 1

p

max
1≤i≤n

|ai|

(
n∑

i=1

(
n∑

j=1

|(zi, zj |z)|

)q) 1
q

, p > 1, 1
p + 1

q = 1;

(
n∑

k=1

|ak|p
) 1

p
(

n∑
i=1

|ai|t
) 1

t

 n∑
i=1

(
n∑

j=1

|(zi, zj |z)|q
)u

q

 1
u

, p > 1, 1
p + 1

q = 1;

t > 1, 1
t + 1

u = 1;

(
n∑

k=1

|ak|p
) 1

p n∑
i=1

|ai| max
1≤i≤n


(

n∑
j=1

|(zi, zj |z)|q
) 1

q

 , p > 1, 1
p + 1

q = 1;

n∑
k=1

|ak| max
1≤i≤n

|ai|
n∑

i=1

[
max

1≤j≤n
|(zi, zj |z)|

]
;

n∑
k=1

|ak|
(

n∑
i=1

|ai|m
) 1

m

(
n∑

i=1

[
max

1≤j≤n
|(zi, zj |z)|

]l
) 1

l

, m > 1, 1
m + 1

l = 1;

(
n∑

k=1

|ak|
)2

max
i,1≤j≤n

|(zi, zj |z)| .
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Proof. We observe that∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

=

 n∑
i=1

aizi,
n∑

j=1

ajzj |z

(3.2)

=
n∑

i=1

n∑
j=1

aiaj (zi, zj |z) =

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aiaj (zi, zj |z)

∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|ai| |aj | |(zi, zj |z)| =
n∑

i=1

|ai|

 n∑
j=1

|aj | |(zi, zj |z)|


:= M.

Using Hölder’s inequality, we may write,
(3.3)

n∑
j=1

|aj | |(zi, zj |z)| ≤



max
1≤k≤n

|ak|
n∑

j=1

|(zi, zj |z)|

(
n∑

k=1

|ak|p
) 1

p

(
n∑

j=1

|(zi, zj |z)|q
) 1

q

, p > 1, 1
p + 1

q = 1;

n∑
k=1

|ak| max
1≤j≤n

|(zi, zj |z)|

for any i ∈ {1, . . . , n} , giving

(3.4) M ≤



max
1≤k≤n

|ak|
n∑

i=1

|ai|
n∑

j=1

|(zi, zj |z)| =: M1;

(
n∑

k=1

|ak|p
) 1

p n∑
i=1

|ai|

(
n∑

j=1

|(zi, zj |z)|q
) 1

q

:= Mp,

p > 1, 1
p + 1

q = 1;
n∑

k=1

|ak|
n∑

i=1

|ai| max
1≤j≤n

|(zi, zj |z)| =: M∞.

By Hölder’s inequality we also have:

(3.5)
n∑

i=1

|ai|

 n∑
j=1

|(zi, zj |z)|



≤



max
1≤i≤n

|ai|
n∑

i,j=1

|(zi, zj |z)| ;

(
n∑

i=1

|ai|r
) 1

r

(
n∑

i=1

(
n∑

j=1

|(zi, zj |z)|

)s) 1
s

, r > 1, 1
r + 1

s = 1;

n∑
i=1

|ai| max
1≤i≤n

(
n∑

j=1

|(zi, zj |z)|

)
;
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and thus

M1 ≤



max
1≤k≤n

|ak|2
n∑

i,j=1

|(zi, zj |z)| ;

max
1≤k≤n

|ak|
(

n∑
i=1

|ai|r
) 1

r

(
n∑

i=1

(
n∑

j=1

|(zi, zj |z)|

)s) 1
s

, r > 1, 1
r + 1

s = 1;

max
1≤k≤n

|ak|
n∑

i=1

|ai| max
1≤i≤n

(
n∑

j=1

|(zi, zj |z)|

)
;

and the first 3 inequalities in (3.1) are obtained.
By Hölder’s inequality we also have:

Mp ≤

(
n∑

k=1

|ak|p
) 1

p

×



max
1≤i≤n

|ai|
n∑

i=1

(
n∑

j=1

|(zi, zj |z)|q
) 1

q

;

