
AN OSTROWSKI LIKE INEQUALITY FOR CONVEX
FUNCTIONS AND APPLICATIONS

S.S. DRAGOMIR

Abstract. In this paper we point out an Ostrowski type inequality for con-

vex functions which complement in a sense the recent results for functions of
bounded variation and absolutely continuous functions. Applications in con-

nection with the Hermite-Hadamard inequality are also considered.

1. Introduction

In 1938, A. Ostrowski [9] proved the following integral inequality

(1.1)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) ‖f ′‖∞

provided f is differentiable and ‖f ′‖∞ = sup
t∈(a,b)

|f ′ (t)| < ∞.

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller

constant.
In the last 5 years, many authors have concentrated their efforts in generalising

(1.1) and have applied the obtained results in different fields, including Numerical
Integration, Probability Theory and Statistics, Information Theory, etc. For a
comprehensive approach in the field, see the recent book [5] where many other
references may be found.

One direction of generalising (1.1) was pointed out by the author in [2] – [4]. Let
us recall here a couple of the main results obtained in the above papers.
Theorem 1. Let Ik : a = x0 < x1 < · · · < xk−1 < xk = b be a division of
the interval [a, b] and αi (i = 0, . . . , k + 1) be k + 2 points such that α0 = a, αi ∈
[xi−1, xi] (i = 1, . . . , k) and αk+1 = b. If f : [a, b] → R is of bounded variation on
[a, b] , then we have the inequality:∣∣∣∣∣

∫ b

a

f (x) dx−
k∑

i=0

(αi+1 − αi) f (xi)

∣∣∣∣∣(1.2)

≤
[
1
2
ν (h) + max

{∣∣∣∣αi+1 −
xi + xi+1

2

∣∣∣∣ , i = 0, . . . , k − 1
}] b∨

a

(f) ,

where ν (h) := max {hi|i = 0, . . . , k − 1} , hi := xi+1 − xi (i = 0, . . . , k − 1) and∨b
a (f) is the total variation of f on [a, b] .
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The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller

constant.
If one would assume more for the function f, for example, absolute continuity,

then the following result holds.
Theorem 2. Under the assumptions of Theorem 1 for Ik and αi (i = 0, . . . , k + 1)
and if f : [a, b] → R is absolutely continuous on [a, b] , then

(1.3)

∣∣∣∣∣
∫ b

a

f (x) dx−
k∑

i=0

(αi+1 − αi) f (xi)

∣∣∣∣∣

≤



[
1
4

k−1∑
i=0

h2
i +

k−1∑
i=0

(
αi+1 − xi+xi+1

2

)2
]
‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(q+1)
1
q

[
k−1∑
i=0

[
(αi+1 − xi)

q+1 + (xi+1 − αi+1)
q+1
]] 1

q

‖f ′‖p if f ′ ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;[
1
2ν (h) + max

{∣∣∣αi+1 − xi+xi+1
2

∣∣∣ , i = 0, . . . , k − 1
}]

‖f ′‖1 ,

where ‖·‖p (p ∈ [1,∞]) are the Lebesgue norms, i.e.,

‖h‖∞ : = ess sup
t∈[a,b]

|h (t)| ,

‖h‖p : =

(∫ b

a

|h (t)|p dt

) 1
p

, p ∈ [1,∞).

The constants 1
4 , 1

(q+1)
1
q

and 1
2 are best in the sense mentioned above.

In this paper, the case of convex functions f : [a, b] → R is examined. Some
particular cases in connection with the well known Hermite-Hadamard inequality
for convex functions are also considered.

2. The Results

The following result holds.
Theorem 3. Let Ik : a = x0 < x1 < · · · < xk−1 < xk = b be a division of
the interval [a, b] and αi (i = 0, . . . , k + 1) be k + 2 points such that α0 = a, αi ∈
[xi−1, xi] (i = 1, . . . , k) and αk+1 = b. If f : [a, b] → R is a convex function on
[a, b] , then we have the inequality:

1
2

k−1∑
i=0

[
(xi+1 − αi+1)

2
f ′+ (αi+1)− (αi+1 − xi)

2
f ′− (αi+1)

]
(2.1)

≤
k∑

i=0

(αi+1 − αi) f (xi+1)−
∫ b

a

f (t) dt

≤ 1
2

k−1∑
i=0

[
(xi+1 − αi+1)

2
f ′− (xi+1)− (αi+1 − xi)

2
f ′+ (xi)

]
.

