SOME PECARIC’S TYPE INEQUALITIES IN 2-INNER
PRODUCT SPACES AND APPLICATIONS

Y.J. CHO*, S.S. DRAGOMIR, C.-S. LIN, S.S. KIM*, AND Y.-H. KIM

ABSTRACT. Some results related to the Pecarié’s type generalisation of Bessel’s
inequality in 2-inner product spaces are given. Applications for determinantal
integral inequalities are also provided.

1. INTRODUCTION

In 1992, J.E. Pecari¢ [5] proved the following inequality for vectors in complex
inner product spaces (H;(-,-)).

Theorem 1. Suppose that x,y1,...,yn are vectors in H and cq,...,c, are complex
numbers. Then the following inequalities
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He also showed that for ¢; = (x,y;),7 € {1,...,n}, one gets
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which improves Bombieri’s inequality [1]
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Note that (1.3) is in its turn a natural generalization of Bessel’s inequality

(1.4) >l e <l

for any « € H, which holds for the orthornormal vectors (e;);;,, -

In this paper we point out some results of Pecarié’s type for 2-inner products
spaces. Some inequalities of Bombieri type holding in these spaces are also men-
tioned. Natural applications for determinantal integral inequalities are given as
well.

2. SOME PRELIMINARY RESULTS IN 2-INNER PRODUCT SPACES

The concepts of 2-inner products and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presentation
of the recent results related to the theory of 2-inner product spaces as well as an
extensive list of the related references can be found in the book [2]. Here we give
the basic definitions and the elementary properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (-, -|-) is a K-valued
function defined on X x X x X satisfying the following conditions:

(2Iy) (z,z|2) > 0 and (z,x|z) = 0 if and only if = and z are linearly dependent,
2l) (z,z|z) = (2, z|z),
213 y,l’|2) - (l’,y|Z),

—~~

(212)
(213)
(214) (ox,y|2z) = a(x, y|z) for any scalar o € K,
(2L5) (z+ ', ylz) = (z,y]2) + (2, yl2).

(+,-|-) is called a 2-inner product on X and (X, (-,-|-)) is called a 2-inner product
space (or 2-pre-Hilbert space). Some basic properties of 2-inner product (-, -|-) can
be immediately obtained as follows [3]:

(1) If K =R, then (2I3) reduces to

(y, x[2) = (z,yl2).
(2) From (2I3) and (2I4), we have

(0,ylz) =0, (z,0/2)=0
and also

(2.1) (z, aylz) = a(z,y[2).
(3) Using (212)—(2I5), we have

(z, 2]z £y) = (z £ y,z L ylz) = (z,2]2) + (y,y[2) £ 2Re(z,y(2)
and

(2.2) Re(z,3l2) = §[(z 2l +) — (2. 2l — )]

In the real case K =R, (2.2) reduces to

(2.3) (z,yl2) = 7[(z, 2l +y) = (2, 2z — y)]

1=
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and, using this formula, it is easy to see , for any « € R, that
(24) (z,ylaz) = o®(z,yl2).

In the complex case, using (2.1) and (2.2), we have

(2, y12) = Reli(e, yl2)] = 71(z. 2l + i) — (3,2l — i),

which, in combination with (2.2), yields

(2.5)  (z,yl2) = 7[(z 2|z +y) = (2,22 —y)| + i[(zy zla +iy) — (2, 2|z — iy)].

Using the above formula and (2.1), we have, for any « € C, that

| =

(2.6) (z,yloz) = |of*(z,yl2).
However, for o € R, (2.6) reduces to (2.4). Also, from (2.6) it follows that

(x,y[0) = 0.
(4) For any three given vectors z,y,z € X, consider the vector u = (y,y|z)z —
(z,y|2)y. By (2I1), we know that (u,u|z) > 0 with the equality if and only if u and
z are linearly dependent. The inequality (u,u|z) > 0 can be rewritten as

(2.7) (y, yl2)[(z, 2[2) (y, yl2) — |(z, y[2)[*] > 0.

For z = z, (2.7) becomes

which implies that

(2.8) (z,9l2) = (y,2|z) =0

provided y and z are linearly independent. Obviously, when y and z are linearly
dependent, (2.8) holds too. Thus (2.8) is true for any two vectors y, z € X. Now, if
y and z are linearly independent, then (y,y|z) > 0 and, from (2.7), it follows

(2.9) (2, y[2)* < (z,2]2)(y, yl2)-

Using (2.8), it is easy to check that (2.9) is trivially fulfilled when y and z are linearly
dependent. Therefore, the inequality (2.9) holds for any three vectors z,y,z € X
and is strict unless the vectors u = (y, y|z)z— (x, y|z)y and z are linearly dependent.
In fact, we have the equality in (2.9) if and only if the three vectors x,y and z are
linearly dependent.