(
n∑

i=1

|ai|t
) 1

t

 n∑
i=1

(
n∑

j=1

|(zi, zj |z)|q
)u

q

 1
u

, t > 1, 1
t + 1

u = 1;

n∑
i=1

|ai| max
1≤i≤n


(

n∑
j=1

|(zi, zj |z)|q
) 1

q

 ;

and the next 3 inequalities in (3.1) are proved.
Finally, by the same Hölder inequality we may state that:

M∞ ≤
n∑

k=1

|ak|×



max
1≤i≤n

|ai|
n∑

i=1

(
max

1≤j≤n
|(zi, zj |z)|

)
;

(
n∑

i=1

|ai|m
) 1

m

(
n∑

i=1

(
max

1≤j≤n
|(zi, zj |z)|

)l
) 1

l

, m > 1, 1
m + 1

l = 1;

n∑
i=1

|ai| max
1≤i,j≤n

|(zi, zj |z)| ;

and the last 3 inequalities in (3.1) are proved.

To obtain some bounds for ‖
∑n

i=1 aizi|z‖
2 in terms of

∑n
i=1 |ai|2 , then the fol-

lowing corollaries may be used.
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Corollary 1. Let z1, . . . , zn, z and a1, . . . , an be as in Lemma 1. If 1 < p ≤ 2,
1 < t ≤ 2, then one has the inequality

(3.6)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤ n
1
p + 1

t−1
n∑

k=1

|ak|2

 n∑
i=1

 n∑
j=1

|(zi, zj |z)|q
u

q


1
u

where 1
p + 1

q = 1, 1
t + 1

u = 1.

Proof. By the monotonicity of power means, we may write,(∑n
k=1 |ak|p

n

) 1
p

≤

(∑n
k=1 |ak|2

n

) 1
2

; 1 < p ≤ 2,

(∑n
k=1 |ak|t

n

) 1
t

≤

(∑n
k=1 |ak|2

n

) 1
2

; 1 < t ≤ 2,

from which we get (
n∑

k=1

|ak|p
) 1

p

≤ n
1
p−

1
2

(
n∑

k=1

|ak|2
) 1

2

,

(
n∑

k=1

|ak|t
) 1

t

≤ n
1
t−

1
2

(
n∑

k=1

|ak|2
) 1

2

.

Using the fifth inequality in (3.1), we deduce (3.6).

Remark 1. An interesting particular case is the one for p = q = t = u = 2, giving

(3.7)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤
n∑

k=1

|ak|2
 n∑

i,j=1

|(zi, zj |z)|2
 1

2

.

Corollary 2. With the assumptions of Lemma 1 and if 1 < p ≤ 2, then

(3.8)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤ n
1
p

n∑
k=1

|ak|2 max
1≤i≤n


 n∑

j=1

|(zi, zj |z)|q
 1

q

 ,

where 1
p + 1

q = 1.

Proof. Since (
n∑

k=1

|ak|p
) 1

p

≤ n
1
p−

1
2

(
n∑

k=1

|ak|2
) 1

2

,

and
n∑

k=1

|ak| ≤ n
1
2

(
n∑

k=1

|ak|2
) 1

2

,

then by the sixth inequality in (3.1) we deduce (3.8).

In a similar fashion, one may prove the following two corollaries.



BOMBIERI, SELBERG AND HEILBRONN TYPE INEQUALITIES 9

Corollary 3. With the assumptions of Lemma 1 and if 1 < m ≤ 2, then

(3.9)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤ n
1
m

n∑
k=1

|ak|2
(

n∑
i=1

[
max

1≤j≤n
|(zi, zj |z)|

]l
) 1

l

,

where 1
m + 1

l = 1.

Corollary 4. With the assumptions of Lemma 1, we have:

(3.10)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤ n
n∑

k=1

|ak|2 max
1≤i,j≤n

|(zi, zj |z)| .

The following lemma may be of interest as well.

Lemma 2. With the assumptions of Lemma 1, one has the inequalities,

(3.11)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤
n∑

i=1

|ai|2
n∑

j=1

|(zi, zj |z)|

≤



n∑
i=1

|ai|2 max
1≤i≤n

[
n∑

j=1

|(zi, zj |z)|

]
;

(
n∑

i=1

|ai|2p

) 1
p

((
n∑

j=1

|(zi, zj |z)|

)q) 1
q

, p > 1, 1
p + 1

q = 1;

max
1≤i≤n

|ai|2
n∑

i,j=1

|(zi, zj |z)| .

