SOME MAJORISATION TYPE DISCRETE INEQUALITIES FOR
CONVEX FUNCTIONS

S.S. DRAGOMIR

ABSTRACT. Some majorisation type discrete inequalities for convex functions
are established. Two applications are also provided.

1. INTRODUCTION
For fixed n > 2, let

X = (1‘17""'171’7,)7 Yy = (yl""?yn)
be two n—tuples of real numbers. Let
Tp) 2 TR 22 Tm)y Y] 2 YRl 2 2 Yn)s
1y < x2S <y, Ya) <Y < S Y
be their ordered components.

Definition 1. The n—tuple y is said to majorise x (or x is to be majorised by y,
in symbols y = x), if

(1.1) Z&E[i] < Zy[i] holds form =1,2,...,n —1;
i=1 i=1

and

i=1 i=1

The following theorem is well-known in the literature as the Majorisation Theo-
rem, and a convenient reference for its proof is Marshall and Olkin [T}, p. 11]. This
result is due to Hardy, Littlewood and Pélya [2, p. 75] and can also be found in
Karamata [3]. For a discussion concerning the matter of priority see Mitrinovi¢ [4]
p. 169].

Theorem 1. Let I be an interval in R, and let x,y be two n—tuples such that
zi,y; €I (i=1,...,n). Then

(1.3) Z¢($i) < Z¢(yi)

holds for every continuous convex function ¢ : I — R iff y = x holds.

The following theorem is a weighted version of Theorem [I} It can be regarded
as a generalisation of the majorisation theorem and is given in Fuchs [3].
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Theorem 2. Let x,y be two decreasing n—tuples and let p = (p1,...,0n) be a real
n—tuple such that

k k
(1.4) ZpixiSZpiyi for k=1,...,n—1,
i=1 i=1
and
(1.5) Zpﬁi = szyl
i=1 i=1

Then for every continuous convez function ¢ : I — R we have
(1.6) > pid (i) <> piod (vi) -
i=1 i=1

Another result of this type was obtained by Bullen, Vasi¢ and Stankovié [6].
Theorem 3. Let x,y be two decreasing n—tuples and p be a real n—tuple. If

k k
i=1 i=1

holds, then @) holds for every continuous increasing conver function ¢ : I — R.
If x,y are increasing n—tuples and the reverse inequality in holds, then (@)
holds for every decreasing convex function ¢ : I — R.

For a simple proof of Theorem [2| and Theorem |3} see [7, p. 323 — 324].

Remark 1. It is known that (see for details [T, p. 324]) the conditions and
are not necessary for @) to hold. However, when the components of p are

all nonnegative, then and (respectively ) are necessary for (@) to
hold.

In the present paper we establish some discrete inequalities for convex functions
in terms of the subdifferential 0f and apply them in obtaining sufficient conditions
for the inequality (1.6]) to hold.

2. THE RESULTS

o
Suppose that I is an interval of real numbers with interior I and f : I — R
is a convex function on I. Then f is continuous on I and has finite left and

right derivatives at each point of I. Moreover, if z,y € I and = < y then
D= f(z) < DTf(x) < D™ f(y) < D¥f(y), which shows that both D~ f and

D™ f are nondecreasing functions on I. It is also well known (see for example [8]
p. 271 — 272]) that a convex function must be differentiable except for at most
countably many points.

For a convex function f : I — R, the subdifferential of f denoted Jf is the set

of all functions ¢ : I — [—00, 00] such that ¢ (;) C R and

(2.1) f(x) = f(a)+ (z—a)p(a)
for any z and a € I. It is also well known that if f is convex on I, then Of is
nonempty, D™ f, DT f € 0f and if ¢ € Jf, then

(2.2) D™ f(x) < ¢(z) <DV f(a)
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o]
for every z € I. In particular, ¢ is a nondecreasing function.

If f is differentiable convex on I, then of = {f'}.
The following result in terms of the subdifferential of the convex function f,
holds.