In any given 2-inner product space (X, (-,-|-)), we can define a function || - | - ||
on X x X by
(2.10) ]2l = v/ (2, 22)

for all z,z € X.
It is easy to see that, this function satisfies the following conditions:
(2Ny) ||z|z|| > 0 and ||z|z|| = 0 if and only if x and z are linearly dependent,
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(2Ny) [[z|z(| = ||=[=],

(2N3) |laz|z]| = |af||z|z|| for any scalar « € K,

(2Ny) Jlo + /]2 < ljalz] + 2],

Any function || -| - || defined on X x X and satisfying the conditions (2N7)—(2Ny)
is called a 2-norm on X and (X,|| -|-|) is called a linear 2-normed space. For

recent result devoted to the geometry of linear 2-normed spaces, see [4].

Whenever a 2-inner product space (X, (+,-]-)) is given, we consider it as a linear
2-normed space (X, || -|-||) with the 2-norm defined by (2.10).

Let (X;(-,+]-)) be a 2-inner product space over the real or complex number field
K. If (fi);<;<, are linearly independent vectors in the 2-inner product space X,
and, for a given z € X, (fi, fijlz) = 0,5 for all i,j € {1,...,n} where §;; is the
Kronecker delta (we say that the family (f;);.;,, is z—orthonormal), then the
following inequality is the corresponding Bessel’s inequality (see for example [3])
for z—orthonormal family (f;);;<,, in the 2-inner product space (X;(-,|-)):

n

(2.11) Sz, fil2) < )

i=1

for any x € X. For more details on this inequality, see the recent paper [3] and the
references therein.

3. SOME INEQUALITIES FOR 2-NORMS

We start with the following lemma that is interesting in its own right.

Lemma 1. Let (X, (+,+]-)) be a 2-inner product space on K and z1,...,2p,2 € X,
at,...,an, € K. Then one has the inequalities:
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1,i41=1
and p > 1, >ty

Proof. We observe that

(3.2)

E Q24
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If one uses the Hélder inequality for double sums, i.e., we recall it

Sl
Q=

(3.3) i mijaibi; < z": mijazi)j zn: mijbgj )

ij=1 ij=1 ij=1
where m;j, a;j,b;5 > 0, + = =1, p>1; then

34)  M< | Gzl el > 1 zil2)] il

i,j=1 1,5=1

n n ; n n
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3=
)

and the first inequality in (3.1) is proved.
Observe, by Holder inequality, that
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which gives
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Similarly, we have
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Using (3.1) and (3.5)-(3.6), we deduce the 9 inequalities in the second part of
(3.2). 1

IN

If we choose p = ¢ = 2, then the following result holds.

Corollary 1. If z1,...,2,,2 € X and aq,...,a, € K, then one has
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4. SOME PECARIC¢C TYPE INEQUALITIES FOR 2-INNER PRODUCTS

We are now able to point out the following result which complements and gen-
eralizes the Bessel inequality (2.11) in 2-inner product spaces.

Theorem 2. Let x,y1,...,Yn, 2z be vectors of an inner product space (X; (-,-)) and
C1,...,¢n € K. Then we have
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Remark 1. If in (4.1) we choose p = q = 2, we obtain amongst others, the
following result
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and
max {|cz}(2|cz|) max (Zl(yz,ygl >|> (sz_luyi,ynzn) ;
n 42 2 n y 29 B
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which contains the version of Pecarié’s inequality for 2-inner products, i.e., the
inequality

2 n n
2 2
(4.4) @yl < el D lal | D [ ys12)
i=1 j=1
< .
< (Z lcil ) max > i yslz

i=1 j=1

5. SOME RESULTS OF BOMBIERI TYPE FOR 2-INNER PRODUCTS

The following results of Bombieri type hold.

