AN OSTROWSKI LIKE INEQUALITY FOR CONVEX
FUNCTIONS AND APPLICATIONS

S.S. DRAGOMIR

ABSTRACT. In this paper we point out an Ostrowski type inequality for con-
vex functions which complement in a sense the recent results for functions of
bounded variation and absolutely continuous functions. Applications in con-
nection with the Hermite-Hadamard inequality are also considered.

1. INTRODUCTION

In 1938, A. Ostrowski [9] proved the following integral inequality

1 xr— atb 2
(11) ‘ L 4+<b_;) - a)1/'Ne

provided f is differentiable and || f'|| ., = sup |f’(t)| < oo.
te(a,b)

The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.

In the last 5 years, many authors have concentrated their efforts in generalising
and have applied the obtained results in different fields, including Numerical
Integration, Probability Theory and Statistics, Information Theory, etc. For a
comprehensive approach in the field, see the recent book [5] where many other
references may be found.

One direction of generalising was pointed out by the author in [2] — [4]. Let
us recall here a couple of the main results obtained in the above papers.

Theorem 1. Let Iy : a = 29 < 1 < -+ < xp_1 < x = b be a division of
the interval [a,b] and o (i =0,...,k+1) be k + 2 points such that ag = a, o; €
[Zi—1, 2] (i=1,...,k) and ag11 = b. If f : [a,b] — R is of bounded variation on

[a,b], then we have the inequality:

b k
(1.2) / f @) dr =3 (@i — ) f (1)

=0

< FV (h) + max {

o Ti + Tit1
R N
2 ” 2

,iO,...,le\:/(f),

where v (h) := max{h;[i=0,...,k—1}, hy := ®iy1 —x; (1=0,...,k—1) and
\/° (f) is the total variation of f on [a,b].
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The constant % is sharp in the semse that it cannot be replaced by a smaller
constant.

If one would assume more for the function f, for example, absolute continuity,
then the following result holds.

Theorem 2. Under the assumptions of Theoremfor Iy and a; (1 =0,...,k+1)
and if f : [a,b] — R is absolutely continuous on [a,b], then

b k
(1.3) / f(z)de — Z(ai+1 — ;) f (i)
a i=0
= k-1 i \2 .
{4 ZO hi + ZO (am - %) } 11l if f'€ Lo la,b];
< 1 Rl g+1 g+1 % / : /
=) i [T @i =20+ @i —an)™ I, i S € Ly ot
(g+1)a [i=0
p>1, %Jr % =1;
{%V(h)—i—max{ aiﬂ—% , i:07...,k’—1H 11l

where ||-||,, (p € [1,00]) are the Lebesgue norms, i.e.,

[Pl = =ess sup |n(D)],
t€la,b]
1
b I3
IRll, = = (/ |7 () dt) ; pElo0).
The constants i, L and % are best in the sense mentioned above.
(g+1)¢

In this paper, the case of convex functions f : [a,b] — R is examined. Some
particular cases in connection with the well known Hermite-Hadamard inequality
for convex functions are also considered.

2. THE RESULTS

The following result holds.

Theorem 3. Let I, : a = z9g < 1 < -+ < xp_1 < xp = b be a division of
the interval [a,b] and a; (i =0,...,k+ 1) be k + 2 points such that ag = a, a; €
[Zi—1, 2] (i=1,...,k) and apy1 = b. If f : [a,b] — R is a convex function on

[a,b], then we have the inequality:

k—1
(2.1) % ’ [(MH — 1) fh (Qin1) = (@igr — ) fL (Oéz‘+1)}
szo )
< > (am - a) f () - [ F O
1=0 a

= %Z {(xi“ — i)’ L (i) = (ain — ) f (xi)} :

The constant % s sharp in both inequalities.
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Proof. Using the integration by parts formula, we may prove the equality (see for
example [3]):

k

b k=1 raiq
22 Yl -a) o) - [ f0d=Y [ t-am) @

=0

for any locally absolutely continuous function f : (a,b) — R.
Since f is convex, then it is locally Lipschitzian on (a,b) and thus the above
equality holds. Also, we have

(23) f-/i- (1‘7) S f/ (t) S f/_ (Oél‘_;,_l) for a.e. te€ [Ii, Oéi_;'_l}
and
(2.4) fh(aipr) < f1(t) < fL(wigq) forae. te[oipr, zipa].

