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1. Introduction

Let u : [α, α + h] → R be a continuous real-valued function satisfying the
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inequality

0 ≤ u(t) ≤
∫ t

α

[a + bu(s)] ds for t ∈ [α, α + h],

where a, b are nonnegative constants. Then u(t) ≤ ahebh for t ∈ [α, α + h].
This result was proved by T. H. Gronwall [8] in the year 1919, and is the pro-
totype for the study of several integral inequalities of Volterra type, and also
for obtaining explicit bounds of the unknown function. Among the several
publications on this subject, the paper of Bellman [3] is very well known. It is
clear that Bellman’s result contains that of Gronwall. This is the reason why
inequalities of this type were called “Gronwall-Bellman inequalities” or “In-
equalities of Gronwall type”. The Gronwall type integral inequalities provide
a necessary tool for the study of the theory of differential equations, integral
equations and inequalities of various types (see Gronwall [8] and Guiliano
[9]). Some applications of this result to the study of stability of the solution
of linear and nonlinear differential equations may be found in Bellman [3].
Some applications to existence and uniqueness theory of differential equa-
tions may be found in Nemyckii-Stepanov [13], Bihari [4], and Langenhop
[10]. During the past few years several authors (see references below and
some of the references cited therein) have established several Gronwall type
integral inequalities in two or more independent real variables. Of course,
such results have application in the theory of partial differential equations
and Volterra integral equations.

Bainov and Simeonov proved the following interesting integral inequality
involving iterated integrals, which appear in [1, p. 101]:

Let Let u(t), a(t), and b(t) be nonnegative continuous functions in J =
[α, β], and suppose that

(1.1)
u(t) ≤a(t) + b(t)

[∫ t

α

k1(t, t1)u(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, . . . , tn)u(tn) dtn

)
. . .

)
dt1

]
for t ∈ J, where ki(t, t1, . . . , ti) are nonnegative continuous functions in
Ji+1, i = 1, 2, . . . , n, which are nondecreasing in t ∈ J for all fixed (t1, . . . , ti) ∈
Ji, i = 1, 2, . . . , n. Then, for t ∈ J

u(t) ≤ a(t) + b(t)
∫ t

α

R̂[a](t, s) exp
(∫ t

s

R̂[b](t, τ) dτ

)
ds,
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where, for (t, s) ∈ J2,

R̂[w](t, s)) = k1(t, s)w(s) +
∫ s

α

k2(t, s, t2)w(t2)dt2+

+
n∑

i=3

∫ s

α

(∫ t2

α

· · ·
(∫ ti−1

α

ki(t, s, t2, . . . , ti)w(ti) dti

)
· · ·

)
dt2,

for each continuous function w(t) in J.

In this paper we consider simple inequalities involving iterated integrals
in the inequality (1.1) for functions when the function u in the right-hand
side of the inequality (1.1) is replaced by the function up for some p, We also
provide some integral inequalities involving iterated integrals.

2. The results

In this section, we state and prove some new nonlinear integral inequalities
involving iterated integrals. Throughout the paper, all the functions which
appear in the inequalities are assumed to be real-valued.

Before considering our first integral inequality, we need the following lem-
mas, which appears in [1, p. 2, p. 38].

Lemma 2.1. Let b(t) and f(t) be continuous function for t ≥ α, let v(t) be
a differentiable function for t ≥ α, and suppose

v′(t) ≤ b(t)v(t) + f(t), t ≥ α

and v(α) ≤ v0. Then, for t ≥ α,

v(t) ≤ v0 exp
(∫ t

α

b(s) ds

)
+

∫ t

α

f(s) exp
(∫ t

s

b(τ) dτ

)
ds.

Lemma 2.2. Let v(t) be a positive differential function satisfying the in-
equality

v′(t) ≤ b(t)v(t) + k(t)vp(t), t ∈ J = [α, β],

where the functions b and k are continuous in J, and p ≥ 0, p 6= 1, is a
constant. Then

v(t) ≤ exp
(∫ t

α

b(s) ds

)[
vq(α) + q

∫ t

α

k(s) exp
(
−q

∫ s

α

b(τ) dτ

)
ds

]1/q
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for t ∈ [α, β1), where β1 is chosen so that the expression between [...] is
positive in the subinterval [α, β1).

In the next theorems, we consider some simple inequalities involving iter-
ated integrals. Let α < β, and set Ji = {(t1, t2, . . . , ti) ∈ Ri : α ≤ ti ≤ · · · ≤
t1 ≤ β}, i = 1, · · · , n.