Theorem 3. Let x,y1,...,Yn, 2 € X. Then one has the inequalities:
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Nl

n
[osx (2, yil2)]| (jZl I(yi,y,j|2)|> ;

max |(z, il2)|* <§<y>|) (,‘Zjl|<yi7yj|z>|>

1<i<n

5\ 28q
i=

i=1
(8 ) (leuyum >|>21P

n 2q
X max (le(ynyjlz)I) ;
=

Jmax [(2,i]2)

1<i<n

max |(z,yil2)[} (2 <y>|) (_i1<yi,yj|z)>

1<i<n

K2

B
X Z(Zlyﬂyjlz 7Zf0é> é+%:17

(& e ) i) i(iluyi,yﬂz)l)ﬁ

=1 i=1

L
258q

n
% Z%(Zlyz,yﬂz) fa>1, ;+5=1

and v > 1, 7_+6 1;

(35 1ior) ™ (£ 1mi0) ™ s (gluyhyjzn);p

1<i<n

+
@[
I
=

Q=

B\ 2pB
P> (Z I(yi,yj|2)> cifa>1,

i=1 \j=1



14 Y.J. CHO*, S.S. DRAGOMIR, C.-S. LIN, S.S. KIM*, AND Y.-H. KIM

and
1

1 n » ﬁ n 2p
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Proof. The proof follows by Theorem 2 on choosing ¢; = (z,y;|z), for i € {1,...,n}
and taking the square root in both sides of the inequalities involved. We omit the
details. I

Remark 2. We observe, by the last inequality in (5.1), we get

6:2) (Ereair) < ol e (3 1(0s,09)
. T T < |lz|z||” max Yis Uj 7
(Elemtar) (Eieur)’ =S

where p > 1, % + é = 1, and provided that not all (x,y;|z), for i € {1,...,n} are
zero.

Remark 3. If in this inequality we choose p = q = 2, then we obtain the following
Bombieri’s type result for 2-inner products

1<i<

n n
2 2
(5.3) D @, yil2)|* < a2l max > wiysl2)
i=1 j=1

6. APPLICATIONS FOR DETERMINANTAL INTEGRAL INEQUALITIES

Let (2, %, 1) be a measure space consisting of a set (2, a o—algebra 3 of subsets
of  and a countably additive and positive measure p on ¥ with values in R U {oo}.

Denote by LIQJ (Q) the Hilbert space of all real-valued functions f defined on 2
that are 2—p—integrable on Q, i.e., [, p (s)|f (s)|* dp (s) < oo, where p : Q — [0, 00)
is a measurable function on €.

We can introduce the following 2-inner product on L? p (©) by formula

01 (o, =3 [ [o@ow] 18 10|40 20 anwau,
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where

denotes the determinant of the matrix

Rt

generating the 2-norm on L2 (Q) expressed by

(6.2) I£[Al],, == (;/Q/Qp(s)p(t)‘ ig; ig;

A simple calculation with integrals reveals that
Jorfadn [ pfhdp

2

1/2
du (s) dp (t)> -

(6.3) (F.91h), =
Jopghdp [ ph*dp
and
Jopfdun fopfhdp |
(6.4) 1fIRll, =

Jopfhdp o ph*du

where, for simplicity, instead of [, p (s) f (s) g (s) du (s) , we have written [, pfgdpu.
Using the representations (6.3), (6.4) and the inequalities for 2-inner products
and 2-norms established in the previous sections, we can get some interesting de-
terminantal integral inequalities.
We give here only two examples.

Proposition 1. Let f,g1,...,gn,h € L/Z, (Q), where p: Q — [0,00) is a measurable
function on Q, then we have the inequality

n | Jopfgide  [opfhdp

i=1|  [opgihdp [ ph*dp

2

JopfPdu  [opfhdu

<
Jopfhdp [, ph*du
n Jargigidp — [q pgihdp
X max Z|det
1<i<n - 2
j=1 Jopgihdp [ ph*dp
- 1
n Jopfadn  fopfhdu TP\
X Z det
i=1 L Jorgihdp [ ph?du
_ _ 1/
n Jorfoidn  [opfhdp 7"\ "
X Z det ’
i=t| | Joegihdu [, ph*du |

1,1 _
wherep>1,5+6—1.
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The proof follows by the inequality for 2-inner products incorporated in (5.2).

Proposition 2. Let f,g1,...,9n,h € Lf, (Q), where p: Q — [0,00) is a measurable
function on Q, then we have the inequality

n | Jorfgidn [ pfhdp
i=1|  [opgihdy [ ph*dp
Joprfdu  [opfhdp

<
Jopfhdp o ph*du
n Jargigidu g pgihdu
X max Z | det |
1<i<n | © 2
i=1 Jopgihdp [ ph*du
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