Generalizations of Weighted Trapezoidal Inequality for Mappings of Bounded Variation and Their Applications

Kuei-Lin Tseng, Gou-Sheng Yang, and Sever S. Dragomir

Abstract

In this paper, we establish some generalizations of weighted trapezoid inequality for mappings of bounded variation, and give several applications for r-moment, the expectation of a continuous random variable and the Beta mapping.

1. Introduction

The trapezoid inequality states that if $f^{\prime \prime}$ exists and is bounded on (a, b), then

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \frac{(b-a)^{3}}{12}\left\|f^{\prime \prime}\right\|_{\infty}, \tag{1.1}
\end{equation*}
$$

where

$$
\left\|f^{\prime \prime}\right\|_{\infty}:=\sup _{x \in(a, b)}\left|f^{\prime \prime}\right|<\infty .
$$

Now if we assume that $I_{n}: a=x_{0}<x_{1}<\cdots<x_{n}=b$ is a partition of the interval $[a, b]$ and f is as above, then we can approximate the integral $\int_{a}^{b} f(x) d x$ by the trapezoidal quadrature formula $A_{T}\left(f, I_{n}\right)$, having an error given by $R_{T}\left(f, I_{n}\right)$, where

$$
A_{T}\left(f, I_{n}\right):=\frac{1}{2} \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right] l_{i},
$$

and the remainder satisfies the estimation

$$
\left|R_{T}\left(f, I_{n}\right)\right| \leq \frac{1}{12}\left\|f^{\prime \prime}\right\|_{\infty} \sum_{i=0}^{n-1} l_{i}^{3},
$$

with $l_{i}:=x_{i+1}-x_{i}$ for $i=0,1, \cdots, n-1$.
For some recent results which generalize, improve and extend this classic inequality (1.1), see the papers [2- $\mathbf{2}$.

Recently, Cerone-Dragomir-Pearce [4 proved the following two trapezoid type inequalities:

[^0]Theorem 1. Let $f:[a, b] \rightarrow R$ be a mapping of bounded variation. Then

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-[(x-a) f(a)+(b-x) f(b)]\right| \tag{1.2}\\
\leq & {\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right] V_{a}^{b}(f), }
\end{align*}
$$

for all $x \in[a, b]$, where $V_{a}^{b}(f)$ denotes the total variation of f on the interval $[a, b]$. The constant $\frac{1}{2}$ is the best possible.

Let $I_{n}, l_{i}(i=0,1, \cdots, n-1)$ be as above and let $\xi_{i} \in\left[x_{i}, x_{i+1}\right](i=0,1, \cdots, n-$ 1) be intermediate points. Define the sum

$$
T_{P}\left(f, I_{n}, \xi\right):=\sum_{i=0}^{n-1}\left[\left(\xi_{i}-x_{i}\right) f\left(x_{i}\right)+\left(x_{i+1}-\xi_{i}\right) f\left(x_{i+1}\right)\right] .
$$

We have the following result concerning the approximation of the integral $\int_{a}^{b} f(x) d x$ in terms of T_{P}.

Theorem 2. Let f be defined as in Theorem 1, then we have

$$
\int_{a}^{b} f(x) d x=T_{P}\left(f, I_{n}, \xi\right)+R_{P}\left(f, I_{n}, \xi\right)
$$

The remainder term $R_{P}\left(f, I_{n}, \xi\right)$ satisfies the estimate

$$
\begin{align*}
& \left|R_{P}\left(f, I_{n}, \xi\right)\right| \tag{1.3}\\
\leq & {\left[\frac{1}{2} \nu(l)+\max _{i=0,1, \cdots, n-1}\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right| V_{a}^{b}(f)\right] \leq \nu(l) V_{a}^{b}(f), }
\end{align*}
$$

where $\nu(l):=\max \left\{l_{i} \mid i=0,1, \cdots, n-1\right\}$. The constant $\frac{1}{2}$ is the best possible.
In this paper, we establish weighted generalizations of Theorems 1.2, and give several applications for r-moment, the expectation of a continuous random variable and the Beta mapping.