The constant 1
2 is sharp in both inequalities.
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Proof. Using the integration by parts formula, we may prove the equality (see for
example [3]):

(2.2)
k∑

i=0

(αi+1 − αi) f (xi+1)−
∫ b

a

f (t) dt =
k−1∑
i=0

∫ xi+1

xi

(t− αi+1) f ′ (t) dt

for any locally absolutely continuous function f : (a, b) → R.
Since f is convex, then it is locally Lipschitzian on (a, b) and thus the above

equality holds. Also, we have

(2.3) f ′+ (xi) ≤ f ′ (t) ≤ f ′− (αi+1) for a.e. t ∈ [xi, αi+1]

and

(2.4) f ′+ (αi+1) ≤ f ′ (t) ≤ f ′− (xi+1) for a.e. t ∈ [αi+1, xi+1] .

Using (2.3) and (2.4), we may write that

f ′− (αi+1)
∫ αi+1

xi

(t− αi+1) dt ≤
∫ αi+1

xi

f ′ (t) (t− αi+1) dt(2.5)

≤ f ′+ (xi)
∫ αi+1

xi

(t− αi+1) dt

and

f ′+ (αi+1)
∫ xi+1

αi+1

(t− αi+1) dt ≤
∫ xi+1

αi+1

f ′ (t) (t− αi+1) dt(2.6)

≤ f ′− (xi+1)
∫ xi+1

αi+1

(t− αi+1) dt.

Adding (2.5) and (2.6) and taking into account that∫ αi+1

xi

(t− αi+1) dt = −1
2

(αi+1 − xi)
2

and ∫ xi+1

αi+1

(t− αi+1) dt =
1
2

(xi+1 − αi+1)
2
,

we get

1
2

[
(xi+1 − αi+1)

2
f ′+ (αi+1)− (αi+1 − xi)

2
f ′− (αi+1)

]
(2.7)

≤
∫ xi+1

xi

(t− αi+1) f ′ (t) dt

≤ 1
2

[
(xi+1 − αi+1)

2
f ′− (xi+1)− (αi+1 − xi)

2
f ′+ (xi)

]
for any i = 0, . . . , k − 1.

If we sum (2.7) over i from 0 to k − 1 and use the identity (2.2), we deduce the
desired result (2.1).

The sharpness will be proved in what follows for a particular case.

It is natural to consider the following particular case.
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Corollary 1. Let Lk and f be as in the above theorem. Then we have the inequality

0 ≤ 1
8

k−1∑
i=0

[
f ′+

(
xi + xi+1

2

)
− f ′−

(
xi + xi+1

2

)]
(xi+1 − xi)

2(2.8)

≤ 1
2

[
(x1 − a) f (a) +

k−1∑
i=1

(xi+1 − xi−1) f (xi) + (b− xk−1) f (b)

]

−
∫ b

a

f (t) dt

≤ 1
8

k−1∑
i=0

[
f ′− (xi+1)− f ′+ (xi)

]
(xi+1 − xi)

2
.

The constant 1
8 in both inequalities is sharp.

The proof follows by the above theorem choosing αi = xi−1+xi

2 , i = 1, . . . , k and
taking into account that (see also [2])

k∑
i=0

(αi+1 − αi) f (xi)(2.9)

=
1
2

[
(x1 − a) f (a) +

k−1∑
i=1

(xi+1 − xi−1) f (xi) + (b− xk−1) f (b)

]
.

The following corollary for equidistant partitioning also holds.

Corollary 2. Let

Ik : xi := a + (b− a) · i

k
(i = 0, . . . , k)

be an equidistant partitioning of [a, b] . If f : [a, b] → R is convex on [a, b] , then we
have the inequalities

0 ≤ (b− a)2

8n2

k−1∑
i=0

{
f ′+

[
a +

(
i +

1
2

)
b− a

n

]
(2.10)

− f ′−

[
a +

(
i +

1
2

)
b− a

n

]}
≤ 1

k
· f (a) + f (b)

2
(b− a)

+
b− a

k

k−1∑
i=1

f

[
(k − i) a + ib

k

]
−
∫ b

a

f (t) dt

≤ (b− a)2

8n2

k−1∑
i=0

{
f ′−

[
a + (i + 1) · b− a

n

]
− f ′+

[
a + i · b− a

n

]}
.