Theorem 4. Let f : I CR — R be a convex function on the interval I, z;,y; € I
(i=1,...,n),and p; >0 (i=1,...,n). If p € Of, then we have the inequality

(23) szf sz yz > sz Z;p yz Zpiyﬁp yz .
=1

If f is strictly convex on I and p; > 0 (i =1,...,n), then the equality holds in

zﬁxl:yz (i:l,...,n).

Proof. If we apply . ) for the selection x = x;, a = y; (i = 1,...,n) we may write
(2.4) f@i) = f i) = (@ —yi) @ (ys)
foranyi=1,...,n.

Multlplymg 1.' by p; >0 (i=1,...,n) and summing over ¢ from 1 to n we
may deduce (2.3)).

The case of equality for strictly convex functions follows by the fact that we have
equality for such a function in (2.4) iff x; =y; (i=1,...,n). 1

Remark 2. a) If one chooses in Theoreml Y= = Yn = B i PiTi,
then from (-) we deduce Jensen’s inequality

(2.5) —Zpl (z; >f<;Zpixi>, v, €I, p;>0 (i=1,n).
”z‘ 1 " i=1

b) If one chooses in Theorem |5 x4 = -+ = x, = P%E?:lpiyi, then from
we may deduce the following counterpart of Jensen’s inequality firstly
obtained by Dragomir and Ionescu in 1994 [9] for differentiable functions

and proved in the present form by C.P. Niculescu in [10]

(2.6) 0 < P%LZPJ(%) —f <;n szyz)
< 5 szym vi) szyz B Zzw yi) -

Some other particular cases of interest of the above theorem are included in the
corollaries below.

Corollary 1. Let f : I C R — R be a conver function on the interval ;, T, Yi €
I(i=1...,n),p; 20 (i=1,....n) with P, > 0. If (xi — y;);_1, is nondecreas-
ing (nonincreasing), (Yi);—1
Z;;l piyi, then

(2.7) Zpif (i) = sz‘f(yi)~

is nondecreasing (nonincreasing) and Y .| pix; =
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If f is strictly conver on I, p; > 0 (i=1,...,n), the equality holds in iff
=y (i=1,...,n).

Proof. From ([2.3) we may write for ¢ € 9f that
(2.8) Zpif (i) — Zpif (yi) = Zpi (zi —yi) ¢ (yi)
i=1 i=1 i=1

with equality for f strictly convexandp; >0 (i =1,...,n)iffa; =y; (i=1,...,n).
Using Cebysev’s inequality for synchronous sequences

(2.9) % Zpiaibi > Pi Zpiai : % Zpibia
" i=1 =1 "i=1

where p; > 0 (i=1,...,n) with P, > 0, (a; —a;) (b; —b;) > 0 for any i,j €
{1,...,n} (the equality holds in (2.9) for p; > 0 (i=1,...,n) iff (a;);_1; or

(bi);—17 is constant), we may write that

n 1 n n
(2.10) dopi(wi—w) o) = 5 > pi(wi— ) D i)
i=1 " i=1 i=1
= 0
since (z; — ¥i);—15+ (¥ (¥i));—15 are synchronous.

The equality holds in (2.10) for p; >0 (i =1,...,n) iff (2; — y;),_1; is constant
or (¢ (¥:));_15 is constant.

i=1,n

If z; = y; for each i € {1,...,n}, then (2.7) holds with equality. Combining
(2.8) with (2.10) we deduce (_2.7).

(o]
Now, assume that p; >0 (i =1,...,n), f is strictly convex on I and there is a
ip € {1,...,n} so that x;, # y;,. Then

f (‘rlo) - f (ylo) > (‘Tio - yio) 4 (ym)
showing that

S opif (@)=Y pif (W) > Y pi(wi—yi) @ (i) >0,
=1 i=1 i=1

and thus Y7 pif (x;) # iy pif (yi) . Consequently, equality holds in (2.7) iff
x; =y; foreach i € {1,...,n}. 1

Remark 3. Obviously if (y;),_
creasing) so is (xz;)

i and (z; —yi);—1,, are nondecreasing (nonin-
=T

Corollary 2. Let f: I CR — R be a nondecreasing convex function on I, x;,y; €
o]

I,p;>0(i=1,...,n) and P, > 0. If (y;)
(z; 7yi)i:1,7n is nondecreasing (nonincreasing) and Y .| pix; > i piyi, then
holds true. If f is strictly conver and p; >0 (i =1,...,n), then the equality
holds in iffei=y (i=1,...,n).