2. Some Integral Inequalities

We may state the following result.
ThEOREM 3. Let $g:[a, b] \rightarrow R$ be non-negative and continuous and let h : $[a, b] \rightarrow R$ be differentiable such that $h^{\prime}(t)=g(t)$ on $[a, b]$. Suppose f is defined as in Theorem 1. Then

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) g(t) d t-[(x-h(a)) f(a)+(h(b)-x) f(b)]\right| \tag{2.1}\\
\leq & {\left[\frac{1}{2} \int_{a}^{b} g(t) d t+\left|x-\frac{h(a)+h(b)}{2}\right|\right] V_{a}^{b}(f) }
\end{align*}
$$

for all $x \in[h(a), h(b)]$. The constant $\frac{1}{2}$ is the best possible.

Proof. Let $x \in[h(a), h(b)]$. Using integration by parts, we have the following identity

$$
\begin{align*}
& \int_{a}^{b}(x-h(t)) d f(t) \tag{2.2}\\
= & \left.(x-h(t)) f(t)\right|_{a} ^{b}+\int_{a}^{b} f(t) g(t) d t \\
= & \int_{a}^{b} f(t) g(t) d t-[(x-h(a)) f(a)+(h(b)-x) f(b)] .
\end{align*}
$$

It is well known [1, p.159] that if $\mu, \nu:[a, b] \rightarrow R$ are such that μ is continuous on $[a, b]$ and ν is of bounded variation on $[a, b]$, then $\int_{a}^{b} \mu(t) d \nu(t)$ exists and [1, p.177]

$$
\begin{equation*}
\left|\int_{a}^{b} \mu(t) d \nu(t)\right| \leq \sup _{x \in[a, b]}|\mu(t)| V_{a}^{b}(\nu) \tag{2.3}
\end{equation*}
$$

Now, using identity (2.2) and inequality (2.3), we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) g(t) d t-[(x-h(a)) f(a)+(h(b)-x) f(b)]\right| \tag{2.4}\\
\leq & \sup _{t \in[a, b]}|x-h(t)| V_{a}^{b}(f)
\end{align*}
$$

Since $x-h(t)$ is decreasing on $[a, b], h(a) \leq x \leq h(b)$ and $h^{\prime}(t)=g(t)$ on $[a, b]$, we have

$$
\begin{align*}
& \sup _{t \in[a, b]}|x-h(t)| \tag{2.5}\\
= & \max \{x-h(a), h(b)-x\} \\
= & \frac{h(b)-h(a)}{2}+\left|x-\frac{h(a)+h(b)}{2}\right| \\
= & \frac{1}{2} \int_{a}^{b} g(t) d t+\left|x-\frac{h(a)+h(b)}{2}\right| .
\end{align*}
$$

Thus, by (2.4) and (2.5), we obtain (2.1).
Let

$$
\begin{aligned}
g(t) & \equiv 1, t \in[a, b] \\
h(t) & =t, t \in[a, b] \\
f(t) & = \begin{cases}0 & \text { as } t=a \\
1 & \text { as } t \in(a, b) \\
0 & \text { as } t=b\end{cases}
\end{aligned}
$$

and $x=\frac{a+b}{2}$. Then, we can see that the constant $\frac{1}{2}$ is best possible. This completes the proof.

REmARK 1. (1) If we choose $g(t) \equiv 1, h(t)=t$ on $[a, b]$, then the inequality (2.1) reduces to (1.2).
(2) If we choose $x=\frac{h(a)+h(b)}{2}$, then we get

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) g(t) d t-\frac{f(a)+f(b)}{2} \int_{a}^{b} g(t) d t\right| \leq \frac{1}{2} \int_{a}^{b} g(t) d t \cdot V_{a}^{b}(f) \tag{2.6}
\end{equation*}
$$

which is the "weighted trapezoid" inequality.
Under the conditions of Theorem 3, we have the following corollaries.
Corollary 1. Let $f \in C^{(1)}[a, b]$. Then we have the inequality

