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Abstract. For any nonnegative integer k and natural numbers n and m,

we have the following inequalities on the ratio for the geometric means of a

positive arithmetic sequence with unit difference:

n + k + 1 + α

n + m + k + 1 + α
<

[∏n+k
i=k+1(i + α)

]1/n

[∏n+m+k
i=k+1 (i + α)

]1/(n+m)
≤

√
n + k + α

n + m + k + α
,

where α ∈ [0, 1] is a constant. The equality above is valid for n = 1 and

m = 1. Moreover, some monotonicity results for the sequences involving

n
√∏n+k

i=k+1(i + α) are obtained, and the related inequalities are generalized.

1. Introduction

It is known that, for n ∈ N, the following inequalities were given in [6]:

n

n+ 1
<

n
√
n!

n+1
√

(n+ 1)!
< 1. (1)

In [1], the left inequality in (1) was refined by

n

n+ 1
<

(
1
n

n∑
i=1

ir
/

1
n+ 1

n+1∑
i=1

ir

)1/r

<
n
√
n!

n+1
√

(n+ 1)!
(2)

for all positive real numbers r. Both bounds are best possible.

There is a rich literature on refinements, extensions, and generalizations of the

inequalities in (2), for examples, [2, 7, 8, 10, 14] and references therein.
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Using analytic method and Stirling’s formula, in [9, 4, 12, 13], for n,m ∈ N and

k being a nonnegative integer, the author and others proved the following

n+ k + 1
n+m+ k + 1

<

(
n+k∏

i=k+1

i

)1/n/(
n+m+k∏
i=k+1

i

)1/(n+m)

≤
√

n+ k

n+m+ k
, (3)

the equality in (3) holds for n = 1 and m = 1. These extend and refine inequalities

in (1).

Meanwhile, an inequality involving the ratio of gamma function was obtained in

[4, 12]: For positive real numbers x and y, we have

x+ y + 1
x+ y + 2

≤ [Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
. (4)

In this paper, using the ideas and method in [3, 5, 11] and the mathematical

induction, we further generalize the inequalities in (3) and obtain the following

inequalities of the ratio for the geometric means of a positive arithmetic sequence

with unit difference and monotonicity results.

Theorem 1. Let k be a nonnegative integer, n and m positive integers, and α ∈

[0, 1] a constant. Then

n+ k + 1 + α

n+m+ k + 1 + α
<

[∏n+k
i=k+1(i+ α)

]1/n

[∏n+m+k
i=k+1 (i+ α)

]1/(n+m)
≤
√

n+ k + α

n+m+ k + α
. (5)

If n = 1 and m = 1, then equality in the right hand side inequality of (5) hold.

Theorem 2. The sequence

n

√∏n+k
i=k+1(i+ α)

n+ k + 1 + α
(6)

is strictly decreasing with n ∈ N, and strictly increasing with nonnegative integer k

and α ∈ [0, 1].

The sequence
n

√∏n+k
i=k+1(i+ α)

√
n+ k + α

(7)

is strictly increasing with n ∈ N, nonnegative integer k, and α ∈ [0, 1].

The sequence [∏n+k
i=k+1(i+ α)

]1/n

[∏n+m+k
i=k+1 (i+ α)

]1/(n+m)
(8)
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is strictly increasing with nonnegative integer k and α ∈ [0, 1] for fixed numbers

n,m ∈ N.

2. Proofs of Theorem 1 and Theorem 2

The left hand side inequality of (5) can be rearranged as

[∏n+k
i=k+1(i+ α)

] 1
n

n+ k + 1 + α
≥

[∏n+m+k
i=k+1 (i+ α)

] 1
n+m

n+m+ k + 1 + α
,[

n+k∏
i=k+1

i+ α

n+ k + 1 + α

] 1
n

≥

[
n+m+k∏
i=k+1

i+ α

n+m+ k + 1 + α

] 1
n+m

,

1
n

n+k∑
i=k+1

ln
i+ α

n+ k + 1 + α
≥ 1
n+m

n+m+k∑
i=k+1

ln
i+ α

n+m+ k + 1 + α
,

which is equivalent to

1
n

n+k∑
i=k+1

ln
i+ α

n+ k + 1 + α
≥ 1
n+ 1

n+k+1∑
i=k+1

ln
i+ α

n+ k + 2 + α
. (9)

The same argument gives us that the right hand side inequality of (5) is equiv-

alent to

1
n

n+k∑
i=k+1

ln
i+ α√
n+ k + α

≤ 1
n+ 1

n+k+1∑
i=k+1

ln
i+ α√

n+ k + 1 + α
. (10)