Proof. As in Lemma 1, we know that,

(3.12)

∥∥∥∥∥
n∑

i=1

aizi|z

∥∥∥∥∥
2

≤
n∑

i=1

n∑
j=1

|ai| |aj | |(zi, zj |z)| .

Using the simple observation that (see also [5, p. 394])

|ai| |aj | ≤
1
2

(
|ai|2 + |aj |2

)
, i, j ∈ {1, . . . , n}

we have,
n∑

i=1

n∑
j=1

|ai| |aj | |(zi, zj |z)| ≤ 1
2

n∑
i,j=1

(
|ai|2 + |aj |2

)
|(zi, zj |z)|

=
1
2

 n∑
i,j=1

|ai|2 |(zi, zj |z)|+
n∑

i,j=1

|aj |2 |(zi, zj |z)|


=

n∑
i,j=1

|ai|2 |(zi, zj |z)| ,

which proves the first inequality in (3.11).
The second part follows by Hölder’s inequality and we omit the details.
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4. Some Inequalities for Fourier Coefficients in 2-Inner Product
Spaces

We are now able to point out the following result.

Theorem 5. Let x, y1, . . . , yn, z be vectors of a 2-inner product space (X; (·, ·|·))
and c1, . . . , cn ∈ K. Then one has the inequalities:

(4.1)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2×



max
1≤k≤n

|ck|2
n∑

i,j=1

|(yi, yj |z)| ;

max
1≤k≤n

|ck|
(

n∑
i=1

|ci|r
) 1

r

[
n∑

i=1

(
n∑

j=1

|(yi, yj |z)|

)s] 1
s

, r > 1, 1
r + 1

s = 1;

max
1≤k≤n

|ck|
n∑

k=1

|ck| max
1≤i≤n

(
n∑

j=1

|(yi, yj |z)|

)
;

(
n∑

k=1

|ck|p
) 1

p

max
1≤i≤n

|ci|

(
n∑

i=1

(
n∑

j=1

|(yi, yj |z)|

)q) 1
q

, p > 1, 1
p + 1

q = 1;

(
n∑

k=1

|ck|p
) 1

p
(

n∑
i=1

|ci|t
) 1

t

 n∑
i=1

(
n∑

j=1

|(yi, yj |z)|q
)u

q

 1
u

, p > 1, 1
p + 1

q = 1;

t > 1, 1
t + 1

u = 1;

(
n∑

k=1

|ck|p
) 1

p n∑
i=1

|ci| max
1≤i≤n


(

n∑
j=1

|(yi, yj |z)|q
) 1

q

 , p > 1, 1
p + 1

q = 1;

n∑
k=1

|ck| max
1≤i≤n

|ci|
n∑

i=1

[
max

1≤j≤n
|(yi, yj |z)|

]
;

n∑
k=1

|ck|
(

n∑
i=1

|ci|m
) 1

m

(
n∑

i=1

[
max

1≤j≤n
|(yi, yj |z)|

]l
) 1

l

, m > 1, 1
m + 1

l = 1;

(
n∑

k=1

|ck|
)2

max
i,1≤j≤n

|(yi, yj |z)| .

Proof. We note that

n∑
i=1

ci (x, yi|z) =

(
x,

n∑
i=1

ciyi|z

)
.
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Using Schwarz’s inequality in 2-inner product spaces, we have

(4.2)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2
∥∥∥∥∥

n∑
i=1

ciyi|z

∥∥∥∥∥
2

.

Finally, using Lemma 1 with ai = ci, zi = yi (i = 1, . . . , n) , we deduce the desired
inequality (4.1). We omit the details.

The following corollaries may be useful if one needs bounds in terms of
∑n

i=1 |ci|2 .

Corollary 5. With the assumptions in Theorem 5 and if 1 < p ≤ 2, 1 < t ≤ 2,
1
p + 1

q = 1, 1
t + 1

u = 1, one has the inequality:

(4.3)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2 n
1
p + 1

t−1
n∑

i=1

|ci|2

 n∑
i=1

 n∑
j=1

|(yi, yj |z)|q
u

q


1
u

,

and, in particular, for p = q = t = u = 2,

(4.4)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2
n∑

i=1

|ci|2
 n∑

i,j=1

|(yi, yj |z)|2
 1

2

.