Theorem 2.3. Let u(t), a(t) and b(t) be nonnegative continuous functions
in J = [α, β] and let p > 1 be a constant. Suppose that a(t)

b(t) is nondecreasing
in J and

(2.1)
u(t) ≤ a(t) + b(t)

[∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1

]
for any t ∈ J, where ki(t, t1, . . . , ti) are nonnegative continuous functions
in Ji+1 for i = 1, 2, · · · , n, which are nondecreasing in t ∈ J for all fixed
(t1, · · · , ti) ∈ Ji, i = 1, 2, · · · , n. Then, for any t ∈ [α, βp)

(2.2) u(t) ≤ a(t)
[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

R[bp](t, s) ds

] 1
1−p

where, for (t, s) ∈ J2,

βp = sup{t ∈ J : (p− 1)
∫ t

α

(
a(s)
b(s)

)p−1

R[bp](t, s) ds < 1},

and

R[w](t, s) = k1(t, s)w(s) +
∫ s

α

k2(t, s, t2)w(t2)dt2

+
n∑

i=3

∫ s

α

(∫ t2

α

· · ·
(∫ ti−1

α

ki(t, s, t2, · · · , ti)w(ti) dti

)
· · ·

)
dt2,

for each continuous function w(t) in J.

Proof. For a fixed T ∈ (α, β] and α ≤ t ≤ T we have

(2.3) u(t) ≤ a(t) + b(t)v(t),
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where

v(t) =
∫ t

α

k1(T, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(T, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1.

Since ∂ki

∂t (T, t1, . . . , ti) = 0 for i = 1, . . . , n and t ∈ [α, T ], we have

v′(t) = R[up](T, t) ≤ (R[bp](T, t))
(

a(t)
b(t)

+ v(t)
)p

,

that is,

(2.4) v′(t) ≤ Q(T, t)[a(T )/b(T ) + v(t)],

where Q(T, t) = (R[bp](T, t))[a(t)/b(t)+v(t)]p−1. Lemma 2.1 and (2.4) imply

v(t) +
a(T )
b(T )

≤ a(T )
b(T )

exp
(∫ t

α

Q(T, s) ds

)
, α ≤ t ≤ T.

Hence, for t = T,

(2.5) v(t) +
a(t)
b(t)

≤ a(t)
b(t)

exp
(∫ t

α

Q(T, s) ds

)
.

From (2.10), we successively obtain[
v(t) +

a(t)
b(t)

]p−1

≤
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)Q(T, s) ds

)
,

Q(T, t) ≤ (R[bp](T, t))
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)Q(T, s) ds

)
,

Z(T, t) ≤ (p− 1)(R[bp](T, t))
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)Q(T, s) ds

)
,

where Z(T, t) = (p− 1)Q(T, t). Consequently, we have

Z(T, s) exp
(
−

∫ s

α

Z(T, s) ds

)
≤ (p− 1)R[bp](T, s)

[
a(s)
b(s)

]p−1
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or
d

ds

[
− exp

(
−

∫ s

α

Z(T, τ) dτ

)]
≤ (p− 1)R[bp](T, s)

[
a(s)
b(s)

]p−1

.

Integrating this from α to t yields

1− exp
(
−

∫ t

α

Z(T, s) ds

)
≤ (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

R[bp](T, s) ds,

from which we conclude that

exp
(∫ t

α

Q(T, s) ds

)
≤

[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

R[bp](T, s) ds

] 1
1−p

.

This, together with (2.3) and (2.5), implies

u(t) ≤ a(t)
[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

R[bp](T, s) ds

] 1
1−p

.

In particular, for T = t we find (2.2). This completes the proof.

Theorem 2.4. Let u(t) and b(t) be nonnegative continuous functions in
J = [α, β], and suppose that

u(t) ≤ b(t)
[
a(t) +

∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]
for t ∈ J, where p ≥ 0, p 6= 1 be a constant, a(t) > 0 is nondecreasing
continuous function in t ∈ J, and ki(t, t1, . . . , ti) are nonnegative continuous
functions in Ji+1, i = 1, 2, . . . , n, which are nondecreasing in t ∈ J for all
fixed (t1, . . . , ti) ∈ Ji, i = 1, 2, . . . , n. Then

(2.6) u(t) ≤ b(t)
[
aq(t) + q

∫ t

α

R[bp](t, s) ds

]1/q

for t ∈ [α, β1), where q = 1 − p and β1 is chosen so that the expression
between [...] is positive in the subinterval [α, β1).
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Proof. For a fixed T ∈ (α, β] and α ≤ t ≤ T we have

u(t) ≤ b(t)v(t)

≡ b(t)
[
a(T ) +

∫ t

α

k1(T, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(T, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]
.

Since v(α) = a(T ), v(t) is nondecreasing and continuous in J, and ∂ki

∂t (T, t1, . . . , ti) ≡
0 for i = 1, . . . , n and t ∈ [α, T ], we have

(2.7)
v′(t) = R[up](T, t) ≤ R[bpvp](T, t)

≤ (R[bp](t))vp(T, t).