The following particular cases which hold when we assume differentiability con-
ditions may be stated.
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Corollary 3. If αi ∈ (a, b) for i = 1, . . . , k are points of differentiability for f, then
we have the inequality

k−1∑
i=0

(xi+1 − xi)
(

xi + xi+1

2
− αi+1

)
f ′ (αi+1)(2.11)

≤
k∑

i=0

(αi+1 − αi) f (xi+1)−
∫ b

a

f (t) dt.

If we denote by ν (In) := max {xi+1 − xi|i = 0, . . . , k − 1} , then the following
corollary also holds.

Corollary 4. If xi (i = 1, . . . , k − 1) are points of differentiability for f then

1
2

[
(x1 − a) f (a) +

k−1∑
i=0

(xi+1 − xi−1) f (xi) + (b− xk−1) f (b)

]
−
∫ b

a

f (t) dt(2.12)

≤ 1
8

[ν (In)]2
[
f ′− (b)− f ′+ (a)

]
.

3. Some Particular Inequalities

(1) If we choose x0 = a, x1 = b, α0 = a, α1 = x ∈ (a, b) , α2 = b, then from
(2.1) we deduce (see also [6])

1
2

[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
(3.1)

≤ (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

≤ 1
2

[
(b− x)2 f ′− (b)− (x− a)2 f ′− (a)

]
.

The constant 1
2 is sharp in both inequalities (see for example [6]).

If x = a+b
2 , then by (3.1) one deduces (see also [6])

0 ≤ 1
8

(b− a)2
[
f ′+

(
a + b

2

)
− f ′−

(
a + b

2

)]
(3.2)

≤ f (a) + f (b)
2

· (b− a)−
∫ b

a

f (t) dt

≤ 1
8

(b− a)2
[
f ′− (b)− f ′+ (a)

]
and the constant 1

8 in both inequalities is sharp (see for example [6]).
If one would assume that x ∈ (a, b) is a point of differentiability, then

(3.3) (b− a)
(

a + b

2
− x

)
f ′ (x) ≤ (x− a) f (a) + (b− x) f (b)−

∫ b

a

f (t) dt.



6 S.S. DRAGOMIR

(2) If we choose a = x0 < x < x2 = b and the numbers α0 = a, α ∈ (a, x],
β ∈ [x, b) and α3 = b, then by Theorem 3, we deduce

1
2

[
(x− α)2 f ′+ (α)− (α− a)2 f ′− (α) + (b− β)2 f ′+ (β)− (β − x)2 f ′− (β)

]
(3.4)

≤ (α− a) f (a) + (β − α) f (x) + (b− β) f (b)−
∫ b

a

f (t) dt

≤ 1
2

[
(x− α)2 f ′− (x)− (α− a)2 f ′+ (a) + (b− β)2 f ′− (b)− (β − x)2 f ′+ (x)

]
.

The constant 1
2 is sharp in both inequalities.

(a) Note that if we let α → a+ and β → b−, then from (3.4), by tak-
ing into account firstly that (x− α)2 f ′+ (a) ≤ (x− α)2 f ′+ (α) and
− (β − x)2 f ′− (b) ≤ − (β − x)2 f ′− (β) , we may deduce the inequality
obtained in [7]:

1
2

[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
(3.5)

≤
∫ b

a

f (t) dt− (b− a) f (x)

≤ 1
2

[
(β − x)2 f ′− (b) + (x− a)2 f ′+ (a)

]
.

The constant 1
2 is sharp in both inequalities (see for example [7]).

If in (3.5) we choose x = a+b
2 , then (see also [7])

0 ≤ 1
8

(b− a)2
[
f ′+

(
a + b

2

)
− f ′−

(
a + b

2

)]
(3.6)

≤
∫ b

a

f (t) dt− (b− a) f

(
a + b

2

)
≤ 1

8
(b− a)2

[
f ′− (b)− f ′+ (a)

]
and the constant 1

8 is sharp in both inequalities.
We may state now the following result for convex functions improving
Hermite-Hadamard integral inequalities.
Proposition 1. Let f : [a, b] → R be a convex function on [a, b] . Then

0 ≤ 1
8

(b− a)
[
f ′+

(
a + b

2

)
− f ′−

(
a + b

2

)]
(3.7)

≤ 1
b− a

∫ b

a

f (t) dt− f

(
a + b

2

)
≤ f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

≤ 1
8

(b− a)
[
f ′− (b)− f ′+ (a)

]
.