Proof of the left hand side inequality in (5). Since lnx is increasing and concave on

(0, 1], from definition of the concave function and monotonicity of the function lnx,

it follows that

i− k

n+ 1
ln

i+ 1 + α

n+ k + 2 + α
+
n+ k − i+ 1

n+ 1
ln

i+ α

n+ k + 2 + α

≤ ln
(
i− k

n+ 1
· i+ 1 + α

n+ k + 2 + α
+
n+ k − i+ 1

n+ 1
· i+ α

n+ k + 2 + α

)
≤ ln

i+ α

n+ k + 1 + α
.

(11)
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Summing up on both sides of (11) leads to

n+k∑
i=k+1

[
i− k

n+ 1
ln

i+ 1 + α

n+ k + 2 + α
+
n+ k − i+ 1

n+ 1
ln

i+ α

n+ k + 2 + α

]

=
n

n+ 1

n+k∑
i=k+1

ln
i+ α

n+ k + 2 + α
+

n

n+ 1
ln
n+ k + 1 + α

n+ k + 2 + α

≤
n+k∑

i=k+1

ln
i+ α

n+ k + 1 + α
,

which is equivalent to

n

n+ 1

n+k+1∑
i=k+1

ln
i+ α

n+ k + 2 + α
≤

n+k∑
i=k+1

ln
i+ α

n+ k + 1 + α
.

The proof of the left hand side of inequality (5) is complete. �

Proof of the right hand side inequality in (5). By standard argument, the inequal-

ity (10) can be rearranged as

1
n

n+k∑
i=k+1

ln(i+ α) ≤ n+ 1
2

ln(n+ k + α)− n− 1
2

ln(n+ k + 1 + α). (12)

If n = 1, inequality (12) holds with equality.

If n = 2, it is easy to verify by a standard argument that inequality (12) is valid.

Assume that inequality (12) holds for some positive integer n ∈ N. Straightfor-

ward computation yields

1
n+ 1

n+k+1∑
k+1

ln(i+ α)

=
n

n+ 1

[
1
n

n+k∑
k+1

ln(i+ α) +
1
n

ln(n+ k + 1 + α)

]

≤ n

n+ 1

[
n+ 1

2
ln(n+ k + α)− n− 1

2
ln(n+ k + 1 + α)

]
+

ln(n+ k + 1 + α)
n+ 1

=
n

2
ln(n+ k + α)− n− 2

2
ln(n+ k + 1 + α).
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Therefore, by induction on n, to prove inequality (12), it is sufficient to verify the

following

n ln(n+ k + α)− (n− 2) ln(n+ k + 1 + α)

≤ (n+ 1) ln(n+ k + 1 + α)− (n− 1) ln(n+ k + 2 + α),

which is equivalent to

n[ln(n+ k+α)− ln(n+ k+ 1 +α)] ≤ (n− 1)[ln(n+ k+ 1 +α)− ln(n+ k+ 2 +α)],

which can be further rewritten as

n

n− 1
≥ ln(n+ k + α)− ln(n+ k + 1 + α)

ln(n+ k + 1 + α)− ln(n+ k + 2 + α)
. (13)

Using Cauchy’s mean-value theorem for derivative, it follows that, there exists

a number ξ ∈ (0, 1) satisfying

ln(n+ k + α)− ln(n+ k + 1 + α)
ln(n+ k + 1 + α)− ln(n+ k + 2 + α)

=
n+ k + 1 + α+ ξ

n+ k + α+ ξ
.

Since k+ 1 + α+ ξ > 1 and n ≥ 2 and the function x
x−1 is decreasing for x > 1,

we have
n+ k + 1 + α+ ξ

n+ k + α+ ξ
≤ n

n− 1
,

which implies the inequality (13) holds. The right hand side of inequality (5)

follows. �

Proof of Theorem 2. The monotonicities with n of the sequences (6) and (7) follow

from Theorem 1 easily.

Direct calculating yields

n

√∏n+k
i=k+1(i+ α)

n+ k + 1 + α
=
n+ k + 2 + α

n+ k + 1 + α
n

√
k + 1 + α

n+ k + 1 + α
·

n

√∏n+k+1
i=k+2 (i+ α)

n+ k + 2 + α
.