Lemma 2.2 and (2.7) imply

v(t) ≤
[
aq(T ) + q

∫ t

α

R[bp](T, s) ds

]1/q

from which, we obtain

u(t) ≤ b(t)
[
aq(T ) + q

∫ t

α

R[bp](T, s) ds

]1/q

for α ≤ t ≤ T. In particular, for T = t we find (2.6). This completes the
proof. �

Theorem 2.5. Let u(t), a(t) and b(t) be nonnegative continuous functions
in J = [α, β], and suppose that

u(t) ≤a(t) + b(t)
[∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]
for t ∈ J, where 0 < p ≤ 1 be a constant, a(t)

b(t) ≥ 1 is nondecreasing in J and
ki(t, t1, . . . , ti) are nonnegative continuous functions in Ji+1, i = 1, 2, . . . , n,
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which are nondecreasing in t ∈ J for all fixed (t1, . . . , ti) ∈ Ji, i = 1, 2, . . . , n.
Then

(2.8) u(t) ≤ a(t) exp
(∫ t

α

R[bp](t, τ) dτ

)
for t ∈ [α, β].

Proof. For a fixed T ∈ (α, β] and α ≤ t ≤ T we have

u(t) ≤ a(t) + b(t)w(t)

≡ a(t) + b(t)
[∫ t

α

k1(T, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(T, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]
.

Since w(α) = 0, w(t) is nondecreasing and continuous in J, and ∂ki

∂t (T, t1, . . . , ti) ≡
0 for i = 1, . . . , n and t ∈ [α, T ], we have

(2.9)
w′(t) = R[up](T, t) ≤ R[bp](T, t)

(
a(t)
b(t)

+ w(t)
)p

≤ R[bp](T, t)
(

a(t)
b(t)

+ w(t)
)

.

Lemma 2.1 and (2.9) imply

w(t) ≤
∫ t

α

R[bp](T, s)
(

a(s)
b(s)

)
exp

(∫ t

s

R[bp](T, τ) dτ

)
ds

from which, we obtain

(2.10) u(t) ≤ a(t) + b(t)
∫ t

α

R[bp](T, s)
(

a(s)
b(s)

)
exp

(∫ t

s

R[bp](T, τ) dτ

)
ds.

Indeed, (2.10) implies that

u(t) ≤ a(t)
[
1 +

∫ t

α

R[bp](T, s) exp
(∫ t

s

R[bp](T, τ) dτ

)
ds

]
= a(t) exp

(∫ t

α

R[bp](T, τ) dτ

)
for α ≤ t ≤ T. In particular, for T = t we find (2.8). This completes the
proof. �
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Theorem 2.6. Let u, f1, . . . , fn be nonnegative continuous functions in J =
[α, β], and suppose that
(2.11)

u(t) ≤a +
∫ t

α

f1(t1)up(t1) dt1 + · · ·

+
∫ t

α

f1(t1)
(∫ t1

α

f2(t2) · · ·
(∫ tn−1

α

fn(tn)up(tn) dtn

)
· · ·

)
dt1

for t ∈ J, where a ≥ 1 and 0 < p ≤ 1 are a constant. Then

(2.12) u(t) ≤ aR1(t), t ∈ J,

where

Rn(t) = exp
(∫ t

α

fn(s) ds

)
, t ∈ J,

and

Rn(t) = 1 +
∫ t

α

fi(t)Ri+1(s) exp
(∫ s

α

fi(τ) dτ

)
ds

for t ∈ J, i = n− 1, . . . , 1.

Proof. We set

u1(t) = a + L1[up](t), uj+1(t) = uj + Lj+1[up](t)

for t ∈ J, j = 1, . . . , n− 1, where

Lk[up](t) =
∫ t

α

fk(tk)up(tk) dtk + · · ·

+
∫ t

α

fk(tk)
(∫ t

α

fk+1(tk+1) · · ·
(∫ t

α

fn(tn) dtn

)
· · ·

)
dtk

for t ∈ J, k = 1, . . . , n. Now (2.11) implies

(2.13) u(t) ≤ u1(t).

Taking into account that

uk(t) ≤ uk+1(t),

(Lk[up])′ = fk(up(t) + Lk+1[up]), k = 1, . . . , n− 1,
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and
(Ln[up])′ = fn(t)up(t).

We successively find

(2.14)

u′1(t) = (L1[up](t))′ = f1[up(t) + L2[up]]

≤ f1[u1(t) + L2[up]] = f1u2,

u′k(t) ≤ (f1 + · · ·+ fk−1)uk(t) + fkuk(t), k = 2, . . . , n− 1,

u′n(t) ≤ (f1 + · · ·+ fn)un(t).

Since uk(α) = a, k = 1, . . . , n, (2.14) gives by successive application of
Lemma 2.1,

uk(t) ≤ aRk(t) exp
(∫ t

α

k−1∑
j=1

fj(s) ds

)
, k = n, n− 1, . . . , 1.