The constant 1
8 is sharp in both parts.
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If one would assume that x ∈ (a, b) is a differentiability point for f,
then we have the inequality [7]

(3.8) (b− a)
(

a + b

2
− x

)
f ′ (x) ≤

∫ b

a

f (t) dt− (b− a) f (x) .

(b) If we choose α = a+x
2 and β = x+b

2 , then by (3.4) we have the three
point inequality:

0 ≤ 1
8

{
(x− a)2

[
f ′+

(
a + x

2

)
− f ′−

(
a + x

2

)]
(3.9)

+ (b− x)2
[
f ′+

(
x + b

2

)
− f ′−

(
x + b

2

)]}
≤ 1

2
[(x− a) f (a) + f (x) (b− a) + (b− x) f (b)]−

∫ b

a

f (t) dt

≤ 1
8

{
(x− a)2

[
f ′+ (x)− f ′− (a)

]
+ (b− x)2

[
f ′− (b)− f ′+ (x)

]}

for any x ∈ (a, b) . The constant 1
8 is sharp in both parts.

If in (3.9) we choose x = a+b
2 , then we get

0 ≤ 1
32

(b− a)2
[
f ′+

(
3a + b

4

)
− f ′−

(
3a + b

4

)
(3.10)

+ f ′+

(
a + 3b

4

)
− f ′−

(
a + 3b

4

)]
≤ 1

2
·
[
f (a) + f (b)

2
+ f

(
a + b

2

)]
(b− a)−

∫ b

a

f (t) dt

≤ 1
32

(b− a)2
[
f ′− (b)− f ′+

(
a + b

2

)
+ f ′−

(
a + b

2

)
− f ′+ (a)

]

If one would assume that f is differentiable in a+b
2 , then we get the

following reverse of Bullen’s inequality

0 ≤ 1
2
·
[
f (a) + f (b)

2
+ f

(
a + b

2

)]
(b− a)−

∫ b

a

f (t) dt(3.11)

≤ 1
32

(b− a)2
[
f ′− (b)− f ′+ (a)

]
.

The constant 1
32 is sharp.
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(c) Now, if we choose α = 5a+b
6 , β = a+5b

6 and x ∈
[
5a+b

6 , a+5b
6

]
in (3.4),

then we have the inequalities

1
2

[(
x− 5a + b

6

)2

f ′+

(
5a + b

6

)
− (b− a)2

36
f ′−

(
5a + b

6

)
(3.12)

+
(b− a)2

36
f ′+

(
a + 5b

6

)
−
(

a + 5b

6
− x

)2

f ′−

(
a + 5b

6

)]

≤ b− a

3

[
f (a) + f (b)

2
+ 2f (x)

]
−
∫ b

a

f (t) dt

≤ 1
2

[(
x− 5a + b

6

)2

f ′− (x)− (b− a)2

36
f ′+ (a)

+
(b− a)2

36
f ′− (b)−

(
a + 5b

6
− x

)2

f ′+ (x)

]
.

If in (3.12) we choose x = a+b
2 , then we get the Simpson’s inequality

1
18

(b− a)2
[
f ′+

(
5a + b

6

)
− 1

4
f ′−

(
5a + b

6

)
(3.13)

+
1
4
f ′+

(
a + 5b

6

)
− f ′−

(
a + 5b

6

)]
≤ b− a

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]
−
∫ b

a

f (t) dt

≤ 1
18

(b− a)2
[
f ′−

(
a + b

2

)
− 1

4
f ′+ (a) +

1
4
f ′− (b)− f ′+

(
a + b

2

)]
.

If the function is differentiable on (a, b) , then we get

− 1
24

(b− a)2
[
f ′
(

a + 5b

6

)
− f ′

(
5a + b

6

)]
(3.14)

≤ b− a

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]
−
∫ b

a

f (t) dt

≤ 1
72

(b− a)2
[
f ′− (b)− f ′+ (a)

]
.
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