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) g(t) d t-[(x-h(a)) f(a)+(h(b)-x) f(b)]\right| \tag{2.7}\\
\leq & {\left[\frac{1}{2} \int_{a}^{b} g(t) d t+\left|x-\frac{h(a)+h(b)}{2}\right|\right]\left\|f^{\prime}\right\|_{1}, }
\end{align*}
$$

for all $x \in[h(a), h(b)]$, where $\|\cdot\|_{1}$ is the $L_{1}-$ norm, namely

$$
\left\|f^{\prime}\right\|_{1}:=\int_{a}^{b}\left|f^{\prime}(t)\right| d t
$$

Corollary 2. Let $f:[a, b] \rightarrow R$ be a Lipschitzian mapping with the constant $L>0$. Then we have the inequality

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) g(t) d t-[(x-h(a)) f(a)+(h(b)-x) f(b)]\right| \tag{2.8}\\
\leq & {\left[\frac{1}{2} \int_{a}^{b} g(t) d t+\left|x-\frac{h(a)+h(b)}{2}\right|\right](b-a) L }
\end{align*}
$$

for all $x \in[h(a), h(b)]$.
Corollary 3. Let $f:[a, b] \rightarrow R$ be a monotonic mapping. Then we have the inequality

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) g(t) d t-[(x-h(a)) f(a)+(h(b)-x) f(b)]\right| \tag{2.9}\\
\leq & {\left[\frac{1}{2} \int_{a}^{b} g(t) d t+\left|x-\frac{h(a)+h(b)}{2}\right|\right] \cdot|f(b)-f(a)|, }
\end{align*}
$$

for all $x \in[h(a), h(b)]$.
REMARK 2. The following inequality is well-known in the literature as the Fejér inequality (see for example [10):

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(t) d t \tag{2.10}
\end{equation*}
$$

where $f:[a, b] \rightarrow R$ is convex and $g:[a, b] \rightarrow R$ is non-negative integrable and symmetric to $\frac{a+b}{2}$. Using the above results and (2.6), we obtain the following error bound of the second inequality in (2.10),

$$
\begin{equation*}
0 \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(t) d t-\int_{a}^{b} f(t) g(t) d t \leq \frac{1}{2} \int_{a}^{b} g(t) d t \cdot V_{a}^{b}(f) \tag{2.11}
\end{equation*}
$$

provided that f is of bounded variation on $[a, b]$.

REmARK 3. If f is convex and Lipschitzian with the constant L on $[a, b], g$ is defined as in Remark 2 and $x=\frac{h(a)+h(b)}{2}$, then we get from (2.8) and (2.10) that

$$
\begin{equation*}
0 \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(t) d t-\int_{a}^{b} f(t) g(t) d t \leq \frac{(b-a) L}{2} \int_{a}^{b} g(t) d t \tag{2.12}
\end{equation*}
$$

Remark 4. If f is convex and monotonic on $[a, b], g$ is defined as in Remark 2 and $x=\frac{h(a)+h(b)}{2}$, then we get from (2.9) and (2.10) that

$$
\begin{align*}
0 & \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(t) d t-\int_{a}^{b} f(t) g(t) d t \tag{2.13}\\
& \leq \frac{|f(b)-f(a)|}{2} \int_{a}^{b} g(t) d t
\end{align*}
$$

REMARK 5. If f is continuous, differentiable, convex on $[a, b]$ and $f^{\prime} \in L_{1}(a, b)$, g is defined as in Remark 2 and $x=\frac{h(a)+h(b)}{2}$, then we get from (2.7) and (2.10) that

$$
\begin{equation*}
0 \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(t) d t-\int_{a}^{b} f(t) g(t) d t \leq \frac{\left\|f^{\prime}\right\|_{1}}{2} \int_{a}^{b} g(t) d t \tag{2.14}
\end{equation*}
$$

3. Applications for Quadrature Rules

Throughout this section, let g and h be defined as in Theorem 3 .
Let $f:[a, b] \rightarrow R$, and let $I_{n}: a=x_{0}<x_{1}<\cdots<x_{n}=b$ be a partition of $[a, b]$ and $\xi_{i} \in\left[h\left(x_{i}\right), h\left(x_{i+1}\right)\right](i=0,1, \cdots, n-1)$ be intermediate points. Put $l_{i}:=h\left(x_{i+1}\right)-h\left(x_{i}\right)=\int_{x_{i}}^{x_{i+1}} g(t) d t$ and define the sum

$$
T_{P}\left(f, g, h, I_{n}, \xi\right):=\sum_{i=0}^{n-1}\left[\left(\xi_{i}-h\left(x_{i}\right)\right) f\left(x_{i}\right)+\left(h\left(x_{i+1}\right)-\xi_{i}\right) f\left(x_{i+1}\right)\right]
$$

We have the following concerning the approximation of the integral $\int_{a}^{b} f(t) g(t) d t$ in terms of T_{P}.