Using (2.3)) and (2.4), we may write that

@5 Sl [ a-awa < [T PO@- e
< s [ e
and l
20 filow) [ t-amdr < [ P8 (- i) dt
< fn) [ -aman

i4+1

Adding (2.5) and (2.6) and taking into account that

Qi1 1 9
/ (t —aip)dt = —5 (i1 — @)
xr

. 2
and
Tit1 1 9
/ (t — ajpq)dt = 3 (i1 — ig1)”,
Qi1
we get
1
(2.7) 5 [($i+1 - 042‘+1)2 fi (i) = (igr — fEi)2 fL (Ofi+1)}
Tit1
< [ Tt-anrma
< 1 |: 2 2 pr
s 3 (Tiv1 — aig1)” fL (wig1) — (ipr —2)” i (xi)}

forany i =0,...,k— 1.

If we sum ([2.7)) over ¢ from 0 to k — 1 and use the identity (2.2), we deduce the
desired result (2.1

The sharpness will be proved in what follows for a particular case. |

It is natural to consider the following particular case.
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Corollary 1. Let Ly and f be as in the above theorem. Then we have the inequality

k—1
(2.8) 0 %Z {f@ (f”gx“) Ia <:”+2"9“)] (g1 — )’

IN

k—1
< % l(xl —a) f(a)+ Z (@it1 —zim1) [ (@) + (b —xp-1) f (b)]
\ =1
_/ £t dt
1 k—1 ) ) )
< 3 [f2 (i) = 1 (@) (@ign — @)
=0

The constant % in both inequalities is sharp.

The proof follows by the above theorem choosing a; = %, i1=1,...,k and
taking into account that (see also [2])

(2.9) (qip1 — ) f(23)

N.
NI M?r
[e]

(r1 —a) f(a) + Z_: (g1 —xi—1) () + (b—2-1) f (D)

The following corollary for equidistant partitioning also holds.

Corollary 2. Let

Iy:zi:=a+ (b—a)- (1=0,...,k)

T .

be an equidistant partitioning of [a,b]. If f : [a,b] — R is convez on [a,b], then we
have the inequalities

2 k-1

(210) 0 < (b;;) ;{ﬁ [f”(”;) b;a]

e (45) 50}

bkazf{ a—l—zb] /f
< (b;?;ffz:;{f’_ {a—l—(ﬂ—l)-b;a} — [aﬂ'-b;a”.

The following particular cases which hold when we assume differentiability con-
ditions may be stated.

IN
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Corollary 3. If a; € (a,b) fori=1,...,k are points of differentiability for f, then
we have the inequality

k

|
—

Ti + Tit1

(2.11) (Tip1 — ) (2 - ai+1) f (eiga)

IN

M- 11

b
(cis1 — ) f (i) — / £ (t)dt

=0

If we denote by v ([,) := max{x;41 —2;]¢ =0,...,k — 1}, then the following
corollary also holds.

Corollary 4. Ifx; (i=1,...,k—1) are points of differentiability for f then

k—1

b
(212) 5 (o1 = 0) £ (@) + 3 (s = 20-1) £ () + (0 - xk1)f(b)] - [ e

3. SOME PARTICULAR INEQUALITIES

(1) If we choose 29 = a, x1 = b, a9 = a, a1 = x € (a,b), ag = b, then from

(2.1) we deduce (see also [6])

(31) S [0-0 1 @) - -0 s @)
< Goaf@ro-0r0)- [ roa
< %[(b—xff:(w—(m—a) 7@

The constant % is sharp in both inequalities (see for example [6]).
If 2 = 22, then by (3.1) one deduces (see also [6])

(3.2) 0 < g( 0)? {f+<a+b>f,_(a42rb>}

fla)+ £
< L0 oy [y
< SO-a?[fL0) - fi (@)

and the constant & in both inequalities is sharp (see for example [6]).