Let

ψ(t) = ln(n+ 2 + α+ t) +
1
n

ln(1 + α+ t)−
(

1 +
1
n

)
ln(n+ 1 + α+ t)

for t ≥ 0. Direct computing and simplifying yields

ψ′(t) =
n+ 1

(1 + α+ t)(n+ 1 + α+ t)(n+ 2 + α+ t)
> 0,
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and then ψ(t) is increasing. Therefore, exp(ψ(t)) is increasing, and

lim
t→∞

exp(ψ(t)) = lim
t→∞

(
n+ t+ 2 + α

n+ t+ 1 + α
n

√
t+ 1 + α

n+ t+ 1 + α

)
= 1.

Thus
n+ k + 2 + α

n+ k + 1 + α
n

√
k + 1 + α

n+ k + 1 + α
< 1.

The sequence (6) increases strictly with k.

The fact that
1
n

n+k∑
i=k+1

1
i+ α

− 1
n+ k + 1 + α

> 0

implies the following sequence

1
n

n+k∑
i=k+1

ln(i+ α)− ln(n+ k + 1 + α)

is strictly increasing with α, and then the sequence (6) is also strictly increasing

with α.

Easy computing yields

n

√∏n+k
i=k+1(i+ α)

√
n+ k + α

=

√
n+ k + 1 + α

n+ k + α
n

√
k + 1 + α

n+ k + 1 + α
·

n

√∏n+k+1
i=k+2 (i+ α)

n+ k + 1 + α
.

Let

φ(t) =
1
n

ln(1 + α+ t) +
(

1
2
− 1
n

)
ln(n+ 1 + α+ t)− 1

2
ln(n+ α+ t)

for t ≥ 0. Computing directly and simplifying yields

φ′(t) =
2n+ t+ α− 1

2(1 + α+ t)(n+ α+ t)(n+ 1 + α+ t)
> 0,

and then φ(t) is increasing. Therefore, exp(φ(t)) is increasing, and

lim
t→∞

exp(φ(t)) = lim
t→∞

(√
n+ t+ 1 + α

n+ t+ α
n

√
t+ 1 + α

n+ t+ 1 + α

)
= 1.

Thus √
n+ k + 1 + α

n+ k + α
n

√
k + 1 + α

n+ k + 1 + α
< 1.

The sequence (7) increases strictly with k.

The fact that
1
n

n+k∑
i=k+1

1
i+ α

− 1
2
· 1
n+ k + α

> 0
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implies the following sequence

1
n

n+k∑
i=k+1

ln(i+ α)− 1
2

ln(n+ k + α)

is strictly increasing, and then the sequence (7) is strictly increasing with α.

Straightforward calculation gives us

[∏n+k+1
i=k+2 (i+ α)

] 1
n

[∏n+m+k+1
i=k+2 (i+ α)

] 1
n+m

=
[

(n+ k + 1 + α)n+m

(n+m+ k + 1 + α)n(k + 1 + α)m

] 1
n(n+m)

[∏n+k
i=k+1(i+ α)

] 1
n

[∏n+m+k
i=k+1 (i+ α)

] 1
n+m

.

Let

τ(t) = (m+ t) ln(k + 1 + α+ t)− t ln(m+ k + 1 + α+ t)−m ln(k + 1 + α)

for t ≥ 0. Then

τ(0) = 0,

τ ′(t) =
m+ t

k + α+ 1 + t
− t

k +m+ α+ 1 + t
− ln

k +m+ α+ 1 + t

k + α+ 1 + t

≥ m+ t

k + α+ 1 + t
− t

k +m+ α+ 1 + t
− m

k + α+ 1 + t

≥ 0,

and τ(t) is increasing and nonnegative, which implies

(n+ k + 1 + α)n+m

(n+m+ k + 1 + α)n(k + 1 + α)m
> 1.

Therefore, the sequence (8) is strictly increasing with k.

The inequality

1
n

n+k∑
i=k+1

1
i+ α

>
1

n+m

n+m+k∑
i=k+1

1
i+ α

, (14)

which is equivalent to
n+k∑

i=k+1

1
i+ α

>
n

n+ k + 1 + α

being valid clearly, implies that the sequence (8) is strictly increasing with α. �
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3. Open problem

It is clear that it is natural to pose the following open problem.

Open Problem. For all nonnegative integers k and natural numbers n and m, we

have

a(n+ k + 1) + b

a(n+m+ k + 1) + b
<

[∏n+k
i=k+1(ai+ b)

]1/n

[∏n+m+k
i=k+1 (ai+ b)

]1/(n+m)
≤

√
a(n+ k) + b

a(n+m+ k) + b
, (15)

where a and b are positive constants.

We will discuss this open problem in a subsequent paper.
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