The proof is similar to that of Corollary 1.

Corollary 6. With the assumptions in Theorem 5 and if 1 < p ≤ 2, then,

(4.5)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2 n
1
p

n∑
k=1

|ck|2 max
1≤i≤n

 n∑
j=1

|(yi, yj |z)|q
 1

q

,

where 1
p + 1

q = 1.

The proof is similar to that of Corollary 2.
The following two inequalities also hold.

Corollary 7. With the above assumptions for X, yi, ci and if 1 < m ≤ 2, then,

(4.6)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2 n
1
m

n∑
k=1

|ck|2
(

n∑
i=1

[
max

1≤j≤n
|(yi, yj |z)|

]l
) 1

l

,

where 1
m + 1

l = 1.

Corollary 8. With the above assumptions for X, yi, ci, one has

(4.7)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2 n
n∑

k=1

|ck|2 max
i,1≤j≤n

|(yi, yj |z)| .

Using Lemma 2, we may state the following result as well.

Remark 2. With the assumptions of Theorem 5,

(4.8)

∣∣∣∣∣
n∑

i=1

ci (x, yi|z)

∣∣∣∣∣
2

≤ ‖x|z‖2
n∑

i=1

|ci|2
n∑

j=1

|(yi, yj |z)|
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≤ ‖x|z‖2 ×



n∑
i=1

|ci|2 max
1≤i≤n

[
n∑

j=1

|(yi, yj |z)|

]
;

(
n∑

i=1

|ci|2p

) 1
p

(
n∑

i=1

(
n∑

j=1

|(yi, yj |z)|

)q) 1
q

, p > 1, 1
p + 1

q = 1;

max
1≤i≤n

|ci|2
n∑

i,j=1

|(yi, yj |z)| .

5. Bombieri, Selberg and Heilbronn Inequalities in 2-Inner Product
Spaces

We first note the following Bombieri type inequality for 2-inner products as an
important consequence of the second part of (4.8),

(5.1)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2 max
1≤i≤n


n∑

j=1

|(yi, yj |z)|

 .

This result can be easily derived from the first branch of that inequality for the
choice ci = (x, yi|z) (i = 1, . . . , n) .

It is obvious that if (yi)1≤i≤n is a z−orthonormal family in the 2-inner product
space (X; (·, ·|·)), then (5.1) will produce Bessel’s inequality (2.11).

If one chooses in the first inequality of (4.8),

ci =
(x, yi|z)

n∑
j=1

|(yi, yj |z)|
, i = 1, . . . , n

then one can state the following inequality,

(5.2)
n∑

i=1

|(x, yi|z)|2∑n
j=1 |(yi, yj |z)|

≤ ‖x|z‖2 , z ∈ X,

provided that
n∑

j=1

|(yi, yj |z)| 6= 0.

When (yi)1≤i≤n is a z−orthonormal family in the 2-inner product space (X; (·, ·|·)),
then (5.1) will produce Bessel’s inequality (2.11) as well.

The inequality (5.2) is the corresponding version for 2-inner product spaces of
the Selberg inequality.

Finally, if one considers

ci =
(x, yi|z)
|(yi, yj |z)|

, i = 1, . . . , n

in the first inequality of (4.8), then after simple computation we deduce the following
result,

(5.3)
n∑

i=1

|(x, yi|z)| ≤ ‖x|z‖

 n∑
i,j=1

|(yi, yj |z)|

 1
2

,
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which is the corresponding version for 2-inner products of Heilbronn’s result.

6. More Inequalities of the Bombieri Type in 2-Inner Product Spaces

Further, we point out other inequalities of Bombieri type that may be obtained
from (4.1) on choosing ci = (x, yi|z) (i = 1, . . . , n) .

If the above choice is made in the first inequality of (4.1), then one obtains:(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2 max
1≤i≤n

|(x, yi|z)|2
n∑

i,j=1

|(yi, yj |z)|

giving,

(6.1)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖ max
1≤i≤n

|(x, yi|z)|

 n∑
i,j=1

|(yi, yj |z)|

 1
2

, x ∈ X.

