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Let u : [α, α + h] → R be a continuous real-valued function satisfying the
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inequality

0 ≤ u(t) ≤
∫ t

α

[a + bu(s)] ds, t ∈ [α, α + h],

where a, b are nonnegative constants. Then u(t) ≤ ahebh for t ∈ [α, α + h].
This result was proved by T. H. Gronwall [9] in the year 1919, and is the
prototype for the study of several integral inequalities of Volterra type, and
also for obtaining explicit bounds of the unknown function. Among the
several results on this subject, the inequality of Bellman [3] is very well
known:

Let x(t) and k(t) be real valued nonnegative continuous functions for t ≥ α.
If a is a constant, a ≥ 0, and

x(t) ≤ a +
∫ t

α

k(s)x(s) ds, t ≥ α,

then

x(t) ≤ a exp
(∫ t

α

k(s) ds

)
, t ≥ α.

It is clear that Bellman’s result contains that of Gronwall. This is the rea-
son why inequalities of this type were called “Gronwall-Bellman inequalities”
or “Inequalities of Gronwall type”. The Gronwall type integral inequalities
provide a necessary tool for the study of the theory of differential equa-
tions, integral equations and inequalities of various types (see Gronwall [9]
and Guiliano [10]). Some applications of this result to the study of stability
of the solution of linear and nonlinear differential equations may be found
in Bellman [3]. Some applications to existence and uniqueness theory of
differential equations may be found in Nemyckii-Stepanov [14], Bihari [4],
and Langenhop [11]. During the past few years several authors (see refer-
ences below and some of the references cited therein) have established several
Gronwall type integral inequalities in two or more independent real variables.
Of course, such results have application in the theory of partial differential
equations and Volterra integral equations.

Bykov proved the following interesting integral inequality, which appear
in [1, p. 98]:
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Let u(t), b(t), k(t, s) and h(t, s, σ) be nonnegative continuous functions for
α ≤ τ ≤ s ≤ t ≤ β and suppose that

(1.1)
u(t) ≤ a +

∫ t

α

b(s)u(s) ds +
∫ t

α

∫ s

α

k(s, τ)u(τ) dτds

+
∫ t

α

∫ s

α

∫ τ

α

h(s, τ, σ)u(σ) dσ dτds

for any t ∈ [α, β], where a ≥ 0 is a constant. Then

u(t) ≤ a exp
(∫ t

α

b(s) ds +
∫ t

α

∫ s

α

k(s, τ) dτds

+
∫ t

α

∫ s

α

∫ τ

α

h(s, τ, σ) dσ dτ ds

)
, t ∈ [α, β].

In this paper, we consider simple inequalities involving iterated integrals
in the inequality (1.1) for the case when the function u in the right-hand
side of the inequality (1.1) is replaced by the function up for some p, and the
constant a is replaced by a nonnegative, nondecreasing function a(t). We
also provide some related integral inequalities involving iterated integrals.

2. The case p > 1

In this section, we state and prove some new nonlinear integral inequalities
involving iterated integrals. Throughout the paper, all the functions which
appear in the inequalities are assumed to be real-valued. Before considering
our first integral inequality involving iterated integrals, we need the following
lemma, which appears in [1, p. 2].

Lemma 2.1. Let b(t) and f(t) be continuous function for t ≥ α, let v(t) be
a differentiable function for t ≥ α and suppose that

v′(t) ≤ b(t)v(t) + f(t), t ≥ α,

and v(α) ≤ v0. Then we have

v(t) ≤ v0 exp
(∫ t

α

b(s) ds

)
+

∫ t

α

f(s) exp
(∫ t

s

b(τ) dτ

)
ds, t ≥ α.
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Theorem 2.2. Let u(t), b(t), k(t, s) and h(t, s, τ) be nonnegative continuous
functions for α ≤ τ ≤ s ≤ t ≤ β and let p > 1 be a constant. Suppose
a(t) ≥ 0 is nondecreasing in J = [α, β] and

(2.1)
u(t) ≤ a(t) +

∫ t

α

b(s)up(s) ds +
∫ t

α

∫ s

α

k(s, τ)up(τ) dτds

+
∫ t

α

∫ s

α

∫ τ

α

h(s, τ, σ)up(σ) dσ dτds, t ∈ [α, β].