Proof. Since f is nondecreasing, it follows that for ¢ € df, ¢ > 0 showing that

Zpi%@ (y:) = 0.
i=1

=T s nondecreasing (nonincreasing),
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Using (2.10)), the fact that, by the hypothesis we have

1 n
szi (i —yi) 20

n
2

and (2.8), we deduce that Y pif (z;) — > oiy pif (yi) > 0.
The case of equality may be proven in a similar way as in the proof of Corollary

[l We omit the details.

The above result incorporated in Corollary [l may be improved in the following
manner by the use of CebySev’s refinement embodied in the following lemma.

Lemma 1. If a;,b; (i=1,...,n) are synchronous sequences, then we have the
inequalities

1 & 1 < 1 &
(2.11) Fn ;Piaibi - Fn ;piai : an ;Pibi

)

> maX{ iipi |a| b — izn:lh |ag] - = i:pibi
P i=1 Pa i=1 P i=1
1 & 1 « 1 &
B > pilabil - P > pilail - B > b
™ i=1 ™ oi=1 " oi=1
> ipiai - ipiai L ipi |b:]
P i=1 P i=1 P i=1

)

}

> 0

for any p; > 0 with P, > 0.

For a proof of this fact, see for example [11] or [12].
The following result holds.

Corollary 3. With the assumptions of Corollary[l, one has the inequality

(2.12) Z pif (z;) Z pif (vi)
> maX{ sz |xz yz| 2 yz sz |$z - yz Zpl yz
TL
sz sz lz: — il sz I (yi)]
P i=1

}

A similar result may be stated under the hypothesis of Corollary [2 We omit the
details.

Recall now the following result due to Biernacki [I3] (for a generalisation, see
Burkill and Mirsky [14]).

)

)

sz i —yi) | (1)

> 0,

where ¢ € Of.
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Lemma 2. Letp; >0 (i =1,...,n) and (x;),_1+ , (¥i),_15 be two sequences which
are monotonic nondecreasing (nonincreasing) in mean, i.e.,
k+1

1
- Dii - DiT;, = 7...,71_1
Pk;zl(z PkJrlle
and
k < k+1
X ) e Y bt
Then
1 & 1< 1 <
(2.13) szjxjyj 2 szjxj : FZPJ?/J‘-
n j=1 n j=1 nj:1

If one sequence is monotonic nondecreasing in mean and the other is monotonic
nonincreasing in mean, then the reverse inequality holds in .

Since any monotonic nondecreasing (nonincreasing) sequence is monotonic non-
decreasing (nonincreasing), by rapport of any positive weights sequences (p;) =T
the above inequality also holds if one sequence is monotonic and the other is mono-
tonic in mean in the same sense.

We may now state another result for convex functions.

Theorem 5. Let f: I CR — R be a convex function on the interval I, z;, y; € 1
(t=1,...,n), p; >0 (i=1,...,n) and ¢ € Of. If (y;);_15, is monotonic non-
decreasing (nonincreasing) and (z; — y;),—7; is monotonic nondecreasing (nonin-

creasing) in mean by rapport of (pi)i:ﬁa then we have the inequality:

n n 1 n n n
(2.14) S pif (@) =Y pif (i) > on (me - me) > pie (i)
i=1 i=1 ™ \i=1 i=1 i=1
If f is strictly convex, then equality holds in iffei=y; (1=1,...,n).
Proof. We know, by Theorem [ l, that

(2.15) zn:pif sz yi) > zn: @ (yi) -
Applying Lemm;:é for (z; — yi;:r o
(2.16) sz wi— i) ¢ (i) > o sz ) Zpiso (4i) -
Now combinmg with (2.16)), we deduce [2:14). o

The equality case may be proved as in Corollary |

/—\

¢ (4i));_i we have

Results providing some sufficient conditions for the inequality (2.7) to hold true
are embodied in the following corollary.