If the same choice for ci is made in the second inequality of (4.1), then(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2 max
1≤i≤n

|(x, yi|z)|

(
n∑

i=1

|(x, yi|z)|r
) 1

r

 n∑
i=1

 n∑
j=1

|(yi, yj |z)|

s
1
s

,

implying that,

(6.2)
n∑

i=1

|(x, yi|z)|2

≤ ‖x|z‖ max
1≤i≤n

|(x, yi|z)|
1
2

(
n∑

i=1

|(x, yi|z)|r
) 1

2r

 n∑
i=1

 n∑
j=1

|(yi, yj |z)|

s
1
2s

,

where 1
r + 1

s = 1, s > 1.
The other inequalities in (4.1) will produce the following results, respectively

n∑
i=1

|(x, yi|z)|2

≤ ‖x|z‖ max
1≤i≤n

|(x, yi|z)|
1
2

(
n∑

i=1

|(x, yi|z)|

) 1
2
 max

1≤i≤n

 n∑
j=1

|(yi, yj |z)|

 ;

(6.3)
n∑

i=1

|(x, yi|z)|2

≤ ‖x|z‖ max
1≤i≤n

|(x, yi|z)|
1
2

(
n∑

i=1

|(x, yi|z)|p
) 1

2p

 n∑
i=1

 n∑
j=1

|(yi, yj |z)|q
 1

q


1
2

,
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where p > 1, 1
p + 1

q = 1;

(6.4)
n∑

i=1

|(x, yi|z)|2

≤ ‖x|z‖

(
n∑

i=1

|(x, yi|z)|p
) 1

2p
(

n∑
i=1

|(x, yi|z)|t
) 1

2t

 n∑
i=1

 n∑
j=1

|(yi, yj |z)|q
u

q


1
2u

,

where p > 1, 1
p + 1

q = 1, t > 1, 1
t + 1

u = 1;

(6.5)
n∑

i=1

|(x, yi|z)|2

≤ ‖x|z‖

(
n∑

i=1

|(x, yi|z)|p
) 1

2p
(

n∑
i=1

|(x, yi|z)|

) 1
2

max
1≤i≤n


 n∑

j=1

|(yi, yj |z)|q
 1

2q

 ,

where p > 1, 1
p + 1

q = 1;
n∑

i=1

|(x, yi|z)|2

≤ ‖x|z‖

[
n∑

i=1

|(x, yi|z)|

] 1
2

max
1≤i≤n

|(x, yi|z)|
1
2

(
n∑

i=1

[
max

1≤j≤n
|(yi, yj |z)|

]) 1
2

;

(6.6)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖

[
n∑

i=1

|(x, yi|z)|m
] 1

2m
[

n∑
i=1

[
max

1≤j≤n
|(yi, yj |z)|l

]] 1
2l

,

where m > 1, 1
m + 1

l = 1; and

(6.7)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖
n∑

i=1

|(x, yi|z)| max
i,1≤j≤n

|(yi, yj |z)|
1
2 .

If in the above inequalities we assume that (yi)1≤i≤n = (fi)1≤i≤n , where (fi)1≤i≤n

are z−orthonormal vectors in the 2-inner product space (X, (·, ·|·)) , then from (6.1)
– (6.7) we may deduce the following inequalities similar, in a sense to Bessel’s in-
equality:

(6.8)
n∑

i=1

|(x, fi|z)|2 ≤
√

n ‖x|z‖ max
1≤i≤n

{|(x, fi|z)|} ;

(6.9)
n∑

i=1

|(x, fi|z)|2 ≤ n
1
2s ‖x|z‖ max

1≤i≤n

{
|(x, fi|z)|

1
2

}( n∑
i=1

|(x, fi|z)|r
) 1

2r

,

where r > 1, 1
r + 1

s = 1;

(6.10)
n∑

i=1

|(x, fi|z)|2 ≤ ‖x|z‖ max
1≤i≤n

{
|(x, fi|z)|

1
2

}( n∑
i=1

|(x, fi|z)|

) 1
2

;
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(6.11)
n∑

i=1

|(x, fi|z)|2 ≤
√

n ‖x|z‖ max
1≤i≤n

{
|(x, fi|z)|

1
2

}( n∑
i=1

|(x, fi|z)|p
) 1

2p

,

where p > 1;

