EVALUATIONS OF THE IMPROPER INTEGRALS $\int_{0}^{\infty} \frac{\sin ^{2 m}(\alpha x)}{x^{2 n}} \cos (b x) d x$ AND $\int_{0}^{\infty} \frac{\sin ^{2 m+1}(\alpha x)}{x^{2 n+1}} \cos (b x) d x$

QIU-MING LUO AND FENG QI

Abstract

In this article, using L'Hospital rule, mathematical induction, the trigonometric power formulae and integration by parts, some integral formulae for improper integrals $\int_{0}^{\infty} \frac{\sin ^{2 m}(\alpha x)}{x^{2 n}} \cos (b x) \mathrm{d} x$ and $\int_{0}^{\infty} \frac{\sin ^{2 m+1}(\alpha x)}{x^{2 n+1}} \cos (b x) \mathrm{d} x$ are established, where $m \geq n$ are all positive integers and real numbers $\alpha \neq 0$ and $b \geq 0$.

1. Introduction

The following improper integral is well-known and is synonymous with names of Laplace and Dirichlet

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2} \tag{1}
\end{equation*}
$$

In fact, in 1781, it was first obtained using the residue method by Euler. It can be found in standard textbooks for undergraduate students, for examples, [9, pp. 226-227] and [13, pp. 168-170].

Depending on the partial fraction decomposition

$$
\begin{equation*}
\frac{1}{\sin t}=\frac{1}{t}+\sum_{i=1}^{\infty}(-1)^{i}\left(\frac{1}{t-n \pi}+\frac{1}{t+n \pi}\right) \tag{2}
\end{equation*}
$$

an elegant calculation of formula (1) is provided in [5, pp. 436-437] and [6, pp. 382-384], due to the noted geometrician N. I. Lobatscheuski. Another polished proof of identity (1) is given in [6, pp. 381-382].

As exercises in [10, p. 53, p. 147 and p. 335] and [12, p. 495], using the Laplace transform, the Parseval identities of sine and cosine Fourier transforms and the residue theorem, the following formulae are requested to compute:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} \mathrm{~d} t=\frac{\pi}{2}, \quad \int_{0}^{\infty} \frac{\sin ^{4} t}{t^{2}} \mathrm{~d} t=\frac{\pi}{2}, \quad \int_{0}^{\infty} \frac{\sin ^{3} t}{t^{3}} \mathrm{~d} t=\frac{3 \pi}{8} \tag{3}
\end{equation*}
$$

[^0]In [14, pp. 74-75 and p. 84], using the Mellin transform and by approaches in theory of Fourier analysis or theory of residues, the following formulae are obtained:

$$
\begin{align*}
\int_{0}^{\infty} \cos (t x) x^{z} \frac{\mathrm{~d} x}{x} & =\Gamma(z) t^{-z} \cos \frac{\pi z}{2}, \quad \operatorname{Re}(z)>0, \quad t>0 \tag{4}\\
\int_{0}^{\infty} \sin (t x) x^{z} \frac{\mathrm{~d} x}{x} & =\Gamma(z) t^{-z} \sin \frac{\pi z}{2}, \quad \operatorname{Re}(z)>-1, \quad t>0 \tag{5}\\
\int_{0}^{\infty} \frac{\sin x}{x^{z}} \mathrm{~d} x & =\Gamma(1-z) \cos \frac{\pi z}{2}=\frac{\pi}{2 \Gamma(z) \sin \frac{\pi z}{2}} \tag{6}
\end{align*}
$$

Especially, taking $t=1$ and $z \rightarrow 0$ in (5) or taking $z=1$ in (6) produces (1).
The following generalisation of formula (1] can be found in [2] and [3, p. 458, No. 3.836.5]:

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{n} \cos (b x) \mathrm{d} x=n\left(2^{n-1} n!\right)^{-1} \sum_{k=0}^{[r]}(-1)^{k}\binom{n}{k}(n-b-2 k)^{n-1} \tag{7}
\end{equation*}
$$

where $0 \leq b<n, n \geq 1, r=\frac{n-b}{2}$, and $[r]$ is the largest integer contained in r.
In [11, some general results related to formulae (1) and (7) were obtained.
In [1] and [7, p. 606], the following inequality is given:

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\frac{\sin t}{t}\right|^{p} \mathrm{~d} t \leq \pi \sqrt{\frac{2}{p}}, \quad p \geq 2 \tag{8}
\end{equation*}
$$

Equality is valid only if $p=2$.
The integral (1) and other integral formulae stated above are useful and arising in research of damping vibration and other science or engineering. This was mentioned in [13, p. 170].

Recently, Q.-M. Luo and B.-N. Guo in [8] obtained the following
Theorem A ([8]). For a nonnegative integer $k \geq 0$ and $\alpha \neq 0$, we have

$$
\begin{align*}
\int_{0}^{\infty}\left(\frac{\sin (\alpha x)}{x}\right)^{2 k+1} \mathrm{~d} x & =\frac{\operatorname{sgn} \alpha \sum_{i=0}^{k}(-1)^{i}(2 k-2 i+1)^{2 k} C_{2 k+1}^{i}}{4^{k}(2 k)!} \cdot \alpha^{2 k} \cdot \frac{\pi}{2} \tag{9}\\
\int_{0}^{\infty}\left(\frac{\sin (\alpha x)}{x}\right)^{2 k} \mathrm{~d} x & =\frac{\operatorname{sgn} \alpha \sum_{i=0}^{k-1}(-1)^{i}(k-i)^{2 k-1} C_{2 k}^{i}}{(2 k-1)!} \cdot \alpha^{2 k-1} \cdot \frac{\pi}{2} \tag{10}
\end{align*}
$$

If taking $k=0$ in (9), the formula (1) follows.
In this article, using the L'Hospital rule, mathematical induction, trigonometric power formulae and integration by parts, we will establish integral formulae of the improper integrals $\int_{0}^{\infty} \frac{\sin ^{2 m}(\alpha x)}{x^{2 n}} \cos (b x) \mathrm{d} x$ and $\int_{0}^{\infty} \frac{\sin ^{2 m+1}(\alpha x)}{x^{2 n+1}} \cos (b x) \mathrm{d} x$, where $m \geq n$ are all positive integers and real numbers $\alpha \neq 0$ and $b \geq 0$. The following theorem holds.

Theorem 1. Let m, n be nonnegatine integer, $m \geq n$, and $b \geq 0$. Then

$$
\int_{0}^{\infty} \frac{\sin ^{r} x}{x^{s}} \cos (b x) \mathrm{d} x=
$$

$$
\left\{\begin{array}{l}
\frac{(-1)^{m+n} \sum_{i=0}^{m}(-1)^{i} u(m, n, i, b) C_{2 m+1}^{i}}{2^{2 m+1}(2 n)!} \cdot \frac{\pi}{2} \tag{11}\\
\text { for } r=2 m+1, s=2 n+1 \\
\frac{(-1)^{m+n} \sum_{i=0}^{m-1}(-1)^{i} v(m, n, i, b) C_{2 m}^{i}+(-1)^{n} C_{2 m}^{m} b^{2 n-1}}{2^{2 m}(2 n-1)!} \cdot \frac{\pi}{2} \\
\text { for } r=2 m, s=2 n
\end{array}\right.
$$

where

$$
\begin{align*}
u(m, n, i, b)= & (2 m-2 i+b+1)^{2 n} \\
& +(2 m-2 i-b+1)^{2 n} \operatorname{sgn}(2 m-2 i-b+1) \tag{12}\\
v(m, n, i, b)= & (2 m-2 i+b)^{2 n-1} \\
& +(2 m-2 i-b)^{2 n-1} \operatorname{sgn}(2 m-2 i-b) \tag{13}
\end{align*}
$$

Theorem 2. Let m, n be nonnegatine integer, $m \geq n$, and real numbers $\alpha \neq 0$ and $b \geq 0$. Then