Then we have

(2.2) u(t) ≤ a(t)
[
1− (p− 1)

∫ t

α

B(s)ap−1(s) ds

] 1
1−p

, t ∈ [α, βp),

where

βp = sup
{

t ∈ J : (p− 1)
∫ t

α

B(s)ap−1(s) ds < 1
}

and

B(t) = b(t) +
∫ t

α

k(t, s) ds +
∫ t

α

∫ s

α

h(t, s, τ) dτ ds.

Proof. We denote the right-hand side of (2.1) by a(t) + v(t). Then, for α ≤
t ≤ T < βp, (2.1) implies v(α) = 0, the function v(t) is nondecreasing in
t ∈ [α, β],

(2.3) u(t) ≤ a(t) + v(t)

and

v′(t) = b(t)up(t) +
∫ t

α

k(t, τ)up(τ) dτ +
∫ t

α

∫ τ

α

h(t, τ, σ)up(σ) dσ dτ

≤ B(t)[a(t) + v(t)]p

≤ B(t)[a(t) + v(t)]p−1[a(T ) + v(t)],

that is,

(2.4) v′(t) ≤ R(t)[a(T ) + v(t)],
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where R(t) = B(t)[a(t) + v(t)]p−1. Lemma 2.1 and (2.4) imply

v(t) ≤ a(T )
∫ t

α

R(s) exp
(∫ t

s

R(τ) dτ

)
ds

and so

v(t) + a(T ) ≤ a(T ) exp
(∫ t

α

R(s) ds

)
, α ≤ t ≤ T.

Hence, for t = T,

(2.5) v(t) + a(t) ≤ a(t) exp
(∫ t

α

R(s) ds

)
.

From (2.5), we successively obtain

[v(t) + a(t)]p−1 ≤ ap−1(t) exp
(∫ t

α

(p− 1)R(s) ds

)
,

R(t) ≤ B(t)ap−1(t) exp
(∫ t

α

(p− 1)R(s) ds

)
,

Z(t) ≤ (p− 1)B(t)ap−1(t) exp
(∫ t

α

Z(s) ds

)
,

where Z(t) = (p− 1)R(t). Consequently, we have

Z(t) exp
(
−

∫ t

α

Z(s) ds

)
≤ (p− 1)B(t)ap−1(t)

or
d

dt

[
− exp

(
−

∫ t

α

Z(s) ds

)]
≤ (p− 1)B(t)ap−1(t).

Integrating this from α to t yields

1− exp
(
−

∫ t

α

Z(s) ds

)
≤

∫ t

α

(p− 1)B(s)ap−1(s) ds,

from which we conclude that

exp
(∫ t

α

R(s) ds

)
≤

[
1− (p− 1)

∫ t

α

B(s)ap−1(s) ds

] 1
1−p

.

This, together with (2.3) and (2.5), implies (2.2). This completes the proof.

In the same manner, we can prove the following theorem:
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Theorem 2.3. Let u(t), b(t), k(t, s) and σ(t) be nonnegative continuous
functions for α ≤ s ≤ t ≤ β and let p > 1 be a constant. Suppose that σ(t)
is nondecreasing in J = [α, β] and

u(t) ≤ σ(t)
{

a1 +
∫ t

α

b(s)up(s) ds +
∫ t

α

∫ s

α

k(s, τ)up(τ) dτds

}
for any t ∈ [α, β], where a1 ≥ 0 is a constant. Then we have

u(t) ≤ a1σ(t) exp(σ(t))
[
1− (p− 1)ap−1

1

∫ t

α

B1(s)σp−1(s) exp(σ(s)) ds

] 1
1−p

for any t ∈ [α, βp), where B1(t) = b(t) +
∫ t

α
k(t, τ) dτ and

βp = sup{t ∈ J : (p− 1)ap−1
1

∫ t

α

B1(s)σp−1(s) exp(σ(s)) ds < 1}.

Let α < β, and set Ji = {(t1, t2, . . . , ti) ∈ Ri : α ≤ ti ≤ · · · ≤ t1 ≤ β},
i = 1, · · · , n.