(6.12)
n∑

i=1

|(x, fi|z)|2 ≤ n
1
2u ‖x|z‖

(
n∑

i=1

|(x, fi|z)|p
) 1

2p
(

n∑
i=1

|(x, fi|z)|t
) 1

2t

,

where p > 1, t > 1, 1
t + 1

u = 1;

(6.13)
n∑

i=1

|(x, fi|z)|2 ≤ ‖x|z‖

(
n∑

i=1

|(x, fi|z)|p
) 1

2p
(

n∑
i=1

|(x, fi|z)|

) 1
2

, p > 1;

(6.14)
n∑

i=1

|(x, fi|z)|2 ≤
√

n ‖x|z‖

(
n∑

i=1

|(x, fi|z)|

) 1
2

max
1≤i≤n

{
|(x, fi|z)|

1
2

}
;

(6.15)
n∑

i=1

|(x, fi|z)|2 ≤ n
1
2l ‖x|z‖

[
n∑

i=1

|(x, fi|z)|m
] 1

m

, m > 1,
1
m

+
1
l

= 1;

(6.16)
n∑

i=1

|(x, fi|z)|2 ≤ ‖x|z‖
n∑

i=1

|(x, fi|z)| .

Corollaries 5 – 8 will produce the following results which do not contain the
Fourier coefficients in the right side of the inequality.

Indeed, if one chooses ci = (x, yi|z) in (4.3), then,(
n∑

i=1

|(x, yi|z)|2
)2

≤ ‖x|z‖2 n
1
p + 1

t−1
n∑

i=1

|(x, yi|z)|2

 n∑
i=1

 n∑
j=1

|(yi, yj |z)|q
u

q


1
u

,

giving the following Bombieri type inequality:

(6.17)
n∑

i=1

|(x, yi|z)|2 ≤ n
1
p + 1

t−1 ‖x|z‖2

 n∑
i=1

 n∑
j=1

|(yi, yj |z)|q
u

q


1
u

,

where 1 < p ≤ 2, 1 < t ≤ 2, 1
p + 1

q = 1, 1
t + 1

u = 1.
If in this inequality we consider p = q = t = u = 2, then

(6.18)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2
 n∑

i,j=1

|(yi, yj |z)|2
 1

2

.

In a similar way, if ci = (x, yi|z) in (4.6), then,

(6.19)
n∑

i=1

|(x, yi|z)|2 ≤ n
1
m ‖x|z‖2

(
n∑

i=1

[
max

1≤j≤n
|(yi, yj |z)|

]l
) 1

l

,

where m > 1, 1
m + 1

l = 1.
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Finally, if ci = (x, yi|z) (i = 1, . . . , n) , is taken in (4.7), then

(6.20)
n∑

i=1

|(x, yi|z)|2 ≤ n ‖x|z‖2 max
1≤i,j≤n

|(yi, yj |z)| .

Remark 3. We now compare,

(6.21)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2 max
1≤i≤n


n∑

j=1

|(yi, yj |z)|


with,

(6.22)
n∑

i=1

|(x, yi|z)|2 ≤ ‖x|z‖2


n∑
i,j=1

|(yi, yj |z)|2


1
2

.

Denote

M1 := max
1≤i≤n


n∑

j=1

|(yi, yj |z)|


and

M2 :=

 n∑
i,j=1

|(yi, yj |z)|2
 1

2

.

If we choose n = 2, then for a := |(y1, y1|z)| , b := |(y1, y2|z)| , c := |(y2, y2|z)| , a, b, c >
0, we have

M1 = max {a + b, b + c} ,

M2 =
(
a2 + 2b2 + c2

) 1
2 .

Assume that a = 2, b = 1 and c = 3. Then M1 = 4 >
√

15 = M2, showing
that, in this case, the bound provided by (6.22) is better than the bound provided by
(6.21). If (yi)1≤i≤n are z−orthonormal vectors, then M1 = 1, M2 =

√
n, showing

that in this case the Bombieri type inequality (which becomes Bessel’s inequality)
provides a better bound than (6.22).