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\sin ^{r}(\alpha x)}{x^{s}} \cos (b x) \mathrm{d} x= \\
& \left\{\begin{array}{c}
\frac{(-1)^{m+n} \sum_{i=0}^{m}(-1)^{i} C_{2 m+1}^{i} u(m, n, i, b, \alpha)}{2^{2 m+1}(2 n)!} \cdot \frac{\pi}{2} \operatorname{sgn} \alpha \\
\text { if } r=2 m+1, s=2 n+1, \\
\frac{(-1)^{m+n} \sum_{i=0}^{m-1}(-1)^{i} C_{2 m}^{i} v(m, n, i, b, \alpha)+(-1)^{n} C_{2 m}^{m} b^{2 n-1}}{2^{2 m}(2 n-1)!} \cdot \frac{\pi}{2} \operatorname{sgn} \alpha \\
\text { if } r=2 m, s=2 n
\end{array}\right. \tag{14}
\end{align*}
$$

where

$$
\begin{align*}
u(m, n, i, b, \alpha)= & (2 m \alpha-2 i \alpha+b+\alpha)^{2 n} \\
& +(2 m \alpha-2 i \alpha-b+\alpha)^{2 n} \operatorname{sgn}\left(2 m-2 i-\frac{b}{\alpha}+1\right) \tag{15}\\
v(m, n, i, b, \alpha)= & (2 m \alpha-2 i \alpha+b)^{2 n-1} \\
& +(2 m \alpha-2 i \alpha-b)^{2 n-1} \operatorname{sgn}\left(2 m-2 i-\frac{b}{\alpha}\right) \tag{16}
\end{align*}
$$

As direct consequences of Theorem 1 and Theorem 2, the following integral formulae hold.
Corollary 1. Let m, n be nonnegatine integer, $m \geq n$, and $\alpha \neq 0$. Then

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\sin ^{r}(\alpha x)}{x^{s}} \mathrm{~d} x= \\
& \left\{\begin{array}{l}
\frac{(-1)^{m+n} \operatorname{sgn} \alpha \sum_{i=0}^{m}(-1)^{i}(2 m-2 i+1)^{2 n} C_{2 m+1}^{i}}{4^{m}(2 n)!} \cdot \alpha^{2 n} \cdot \frac{\pi}{2} \\
\text { if } r=2 m+1, s=2 n+1, \\
\frac{(-1)^{m+n} \operatorname{sgn} \alpha \sum_{i=0}^{m-1}(-1)^{i}(m-i)^{2 n-1} C_{2 m}^{i}}{4^{m-n}(2 n-1)!} \cdot \alpha^{2 n-1} \cdot \frac{\pi}{2} \\
\text { if } r=2 m, s=2 n
\end{array}\right. \tag{17}
\end{align*}
$$

Corollary 2. For nonnegative integer m and n, we have

$$
\int_{0}^{\infty} \frac{\sin ^{r} x}{x^{s}} \mathrm{~d} x=\left\{\begin{array}{c}
\frac{(-1)^{m+n} \sum_{i=0}^{m}(-1)^{i}(2 m-2 i+1)^{2 n} C_{2 m+1}^{i}}{4^{m}(2 n)!} \cdot \frac{\pi}{2} \tag{18}\\
\text { if } r=2 m+1, s=2 n+1 \\
\frac{(-1)^{m+n} \sum_{i=0}^{m-1}(-1)^{i}(m-i)^{2 n-1} C_{2 m}^{i}}{4^{m-n}(2 n-1)!} \cdot \frac{\pi}{2} \\
\text { if } r=2 m, s=2 n
\end{array}\right.
$$

Corollary 3. Let m be a nonnegative integer, $\alpha \in \mathbb{R}$, then we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin ^{2 m+1}(\alpha x)}{x} \mathrm{~d} x=\operatorname{sgn} \alpha \cdot \frac{(2 m)!}{4^{m}(m!)^{2}} \cdot \frac{\pi}{2} \tag{19}
\end{equation*}
$$

