SOME BOMBIERI TYPE INEQUALITIES IN INNER PRODUCT
SPACES

S.S. DRAGOMIR

ABSTRACT. Companion results to the Bombieri generalisation of Bessel’s in-
equality in inner product spaces are given.

1. INTRODUCTION

In 1971, E. Bombieri [1], has given the following generalisation of Bessel’s in-
equality:
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where z,y1, ...,y are vectors in the inner product space (H;(-,")).

It is obvious that if (yi);<;<,, = (€i);<;<,,» Where (€;);,;~, are orthornormal
vectors in H, i.e., (e;,¢e;) = giji (i,7=1,...,n), where dij is the Kronecker delta,
then (1.1) provides Bessel’s inequality
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In this paper we point out other Bombieri type inequalities and show that, some
times, the new ones may provide better bounds for >~ , |(z, DIE

2. THE RESULTS

The following lemma which is of interest in itself holds.
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Lemma 1. Let z1,...,2z, € H and aq,...,a, € K. Then one has the inequalities:
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Proof. We observe that
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Firstly, we have
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Secondly, by the Holder inequality for double sums, we have
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Finally, we have

2
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and the first part of the lemma is proved.

The second part is obvious on taking into account, by Schwarz’s inequality in
H, that we have

(26, 23)1 < llzill 1211,
for any 4,5 € {1,...,n} . We omit the details. I

Corollary 1. With the assumptions in Lemma 1, one has
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The proof follows by Lemma 1 on choosing p = ¢ = 2.
Note also that (2.3) provides a refinement of the well known Cauchy-Bunyakovsky-
Schwarz inequality for sequences of vectors in inner product spaces, namely
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The following lemma also holds.
Lemma 2. Letx,y1,...,yn € H and cy,...,c, € K. Then one has the inequalities:
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Proof. We have, by Schwarz’s inequality in the inner product (H;(-,-)), that

n 2 n n 2
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Now, applying Lemma 1 for o; = ¢, z; = y; (i =1,...,n), the inequality (2.4) is
proved. i
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Corollary 2. With the assumptions in Lemma 2, one has
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The proof follows by Lemma 2, on choosing p = ¢ = 2.
Remark 1. The inequality (2.5) was firstly obtained in [2] (see inequality (7)).
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(2.5)

The following theorem incorporating three Bombieri type inequalities holds.

Theorem 1. Let x,y1,...,yn € H. Then one has the inequalities:
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Proof. Choosing ¢; = (x,y;) (i =1,...,n) in (2.4) we deduce
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which, by taking the square root, is clearly equivalent to (2.6). I
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Remark 2. If (yi),<;<, = (€i),<;<,, where (e;),,<,, are orthornormal vectors in
H, then by (2.6) we deduce
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If in (2.7) we take p = ¢ = 2, then we obtain the following inequality that was
formulated in [2, p. 81].

Corollary 3. With the assumptions in Theorem 1, we have:
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Remark 3. Observe, that by the monotonicity of power means, we may write
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Taking the square in both sides, one has
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Using (2.11) and the second inequality in (2.7) we may deduce the following result
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forl<p<2 %—F%:l.
Note that for p =2 (¢ = 2) we recapture (2.9).
Remark 4. Let us compare Bombieri’s result
n
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with our general result (2.12).
To do that, denote
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and
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Consider the inner product space H = R, (x,y) =z -y, n =2 and y1 = a > 0,
y2 =b>0. Then

M; = max {a® + ab,ab+ b*} = (a + b) max {a, b},
2(p—1)

Mgzz%’l(a‘urbq)%22%*1(aﬁ+bﬁ) "o l<p<

Assumea =1,b € [0,1], p € (1,2]. Utilizing Maple 6, one may easily see by plotting
the function
2(p—1)

f(b,p) =My — My =25~ (1+bﬁ) To—1-b

that it has positive and negative values in the box [0,1] x [1,2], showing that the
inequalities (2.12) and (2.13) cannot be compared. This means that one is not
always better than the other.
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