7. Applications for Determinantal Integral Inequalities

Let (Ω,Σ, µ) be a measure space consisting of a set Ω, a σ−algebra Σ of subsets
of Ω and a countably additive and positive measure µ on Σ with values in R ∪ {∞}.

Denote by L2
ρ (Ω) the Hilbert space of all real-valued functions f defined on Ω

that are 2−ρ−integrable on Ω, i.e.,
∫
Ω

ρ (s) |f (s)|2 dµ (s) < ∞, where ρ : Ω → [0,∞)
is a measurable function on Ω.

We can introduce the following 2-inner product on L2
ρ (Ω) by formula

(7.1) (f, g|h)ρ :=
1
2

∫
Ω

∫
Ω

ρ (s) ρ (t)
∣∣∣∣ f (s) f (t)

h (s) h (t)

∣∣∣∣ ∣∣∣∣ g (s) g (t)
h (s) h (t)

∣∣∣∣ dµ (s) dµ (t) ,

where, ∣∣∣∣ f (s) f (t)
h (s) h (t)

∣∣∣∣
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denotes the determinant of the matrix[
f (s) f (t)
h (s) h (t)

]
,

generating the 2-norm on L2
ρ (Ω) expressed by

(7.2) ‖f |h‖ρ :=

(
1
2

∫
Ω

∫
Ω

ρ (s) ρ (t)
∣∣∣∣ f (s) f (t)

h (s) h (t)

∣∣∣∣2 dµ (s) dµ (t)

)1/2

.

A simple calculation with integrals reveals that

(7.3) (f, g|h)ρ =
∣∣∣∣ ∫

Ω
ρfgdµ

∫
Ω

ρfhdµ∫
Ω

ρghdµ
∫
Ω

ρh2dµ

∣∣∣∣
and

(7.4) ‖f |h‖ρ =
∣∣∣∣ ∫

Ω
ρf2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣1/2

where, for simplicity, instead of
∫
Ω

ρ (s) f (s) g (s) dµ (s) , we have written
∫
Ω

ρfgdµ.
Using the representations (7.3), (7.4) and the inequalities for 2-inner products

and 2-norms established in the previous sections, we have some interesting deter-
minantal integral inequalities.

Proposition 1. Let f, g1, ..., gn, h ∈ L2
ρ (Ω) , where ρ : Ω → [0,∞) is a measurable

function on Ω, then we have the inequality,

(7.5)
n∑

i=1

∣∣∣∣ ∫
Ω

ρfgidµ
∫
Ω

ρfhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣2

≤
∣∣∣∣ ∫

Ω
ρf2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣ max
1≤i≤n


n∑

j=1

|det
[ ∫

Ω
ρgjgidµ

∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

]
|

 .

The proof follows by the Bombieri type inequality for 2-inner products incorpo-
rated in 5.1.

Proposition 2. Let f, g1, ..., gn, h ∈ L2
ρ (Ω) , where ρ : Ω → [0,∞) is a measurable

function on Ω, then,

(7.6)
n∑

i=1

∣∣∣∣ ∫
Ω

ρfgidµ
∫
Ω

ρfhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

∣∣∣∣2∑n
j=1 |det

[ ∫
Ω

ρgjgidµ
∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

]
|

≤
∣∣∣∣ ∫

Ω
ρf2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣
provided that

n∑
j=1

|det
[ ∫

Ω
ρgjgidµ

∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

]
| 6= 0

for each i ∈ {1, ..., n} .

This result follows by the Selberg type inequality (5.2).
Finally, by the use of the Heilbronn type inequality (5.3), we have:
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Proposition 3. With the above assumptions for f, g1, ..., gn, h,

(7.7)
n∑

i=1

|det
[ ∫

Ω
ρfgidµ

∫
Ω

ρfhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

]
|

≤
∣∣∣∣ ∫

Ω
ρf2dµ

∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣1/2


n∑
i,j=1

|det
[ ∫

Ω
ρgjgidµ

∫
Ω

ρgjhdµ∫
Ω

ρgihdµ
∫
Ω

ρh2dµ

]
|


1/2
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[10] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Classical and New Inequalities in

Analysis, Kluwer Academic Publishers, 1993.

[11] R.W. FREESE and Y.J. CHO, Geometry of Linear 2-Normed Spaces, Nova Science Publish-
ers, Inc., New York, 2001.
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