Theorem 4. Let f be defined as in Theorem 3 and let

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t=T_{P}\left(f, g, h, I_{n}, \xi\right)+R_{P}\left(f, g, h, I_{n}, \xi\right) \tag{3.1}
\end{equation*}
$$

Then, the remainder term $R_{P}\left(f, g, h, I_{n}, \xi\right)$ satisfies the estimate

$$
\begin{align*}
& \left|R_{P}\left(f, g, h, I_{n}, \xi\right)\right| \tag{3.2}\\
\leq & {\left[\frac{1}{2} \nu(l)+\max _{i=0,1, \cdots, n-1}\left|\xi_{i}-\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}\right|\right] V_{a}^{b}(f) } \\
\leq & \nu(l) V_{a}^{b}(f),
\end{align*}
$$

where $\nu(l):=\max \left\{l_{i} \mid i=0,1, \cdots, n-1\right\}$. The constant $\frac{1}{2}$ is the best possible.
Proof. Apply Theorem 3 on the intervals $\left[x_{i}, x_{i+1}\right](i=0,1, \cdots, n-1)$ to get

$$
\begin{aligned}
& \left|\int_{x_{i}}^{x_{i+1}} f(t) g(t) d t-\left[\left(\xi_{i}-h\left(x_{i}\right)\right) f\left(x_{i}\right)+\left(h\left(x_{i+1}\right)-\xi_{i}\right) f\left(x_{i+1}\right)\right]\right| \\
\leq & {\left[\frac{1}{2} l_{i}+\left|\xi_{i}-\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}\right|\right] V_{x_{i}}^{x_{i+1}}(f), }
\end{aligned}
$$

for all $i \in\{0,1, \cdots, n-1\}$.

Using this and the generalized triangle inequality, we have

$$
\begin{aligned}
& \left|R_{P}\left(f, g, h, I_{n}, \xi\right)\right| \\
\leq & \sum_{i=0}^{n-1}\left|\int_{x_{i}}^{x_{i+1}} f(t) g(t) d t-\left[\left(\xi_{i}-h\left(x_{i}\right)\right) f\left(x_{i}\right)+\left(h\left(x_{i+1}\right)-\xi_{i}\right) f\left(x_{i+1}\right)\right]\right| \\
\leq & \sum_{i=0}^{n-1}\left[\frac{1}{2} l_{i}+\left|\xi_{i}-\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}\right|\right] V_{x_{i}}^{x_{i+1}}(f) \\
\leq & \max _{i=0,1, \cdots, n-1}\left[\frac{1}{2} l_{i}+\left|\xi_{i}-\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}\right|\right] \sum_{i=0}^{n-1} V_{x_{i}}^{x_{i+1}}(f) \\
\leq & {\left[\frac{1}{2} \nu(l)+\max _{i=0,1, \cdots, n-1}\left|\xi_{i}-\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}\right|\right] V_{a}^{b}(f) }
\end{aligned}
$$

and the first inequality in (3.2) is proved.
For the second inequality in (3.2), we observe that

$$
\left|\xi_{i}-\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}\right| \leq \frac{1}{2} l_{i}(i=0,1, \cdots, n-1)
$$

and then

$$
\max _{i=0,1, \cdots, n-1}\left|\xi_{i}-\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}\right| \leq \frac{1}{2} \nu(l) .
$$

Thus the theorem is proved.
REmARK 6. If we choose $g(t) \equiv 1, h(t)=t$ on $[a, b]$, then the inequality (3.2) reduces to (1.3).