Theorem 2.4. Let u(t), a(t) and b(t) be nonnegative continuous functions
in J = [α, β] and let p > 1 be a constant. Suppose that a(t)

b(t) is nondecreasing
in J and

(2.6)
u(t) ≤ a(t) + b(t)

[∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1

]
for any t ∈ J, where ki(t, t1, . . . , ti) are nonnegative continuous functions in
Ji+1 for i = 1, 2, · · · , n. Suppose thta the partial derivatives ∂ki

∂t (t, t1, · · · , ti)
exist and are nonnegative and continuous in Ji+1 for i = 1, 2, · · · , n. Then,
for any t ∈ J,

(2.7) u(t) ≤ a(t)
[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

(R[bp](s) + Q[bp](s)) ds

] 1
1−p
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for any t ∈ [α, β̃p), where

β̃p = sup{t ∈ J : (p− 1)ap−1
1

∫ t

α

(a(s)/b(s))p−1(R[bp](s) + Q[bp](s) ds < 1},

R[w](t) = k1(t, t)w(t) +
∫ t

α

k2(t, t, t2)w(t2)dt2

+
n∑

i=3

∫ t

α

(∫ t2

α

· · ·
(∫ ti−1

α

ki(t, t, t2, · · · , ti)w(ti) dti

)
· · ·

)
dt2,

Q[w](t) =
∫ t

α

∂k1

∂t
(t, t1)w(t1) dt1

+
n∑

i=2

∫ t

α

(∫ t1

α

· · ·
(∫ ti−1

α

∂ki

∂t
(t, t1, · · · , ti)w(ti) dti

)
· · ·

)
dt1

for each continuous function w(t) in J.

Proof. First, we note that R[w] and Q[w] are linear functionals and

R[w1] ≤ R[w2], Q[w1] ≤ Q[w2]

if w1(t) ≤ w2(t) for any t ∈ J and

R[w1w2] ≤ R[w1]w2, Q[w1w2] ≤ Q[w1]w2

if w1(t) is nonnegative in J and w2(t) is nondecreasing in J. We set

v(t) =
∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1.

Then, for α ≤ t ≤ T < βp, (2.6) implies v(α) = 0, the function v(t) is
nondecreasing,

(2.8) u(t) ≤ a(t) + b(t)v(t)

and we have

v′(t) = R[up](t) + Q[up](t) ≤ (R[bp](t) + Q[bp](t))(
a(t)
b(t)

+ v(t))p,
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that is,

(2.9) v′(t) ≤ R(t)[a(T )/b(T ) + v(t)],

where R(t) = (R[bp](t) + Q[bp](t))[a(t)/b(t) + v(t)]p−1. Lemma 2.1 and (2.9)
imply

v(t) +
a(T )
b(T )

≤ a(T )
b(T )

exp
(∫ t

α

R(s) ds

)
, α ≤ t ≤ T.

Hence, for t = T,

(2.10) v(t) +
a(t)
b(t)

≤ a(t)
b(t)

exp
(∫ t

α

R(s) ds

)
.

From (2.10), we successively obtain[
v(t) +

a(t)
b(t)

]p−1

≤
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)R(s) ds

)
,

R(t) ≤ (R[bp](t) + Q[bp](t))
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)R(s) ds

)
,

Z(t) ≤ (p− 1)(R[bp](t) + Q[bp](t))
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)R(s) ds

)
,

where Z(t) = (p− 1)R(t). Consequently, we have

d

dt

[
− exp

(
−

∫ t

α

Z(s) ds

)]
≤ (p− 1)(R[bp](t) + Q[bp](t))

[
a(t)
b(t)

]p−1

.

Integrating this from α to t yields

1− exp
(
−

∫ t

α

Z(s) ds

)
≤ (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

(R[bp](s) + Q[bp](s)) ds,

from which we conclude that

exp
(∫ t

α

R(s) ds

)
≤

[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

(R[bp](s) + Q[bp](s)) ds

] 1
1−p

.
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This, together with (2.8) and (2.10), implies (2.7). This completes the proof.

3. The case p > 0 (p 6= 1)

In this section, we use another method for studying nonlinear integral
inequalities. Before considering the first result of the integral inequality, we
need the following lemma, which appears in [1, p. 38].