2. Lemmae

The following trigonometric power formulae are the basis and key of our proof for Theorem 1
Lemma 1 (4] p. 41 and p. 280] and [15]). For $\alpha \in \mathbb{R}$ and $k \in \mathbb{N}$, we have

$$
\begin{gather*}
\int_{0}^{\infty} \frac{\sin (\alpha x)}{x} \mathrm{~d} x=\frac{\pi}{2} \operatorname{sgn}(\alpha), \tag{20}\\
\sin ^{2 k+1} x=\frac{1}{2^{2 k}} \sum_{i=0}^{k}(-1)^{k+i} C_{2 k+1}^{i} \sin [(2 k-2 i+1) x] \tag{21}\\
\sin ^{2 k} x=\frac{1}{2^{2 k-1}}\left[\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i} \cos [2(k-i) x]+\frac{1}{2} C_{2 k}^{k}\right], \tag{22}
\end{gather*}
$$

where $C_{n}^{k}=\frac{n!}{(n-k)!k!}$.
The following three combinatorial identities can be regarded as by-products, enabling us to employ the L'Hospital rule in the proof of Theorem 1. They can also be found in [8.
Lemma 2. For $1 \leq m \leq k, k \in \mathbb{N}$ and real number $b \geq 0$, we have

$$
\begin{align*}
\sum_{i=0}^{k}(-1)^{i} C_{2 k+1}^{i}\left[(2 k-2 i+b+1)^{2 m-1}+(2 k-2 i-b+1)^{2 m-1}\right] & =0 \tag{23}\\
& \sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i}+\frac{1}{2} C_{2 k}^{k}=0 \tag{24}
\end{align*}
$$

For $1 \leq \ell \leq k-1,2 \leq k \in \mathbb{N}$ and real number $b \geq 0$, we have

$$
\begin{equation*}
\sum_{i=0}^{k-1}(-1)^{i} C_{2 k}^{i}\left[(2 k-2 i+b)^{2 \ell}+(2 k-2 i-b)^{2 \ell}\right]+C_{2 k}^{k} b^{2 \ell}=0 \tag{25}
\end{equation*}
$$

Proof. By the trigonometric power formula 21, it is easy to see that

$$
\begin{align*}
& \lim _{x \rightarrow 0} \frac{\sum_{i=0}^{k}(-1)^{k+i} C_{2 k+1}^{i}[\sin [(2 k-2 i+b+1) x]+\sin [(2 k-2 i-b+1) x]]}{x^{2 k}} \\
= & 2 \lim _{x \rightarrow 0} \frac{\sum_{i=0}^{k}(-1)^{k+i} C_{2 k+1}^{i} \sin [(2 k-2 i+1) x] \cos (b x)}{x^{2 k}} \tag{26}\\
= & 2^{2 k+1} \lim _{x \rightarrow 0} \frac{\sin ^{2 k+1} x}{x^{2 k}} \cos (b x)=0,
\end{align*}
$$

this means that the function $\sum_{i=0}^{k}(-1)^{k+i} C_{2 k+1}^{i}[\sin [(2 k-2 i+b+1) x]+\sin [(2 k-$ $2 i-b+1) x]$] tends to zero at higher speed than $x^{2 k}$ as $x \rightarrow 0$, that is
$\sum_{i=0}^{k}(-1)^{i} C_{2 k+1}^{i}[\sin [(2 k-2 i+b+1) x]+\sin [(2 k-2 i-b+1) x]]=o\left(x^{2 k}\right)$ as $x \rightarrow 0$,
then, for $0 \leq j \leq 2 k$, by L'Hospital rule, from (26), it follows that

$$
\lim _{x \rightarrow 0} \frac{\left(\sum_{i=0}^{k}(-1)^{i} C_{2 k+1}^{i}[\sin [(2 k-2 i+b+1) x]+\sin [(2 k-2 i-b+1) x]]\right)^{(j)}}{x^{2 k-j}}=0
$$