The following corollaries can be useful in practice.
Corollary 4. Let $f:[a, b] \rightarrow R$ be a Lipschitzian mapping with the constant $L>0, I_{n}$ be defined as above and choose $\xi_{i}=\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}(i=0,1, \cdots, n-1)$. Then we have the formula

$$
\begin{align*}
& \int_{a}^{b} f(t) g(t) d t=T_{P}\left(f, g, h, I_{n}, \xi\right)+R_{P}\left(f, g, h, I_{n}, \xi\right) \tag{3.3}\\
= & \sum_{i=0}^{n-1}\left[\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} \int_{x_{i}}^{x_{i+1}} g(t) d t\right]+R_{P}\left(f, g, h, I_{n}, \xi\right)
\end{align*}
$$

and the remainder satisfies the estimate

$$
\begin{equation*}
\left|R_{P}\left(f, g, h, I_{n}, \xi\right)\right| \leq \frac{\nu(l) \cdot L \cdot(b-a)}{2} \tag{3.4}
\end{equation*}
$$

Corollary 5. Let $f:[a, b] \rightarrow R$ be a monotonic mapping and let $\xi_{i}(i=0,1, \cdots, n-1)$ be defined as in Corollary 4 . Then we have the formula (3.3) and the remainder satisfies the estimate

$$
\begin{equation*}
\left|R_{P}\left(f, g, h, I_{n}, \xi\right)\right| \leq \frac{\nu(l)}{2} \cdot|f(b)-f(a)| \tag{3.5}
\end{equation*}
$$

The case of equidistant division is embodied in the following corollary and remark:

Corollary 6. Suppose that $g(t)>0$,

$$
x_{i}=h^{-1}\left[h(a)+\frac{i(h(b)-h(a))}{n}\right] \quad(i=0,1, \cdots, n)
$$

and

$$
l_{i}:=h\left(x_{i+1}\right)-h\left(x_{i}\right)=\frac{h(b)-h(a)}{n}=\frac{1}{n} \int_{a}^{b} g(t) d t \quad(i=0,1, \cdots, n-1) .
$$

Let f be defined as in Theorem 4 and choose $\xi_{i}=\frac{h\left(x_{i}\right)+h\left(x_{i+1}\right)}{2}(i=0,1, \cdots, n-1)$. Then we have the formula

$$
\begin{align*}
& \int_{a}^{b} f(t) g(t) d t=T_{P}\left(f, g, h, I_{n}, \xi\right)+R_{P}\left(f, g, h, I_{n}, \xi\right) \tag{3.6}\\
= & \frac{1}{2 n} \int_{a}^{b} g(t) d t \cdot \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]+R_{P}\left(f, g, h, I_{n}, \xi\right),
\end{align*}
$$

and the remainder satisfies the estimate

$$
\begin{equation*}
\left|R_{P}\left(f, g, h, I_{n}, \xi\right)\right| \leq \frac{1}{2 n} \int_{a}^{b} g(t) d t \cdot V_{a}^{b}(f) \tag{3.7}
\end{equation*}
$$

REMARK 7. If we want to approximate the integral $\int_{a}^{b} f(t) g(t) d t$ by $T_{P}\left(f, g, h, I_{n}, \xi\right)$ with an accuracy less that $\varepsilon>0$, we need at least $n_{\varepsilon} \in N$ points for the partition I_{n}, where

$$
n_{\varepsilon}:=\left[\frac{1}{2 \varepsilon} \int_{a}^{b} g(t) d t \cdot V_{a}^{b}(f)\right]+1
$$

and $[r]$ denotes the Gaussian integer of $r \in R$.

4. Some Inequalities for Random Variables

Throughout this section, let $0<a<b, r \in R$, and let X be a continuous random variable having the continuous probability density function $g:[a, b] \rightarrow R$ and the r-moment

$$
E_{r}(X):=\int_{a}^{b} t^{r} g(t) d t
$$

which is assumed to be finite.
ThEOREM 5. The inequality

$$
\begin{equation*}
\left|E_{r}(X)-\frac{a^{r}+b^{r}}{2}\right| \leq \frac{1}{2}\left|b^{r}-a^{r}\right|, \tag{4.1}
\end{equation*}
$$

holds.
Proof. If we put $f(t)=t^{r}, h(t)=\int_{a}^{t} g(x) d x(t \in[a, b])$ and $x=\frac{h(a)+h(b)}{2}$ in Corollary 3 we obtain the inequality