For k = 1 this and (2.13) imply (2.12). �

Remark 2.1. In the case when a ≥ 0, p = 1, the inequality given in (2.11)
reduces to the inequality established earlier by Ráb in [16 ](see, also [1,
Theorem 11.6, p.102]). �

Corollary 2.7. Let u, f, g are nonnegative continuous functions in J =
[α, β], u0 ≥ 1 and suppose that

u(t) ≤ u0 +
∫ t

α

f(s)
[
up(s) +

∫ s

α

g(τ)up(τ) dτ

]
ds

for t ∈ J, where 0 < p ≤ 1 is a constant. Then

u(t) ≤ u0

[
1 +

∫ t

α

f(s) exp
(∫ s

α

(f(τ) + g(τ)) dτ

)
ds

]
for t ∈ J.

Theorem 2.8. Let u, fi, i = 1, . . . , n be nonnegative continuous functions
in J = [α, β], and suppose that
(2.15)

u(t) ≤a(t) +
∫ t

α

f1(t1)up(t1) dt1 + · · ·

+
∫ t

α

f1(t1)
(∫ t1

α

f2(t2) · · ·
(∫ tn−1

α

fn(tn)up(tn) dtn

)
· · ·

)
dt1
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for t ∈ J, where a(t) ≥ 1 is continuous function in J and 0 < p ≤ 1 is a
constant. Then

(2.16) u(t) ≤ a(t) +
∫ t

α

f1(s)[a(s) + v2(s)] ds,

where

un(t) =
∫ t

α

(f1(s) + · · ·+ fn(s))a(s) exp
(∫ t

s

(f1(τ) + · · ·+ fn(τ)) dτ

)
ds,

and

uk(t) =
∫ t

α

[( k∑
j=1

fj(s)
)

a(s) + fk(s)vk+1(s)
]

exp
(∫ t

s

k−1∑
j=1

fj(τ) dτ

)
ds

for t ∈ J, k = n− 1, . . . , 2.

Proof. Let Lk[up](t) be defined as in Theorem 2.6, and put

v1(t) = L1[up](t), vk+1(t) = vk + Lk+1[up](t)

for t ∈ J, k = 1, . . . , n− 1. Then (2.15) implies

(2.17) u(t) ≤ a(t) + v1(t),

and we successively find

(2.18)

v′1(t) = (L1[up](t))′ = f1[up(t) + L2[up]]

≤ f1[a(t) + v1(t) + L2[up]] = f1[a(t) + v2(t)],

v′k(t) ≤ (f1 + · · ·+ fk−1)vk(t) + (f1 + · · ·+ fk)a + fkvk+1(t),
k = 2, . . . , n− 1,

v′n(t) ≤ (f1 + · · ·+ fn)vn(t) + (f1 + · · ·+ fn)a(t).

Since vk(α) = 0, k = 1, . . . , n, solving the system (2.18) ‘backward’, and
applying Lemma 2.1, we arrive at

(2.19) v1(t) ≤
∫ t

α

f1(s)[a(s) + v2(s)] ds,



12 Y. J. CHO, S. S. DRAGOMIR AND Y. -H. KIM

where

vk(t) =
∫ t

α

[( k∑
j=1

fj(s)
)

a(s) + fk(s)vk+1(s)
]

exp
(∫ t

s

k−1∑
j=1

fj(τ) dτ

)
ds,

for t ∈ J, k = n− 1, . . . , 2, and

un(t) =
∫ t

α

(f1(s) + · · ·+ fn(s))a(s) exp
(∫ t

s

(f1(τ) + · · ·+ fn(τ)) dτ

)
ds.

The inequalities (2.17) and (2.19) imply (2.16). �

Remark 2.2. In the case when a(t) ≥ 0, p = 1, the inequality given in (2.15)
reduces to the inequality established earlier by Young in [18 ](see, also [1,
Theorem 11.7, p.103]). �

Corollary 2.9. Let u, f, g, h are nonnegative continuous functions in J =
[α, β], and suppose that

u(t) ≤ u0 +
∫ t

α

(f(s)up(s) + h(s)) ds +
∫ t

α

f(s)
(∫ s

α

g(τ)up(τ) dτ

)
ds

for t ∈ J, where u0+
∫ t

α
h(s) ds ≥ 1 is continuous function in J and 0 < p ≤ 1

is a constant. Then

u(t) ≤ u0+
∫ t

α

h(s) ds+
∫ t

α

f(s)
[
u0+

∫ s

α

h(τ) dτ

]
exp

(∫ s

α

(f(τ)+g(τ) τ

)
ds.

Indeed, this follows from Theorem 2.8 with f1 = f, f2 = g, and a(t) =
u0 +

∫ t

α
h(s) ds.
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