which is equivalent to

$$
\left(\sum_{i=0}^{k}(-1)^{i} C_{2 k+1}^{i}[\sin [(2 k-2 i+b+1) x]+\sin [(2 k-2 i-b+1) x]]\right)^{(j)}=o\left(x^{2 k-j}\right)
$$

as $x \rightarrow 0$. Therefore, for any natural number $1 \leq m \leq k$, we have

$$
\begin{align*}
0= & \lim _{x \rightarrow 0}\left(\sum_{i=0}^{k}(-1)^{i} C_{2 k+1}^{i}[\sin [(2 k-2 i+b+1) x]+\sin [(2 k-2 i-b+1) x]]\right)^{(2 m-1)} \\
= & \lim _{x \rightarrow 0}\left((- 1) ^ { m - 1 } \sum _ { i = 0 } ^ { k } (- 1) ^ { i } C _ { 2 k + 1 } ^ { i } \left[(2 k-2 i+b+1)^{2 m-1} \cos [(2 k-2 i+b+1) x]\right.\right. \\
& \left.\left.+(2 k-2 i-b+1)^{2 m-1} \cos [(2 k-2 i-b+1) x]\right]\right) \\
= & (-1)^{m-1} \sum_{i=0}^{k}(-1)^{i} C_{2 k+1}^{i}\left[(2 k-2 i+b+1)^{2 m-1}+(2 k-2 i-b+1)^{2 m-1}\right] \tag{27}
\end{align*}
$$

Identity (23) follows.
By the trigonometric power formula 222 , it is not difficult to obtain

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i}[\cos [(2 k-2 i+b) x]+\cos [(2 k-2 i-b) x]]+C_{2 k}^{k} \cos (b x)}{x^{2 k-1}} \\
= & 2 \lim _{x \rightarrow 0} \frac{\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i} \cos [2(k-i) x] \cos (b x)+\frac{1}{2} C_{2 k}^{k} \cos (b x)}{x^{2 k-1}} \\
= & 2^{2 k} \lim _{x \rightarrow 0} \frac{\sin ^{2 k} x}{x^{2 k-1}} \cos (b x)=0,
\end{aligned}
$$

hence
$\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i}[\cos [(2 k-2 i+b) x]+\cos [(2 k-2 i-b) x]]+C_{2 k}^{k} \cos (b x)=o\left(x^{2 k-1}\right)$
as $x \rightarrow 0$. Consequently

$$
\begin{aligned}
0 & =\lim _{x \rightarrow 0}\left\{\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i} \cos [2(k-i) x] \cos (b x)+\frac{1}{2} C_{2 k}^{k} \cos (b x)\right\} \\
& =\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i}+\frac{1}{2} C_{2 k}^{k}
\end{aligned}
$$

and, for $1 \leq j \leq 2 k-1$,

$$
\begin{aligned}
& \left(\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i}[\cos [(2 k-2 i+b) x]+\cos [(2 k-2 i-b) x]]+C_{2 k}^{k} \cos (b x)\right)^{(j)} \\
= & o\left(x^{2 k-j-1}\right) \text { as } x \rightarrow 0
\end{aligned}
$$

then, for any positive integer ℓ such that $1 \leq \ell \leq k-1$, we have

$$
\begin{aligned}
0= & \lim _{x \rightarrow 0}\left[\sum_{i=0}^{k-1}(-1)^{k+i} C_{2 k}^{i}[\cos [(2 k-2 i+b) x]+\cos [(2 k-2 i-b) x]]+C_{2 k}^{k} \cos (b x)\right]^{(2 \ell)} \\
= & (-1)^{\ell} \lim _{x \rightarrow 0}\left(\sum _ { i = 0 } ^ { k - 1 } (- 1) ^ { k + i } C _ { 2 k } ^ { i } \left[(2 k-2 i+b)^{2 \ell} \cos [(2 k-2 i+b) x]\right.\right. \\
& \left.\left.+(2 k-2 i-b)^{2 \ell} \cos [(2 k-2 i-b) x]\right]+C_{2 k}^{k} b^{2 \ell} \cos (b x)\right) \\
= & (-1)^{k+\ell}\left[\sum_{i=0}^{k-1}(-1)^{i} C_{2 k}^{i}\left[(2 k-2 i+b)^{2 \ell}+(2 k-2 i-b)^{2 \ell}\right]+C_{2 k}^{k} b^{2 \ell}\right]
\end{aligned}
$$

Identities 24 and 25 follow. The proof is complete.