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) g(t) d t-\frac{f(a)+f(b)}{2} \int_{a}^{b} g(t) d t\right| \tag{4.2}\\
\leq & \frac{1}{2} \int_{a}^{b} g(t) d t \cdot|f(b)-f(a)|
\end{align*}
$$

Since

$$
\begin{aligned}
\int_{a}^{b} f(t) g(t) d t & =E_{r}(X), \quad \int_{a}^{b} g(t) d t=1 \\
\frac{f(a)+f(b)}{2} & =\frac{a^{r}+b^{r}}{2}, \quad \text { and }|f(b)-f(a)|=\left|b^{r}-a^{r}\right|
\end{aligned}
$$

(4.1) follows from 4.2, immediately. This completes the proof.

If we choose $r=1$ in Theorem 55 then we have the following remark:
REmark 8. The inequality

$$
\begin{equation*}
\left|E(X)-\frac{a+b}{2}\right| \leq \frac{b-a}{2} \tag{4.3}
\end{equation*}
$$

where $E(X)$ is the expectation of the random variable X.

5. Inequality for the Beta Mapping

The following mapping is well-known in the literature as the Beta mapping:

$$
\beta(p, q):=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t, \quad p>0, q>0
$$

Theorem 6. Let $p, q \geq 1$. Then the inequality

$$
\begin{align*}
& \quad\left|\beta(p, q)-\frac{1}{2 n p} \sum_{i=0}^{n-1}\left\{\left[1-\left(\frac{i}{n}\right)^{\frac{1}{p}}\right]^{q-1}+\left[1-\left(\frac{i+1}{n}\right)^{\frac{1}{p}}\right]^{q-1}\right\}\right| \tag{5.1}\\
& \leq \frac{1}{2 n p}
\end{align*}
$$

holds for any positive integer n.
Proof. Let $p, q \geq 1$. If we put $a=0, b=1, f(t)=(1-t)^{q-1}, g(t)=t^{p-1}$ and $h(t)=\frac{t^{p}}{p}(t \in[0,1])$ in Corollary 6, we obtain the inequality 5.1). This completes the proof.

References

[1] T. M. Apostol, Mathematical Analysis, Second Edition, Addision-Wesley Publishing Company, 1975.
[2] N. S. Barnett, S. S. Dragomir and C. E. M. Pearce, A quasi- trapezoid inequality for double integrals, submitted.
[3] P. Cerone, Weighted three point identities and their bounds, The SUT J. of Math., 38(1), 17-37.
[4] P. Cerone, S. S. Dragomir and C. E. M. Pearce, Generalizations of the trapezoid inequality for mappings of bounded variation and applications, Turkish Journal of Mathematics, 24(2) (2000), 147-163.
[5] P. Cerone and S.S. Dragomir, Trapezoidal-type rules from an inequalities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, N.Y., (2000), 65-134.
[6] P. Cerone, J. Roumeliotis and G. Hanna, On weighted three point quadrature rules, ANZIAM J., 42(E) (2000), C340-361.
[7] S. S. Dragomir, On the trapezoid formula for mappings of bounded variation and applications, Kragujevac J. Math., 23 (2001), 25-36.
[8] S. S. Dragomir, P. Cerone and A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. of Pure and appl. Math., 31(5) (2000), 475-494.. RGMIA Res. Rep. Coll., 5, 2(1999), Article 1.
[9] S. S. Dragomir and T. C. Peachey, New estimation of the remainder in the trapezoidal formula with applications, Studia Universitatis Babes-Bolyai Mathematica, XLV(4) (2000), 31-42 (http://rgmia.vu.edu.au/v1n2/trap1.dvi.)
[10] L. Fejér, Uberdie Fourierreihen, II, Math. Natur. Ungar. Akad Wiss. 24 (1906), 369-390. [In Hungarian]

Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103
E-mail address: kltseng@email.au.edu.tw
Department of Mathematics, Tamkang University, Tamsui, Taiwan 25137
School of Computer Science \& Mathematics, Victoria University, Melbourne, Victoria 8001, Australia

E-mail address: sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

[^0]: 2000 Mathematics Subject Classification. Primary 26D15; Secondary 41A55.
 Key words and phrases. Trapezoid Inequality, Mappings of bounded variation, Random Variable, r-moments, expectation, Beta function.