Corollary 4. Let f, z;, y; and p; (i =1,...,n) be as in Theorem @
(1) If, in addition, >\ | pix; = > | piyi, then holds.
(2) If, in addition, f is nondecreasing on I and Y .| pix; > Y.y DiVi, then

holds.

If f is strictly convex, then the equality holds in iffes =y (i=1,...,n).



(3.1)

(3.2)

(3.3)

(3.4)

(2)

(3.5)

(3.6)
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3. APPLICATIONS

Consider the convex function f : (0,00) — R, f(z) = —Inz. Assume that
iy Yi,0i >0 (i =1,...,n). Then by (2.3)) we have the inequality

n n n

i — 25
S pilngi -3 pilna; > zpi( : )
i=1 i=1 i=1 Yi

or, equivalently

()" =[S (452)]

The equality holds in (3.2) iff z; =y; (i=1,...,n).

If (#; — yi);_1, is nondecreasing (nonincreasing), (y;);_7, is nondecreas-
ing (nonincreasing) and > 1, p;x; = Y., piVi, then, by Corollary (1} we
have

n n
Di Di
[[w >[I
i=1 i=1

The equality holds in (3.3) iff z; =y; (i=1,...,n).
With the above assumptions and using Corollary 3] we may improve the

inequality (3.3)) as follows:

1 n 1 n
B ;Pz‘ Iny; — B Z:pi In z;

n
p 1 T — s

szlxz vil J_Pizpi@

n.
T;
i — Yi 7722%‘%7% sz
1o~ (zi—yi)
_— pZi Y
3 ont

i=1 v

> max{

1 n
IO

}ZO.

If (yi);_15 is monotonic nondecreasing (nonincreasing) and (z; — v;),_15

is monotonic nondecreasing (nonincreasing) in mean by rapport of (p;),
and Y. | piwi = Yy PiVi, then (3.3) holds true.
Consider the function f : (0,00) — R, f () = zlnx. Then f' () =lnz+1,
" (z) = %, showing that f is convex on (0,00), monotonic decreasing on
(0, é) and increasing on (%, oo) .

If 25, 9i,p: >0 (i =1,...,n), then by (2.3)) we have the inequality

Zplzz lIl Ty — Zpﬂh 1I1 yl > Zpl Ty — yz

or, equivalently

3

n N\ PiTi n
H (3) > exp [Zpl (x; — yz)] :
i=1 v i=1

The equality holds in (3.6) iff z; =y; (i =1,...,n).
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If (z; — yi);_1, is nondecreasing (nonincreasing), (y;),_7, is nondecreas-
ing (nonincreasing) and > ., p;x; = Y., piVi, then, by Corollary [1} we
have

n n
(3.7) H xzﬂipi > H yf-”p?’.
=1 =1

The equality holds in iffe, =y, (i=1,...,n).

If x,y; > % (i=1,...,n), (yz)lzﬁ is nondecreasing (nonincreasing),
(i —yi) =T is nondecreasing (nonincreasing) and Y| pi; = Y iy Pilis
then holds true.

If 2j,y; > 0 (i=1,...,n), (¥i);—15 is monotone nondecreasing (non-
increasing), (z; —¥:),—7 is monotone nondecreasing (nonincreasing) in
mean by rapport of (p;),_17, and Y1) piws = DL piyi, then also
holds. If z;,y; > % (i=1,...,n), then the last equality may be replaced
by the more general condition Z?:l piT; > Z?:l p;y; and the inequality
(3.7) will still remain valid.

Similar results may be stated for f : [0,00) = R, f(z) =2",r > 1or f(z) =

X

(m)r, x € (O, %} , 7> 1. We omit the details.

Remark 4. The integral version and the version for isotonic linear functionals
were considered in [15].

(1]
2]
(3]
4]
(5]
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