Lemma 3.1. Let v(t) be a positive differential function satisfying the in-
equality

v′(t) ≤ b(t)v(t) + k(t)vp(t), t ∈ J = [α, β],

where the functions b and k are continuous in J and p ≥ 0 (p 6= 1) is a
constant. Then we have

v(t) ≤ exp
(∫ t

α

b(s) ds

)[
vq(α) + q

∫ t

α

k(s) exp
(
−q

∫ s

α

b(τ) dτ

)
ds

]1/q

for any t ∈ [α, β1), where β1 is chosen so that the expression between [· · · ] is
positive in the subinterval [α, β1).

An essential element in the investigation of the integral inequalities in the
following theorems is the application of the result of Lemma 3.1.

Theorem 3.2. Let u(t), b(t), k(t, s), h(t, s, σ) be nonnegative continuous
functions for α ≤ σ ≤ s ≤ t ≤ β and suppose that

(3.1)
u(t) ≤ a +

∫ t

α

b(s)up(s) ds +
∫ t

α

∫ s

α

k(s, τ)up(τ) dτds

+
∫ t

α

∫ s

α

∫ τ

α

h(s, τ, σ)up(σ) dσ dτds

for any t ∈ [α, β], where a > 0 and p ≥ 0 (p 6= 1) are a constants. Then we
have

(3.2)
u(t) ≤

[
aq + q

∫ t

α

(
b(s) +

∫ s

α

k(s, τ) dτ

+
∫ s

α

∫ τ

α

h(s, τ, σ) dσ dτ

)
ds

]1/q
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for any t ∈ [α, β1), where q = 1− p and β1 is chosen so that the expression
between [· · · ] is positive in the subinterval [α, β1).

Proof. We denote the right-hand side of (3.1) by the function v(t). Then the
function v(t) is nondecreasing in t ∈ [α, β], u(t) ≤ v(t), v(α) = a and

v′(t) = b(t)up(t) +
∫ t

α

k(t, τ)up(τ) dτ +
∫ t

α

∫ τ

α

h(t, τ, σ)up(σ) dσ dτ

≤ b(t)vp(t) +
∫ t

α

k(t, τ)vp(τ) dτ +
∫ t

α

∫ τ

α

h(t, τ, σ)vp(σ) dσ dτ

≤
(

b(t) +
∫ t

α

k(t, τ) dτ +
∫ t

α

∫ τ

α

h(t, τ, σ) dσ dτ

)
vp(t).

Therefore, applying Lemma 3.1, we arrive at (3.2). This completes the proof.

Theorem 3.3. Let u(t), b(t), k(t, s), h(t, s, σ) be nonnegative continuous
functions for α ≤ σ ≤ s ≤ t ≤ β and suppose that

(3.3)
u(t) ≤ a(t) +

∫ t

α

b(s)up(s) ds +
∫ t

α

∫ s

α

k(s, τ)up(τ) dτds

+
∫ t

α

∫ s

α

∫ τ

α

h(s, τ, σ)up(σ) dσ dτds

for any t ∈ [α, β], where a(t) is a positive nondecreasing function and p ≥ 0
(p 6= 1) is a constant. Then we have

(3.4)

u(t) ≤
[
Aq(t) + q

∫ t

α

(
b(s) +

∫ s

α

k(s, τ) dτ

+
∫ s

α

∫ τ

α

h(s, τ, σ) dσ dτ

)
ds

] 1
q

for any t ∈ [α, β1), where q = 1− p, A(t) = sups∈[α,t] a(s) and β1 is chosen
so that the expression between [· · · ] is positive in the subinterval [α, β1).

Proof. The function A(t) is nondecreasing in t ∈ [α, β]. Thus (3.3) implies
that, for all α ≤ t ≤ T ≤ β,

(3.5)
u(t) ≤ A(T ) +

∫ t

α

b(s)up(s) ds +
∫ t

α

∫ s

α

k(s, τ)up(τ) dτds

+
∫ t

α

∫ s

α

∫ τ

α

h(s, τ, σ)up(σ) dσ dτds.
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We denote the right-hand side of (3.5) by the function v(t). Then the function
v(t) is nondecreasing in t ∈ [α, β], u(t) ≤ v(t), v(α) = A(T ) and

v′(t) ≤
(

b(t) +
∫ t

α

k(t, τ) dτ +
∫ t

α

∫ τ

α

h(t, τ, σ) dσ dτ

)
vp(t).