If one would assume that x € (a,b) is a point of differentiability, then

a+b

3 -0 (3 -0) S @S- f @+ 00 /f



S.S. DRAGOMIR

(2) If we choose a = 9 < x < w2 = b and the numbers oy = a, a € (a,z],

(3.5)

(3.7)

3 € [z,b) and as = b, then by Theorem [§] we deduce

3@l F @) — (0= ) (@) + (b= 9 £ (8) — (5 - ) 1L (8)]
@ f @+ G- @+ 0= 70~ [ 10

S| @ (=) f@ - ) - (50 £ @)

The constant % is sharp in both inequalities.
(a) Note that if we let & — a+ and § — b—, then from (3.4]), by tak-
ing into account firstly that (z — )? fi(a) < (z—a)” fi (o) and

—(B—=x)?f (b) < —(B—2)>f"(3), we may deduce the inequality
obtained in [7]:

1
3
< [10d-0-0iw

<

The constant 3 is sharp in both inequalities (see for example [7]).
If in (3.5) we choose z = %P, then (see also [7])

0 1(b—a)2{f’+<a;b>—f’(a;b>}
/f B dt — (b )f<a+b)

< =) [fL(6) = i (a)]

IN

IN

and the constant é is sharp in both inequalities.

We may state now the following result for convex functions improving
Hermite-Hadamard integral inequalities.

Proposition 1. Let f : [a,b] — R be a convex function on [a,b]. Then

) - é( ){f+<a+b> f_(a+b)]
< ot [roa-r (4

b
< f(a);f(b)_bia/af(t)dt
(

< é(b—a)[f’,(b)—fi a)] .

The constant % is sharp in both parts.
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If one would assume that x € (a,b) is a differentiability point for f,
then we have the inequality [7]

a b
B9 0-a (e rws [ fwa-6-0@.

(b) If we choose @ = “'2”” and B = %, then by 1} we have the three
point inequality:

< gfe-or|n () -1 ()]
omsrfn ()2 (229

[(w—a)f(a)+f(w)(b—a)+(b—w)f(b)]—/abf(t)dt

{@—? (7 @)~ £ @]+ -2 [ 0) - £} @) |

—
©w
Ne)
=
s}
AN

IN

IN
Q| = DN =

for any x € (a,b). The constant % is sharp in both parts.
If in 1} we choose © = %*b, then we get

(3.10) 0 < 3712(6—@)2 {f@ <3a:b) -f (?m:b>

‘o (a—z?)b) _y (a—l—Sb)}

4
< ;[““);f(bhf(“;b)]<b—a>—/abf<t>dt
< -t [ro-r () v () - s

a+b

If one would assume that f is differentiable in 3

following reverse of Bullen’s inequality

[f(a);rf(b)Jrf(a;Lb)} (b_a)_/:f(t)dt

(b—a)® [f.(b) — [ (a)] .

, then we get the

(3.11) 0 <

IN

1
5"
1
32

1 .
The constant 55 is sharp.
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(c) Now, if we choose o = 2%b g = a£5b apd g € [22tb atbb] iy (3 4)),
then we have the inequalities

(312) ;[(w 5a+b) i <5a+b> (b;Ga)Zf,_ <5a6+b>
(b—a)’

, (a+5b a + 5b 2 , [ a+5b
i (50) - (5 ) ()

+

c Lt [IOHI0 o) [ roa

(b—a)? a+ 5b >
+ 36 fo () 5 x| fl(x)].
If in 1' we choose = = "7“’, then we get the Simpson’s inequality
1 5a+b 1, [(5a+0b
1 — -
By - (25 4 ()
1, (fatdb\ ., (a+5b
) (5

b;a [f(a);—f(b)+2f<a+b)] bf

S0-a? |1 () - @ if ) - f+(a+b)]
0

, then we get

IN

IN

If the function is differentiable on (a,

S e R )
< b;a{f(a)—;f() 2f<a+b>}—/abf(t)dt

(b= [/ ()~ 11 @]

IN
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