Consequently, Lemma 3.1 implies

u(t) ≤
[
Aq(T ) + q

∫ t

α

(
b(s) +

∫ s

α

k(s, τ) dτ +
∫ s

α

∫ τ

α

h(s, τ, σ) dσ dτ

)
ds

] 1
q

and, for t = T , we obtain (3.4). This completes the proof.

Let α < β, and set

Ji = {(t1, t2, . . . , ti) ∈ Ri : α ≤ ti ≤ · · · ≤ t1 ≤ β}

for i = 1, · · · , n. By a similar reasoning to the proof of Theorem 3.2, we also
can prove the following result:

Theorem 3.4. Let u(t), and b(t) be nonnegative continuous functions in
J = [α, β] and suppose that

u(t) ≤ b(t)
[
a +

∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1

]

for any t ∈ J, where a > 0 and p ≥ 0 (p 6= 1) is a constant, ki(t, t1, · · · , ti)
are nonnegative continuous functions in Ji+1 for i = 1, 2, · · · , n. Suppose
that the partial derivatives ∂ki

∂t (t, t1, · · · , ti) exist and are nonnegative and
continuous in Ji+1 for i = 1, 2, · · · , n. Then, for any t ∈ J ,

(3.6) u(t) ≤ b(t)
[
aq + q

∫ t

α

(R[bp](s) + Q[bp](s)) ds

]1/q
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for any t ∈ [α, β1), where q = 1 − p, β1 is chosen so that the expression
between [· · · ] is positive in the subinterval [α, β1),

R[w](t) = k1(t, t)w(t) +
∫ t

α

k2(t, t, t2)w(t2)dt2

+
n∑

i=3

∫ t

α

(∫ t2

α

· · ·
(∫ ti−1

α

ki(t, t, t2, · · · , ti)w(ti) dti

)
· · ·

)
dt2,

Q[w](t) =
∫ t

α

∂k1

∂t
(t, t1)w(t1) dt1

+
n∑

i=2

∫ t

α

(∫ t1

α

· · ·
(∫ ti−1

α

∂ki

∂t
(t, t1, · · · , ti)w(ti) dti

)
· · ·

)
dt1

for each continuous function w(t) in J.

Proof. We set

v(t) = a +
∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1.

Since v(α) = a, u(t) ≤ b(t)v(t) and v(t) is nondecreasing and continuous in
J, we have

v′(t) = R[up](t) + Q[up](t) ≤ R[bpup](t) + Q[bpup](t)

≤ (R[bp](t) + Q[bp](t))vp(t),

from which, by the same method as in the proof of Theorem 3.2, we find the
inequality (3.6). This completes the proof.

Corollary 3.5. Let u(t) be nonnegative continuous function for α ≤ t ≤
βand suppose that

u(t) ≤ a +
∫ t

α

k1(t, s)up(s) ds +
∫ t

α

(∫ s

α

h(t, s, σ)up(σ) dσ

)
ds,

where a > 0 and p ≥ 0 (p 6= 1) is a constant, k(t, s) and h(t, s, σ) are
nonnegative continuous functions for α ≤ σ ≤ s ≤ t ≤ β. Suppose that
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the partial derivatives ∂k
∂t (t, s) and ∂h

∂t (t, s, σ) exist and are nonnegative and
continuous for α ≤ σ ≤ s ≤ t ≤ β. Then, for any t ∈ J,

u(t) ≤
[
aq + q

∫ t

α

(R(s) + Q(s)) ds

]1/q

, t ∈ [α, β1),

where q = 1− p, β1 is chosen so that the expression between [· · · ] is positive
in the subinterval [α, β1),

R(t) = k(t, t) +
∫ t

α

h(t, t, σ)dσ

and

Q(t) =
∫ t

α

∂k

∂t
(t, σ) dσ +

∫ t

α

(∫ s

α

∂h

∂t
(t, s, σ) dσ

)
ds.
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16. M. Ráb, Linear integral inequalities, Arch. Math. 1. Scripta Fac. Sci. Nat. Ujep
Brunensis XV (1979), 37–46.

17. Yu. A. Ved, On perturbations of linear homogeneous differential equations with vari-

able coefficients, In: Issled. Integro-Differents. Uravn. Kirghizia 3 Ilim. Frunze (1965),
(In Russian).