3. Proofs of theorems

Proof of Theorem 1. From Lemma 1 and formula (23) in Lemma 2, using the L'Hospital rule and integration by parts yields

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\sin ^{2 m+1} x}{x^{2 n+1}} \cos (b x) \mathrm{d} x=\frac{1}{2^{2 m}} \int_{0}^{\infty} \frac{\sum_{i=0}^{m}(-1)^{m+i} C_{2 m+1}^{i} \sin [(2 m-2 i+1) x] \cos (b x)}{x^{2 n+1}} \mathrm{~d} x \\
= & \frac{1}{2^{2 m+1}} \int_{0}^{\infty} \frac{\sum_{i=0}^{m}(-1)^{m+i} C_{2 m+1}^{i}[\sin [(2 m-2 i+b+1) x]+\sin [(2 m-2 i-b+1) x]]}{x^{2 n+1}} \mathrm{~d} x \\
= & \frac{(-1)^{2 j-1}(2 n-j)!}{2^{2 m+1}(2 n)!} \\
& \times\left\{\left[\sum _ { i = 0 } ^ { m } (- 1) ^ { m + i } C _ { 2 m + 1 } ^ { i } \left[(2 m-2 i+b+1)^{j-1} \sin \left[(2 m-2 i+b+1) x+\frac{(j-1) \pi}{2}\right]\right.\right.\right. \\
& \left.\left.+(2 m-2 i-b+1)^{j-1} \sin \left[(2 m-2 i-b+1) x+\frac{(j-1) \pi}{2}\right]\right]\right]\left.\frac{1}{x^{2 n-j+1}}\right|_{0} ^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{0}^{\infty}\left[\sum _ { i = 0 } ^ { m } (- 1) ^ { m + i } C _ { 2 m + 1 } ^ { i } \left[(2 m-2 i+b+1)^{j} \sin \left[(2 m-2 i+b+1) x+\frac{j \pi}{2}\right]\right.\right. \\
& \left.\left.\left.+(2 m-2 i-b+1)^{j} \sin \left[(2 m-2 i-b+1) x+\frac{j \pi}{2}\right]\right]\right] \frac{1}{x^{2 n-j+1}} \mathrm{~d} x\right\} \\
= & \frac{(-1)^{n}}{2^{2 m+1}(2 n)!} \int_{0}^{\infty}\left[\sum _ { i = 0 } ^ { m } (- 1) ^ { m + i } C _ { 2 m + 1 } ^ { i } \left[(2 m-2 i+b+1)^{2 n} \sin [(2 m-2 i+b+1) x]\right.\right. \\
& \left.\left.+(2 m-2 i-b+1)^{2 n} \sin [(2 m-2 i-b+1) x]\right]\right] \frac{1}{x} \mathrm{~d} x \\
= & \frac{(-1)^{m+n}}{2^{2 m+1}(2 n)!} \sum_{i=0}^{m}(-1)^{i} C_{2 m+1}^{i}\left\{(2 m-2 i+b+1)^{2 n} \int_{0}^{\infty} \frac{\sin [(2 m-2 i+b+1) x]}{x} \mathrm{~d} x\right. \\
& \left.+(2 m-2 i-b+1)^{2 n} \int_{0}^{\infty} \frac{\sin [(2 m-2 i-b+1) x]}{x} \mathrm{~d} x\right\} \\
= & \frac{(-1)^{m+n} \sum_{i=0}^{m}(-1)^{i} C_{2 m+1}^{i} u(m, n, i, b)}{2^{2 m+1}(2 n)!} \cdot \frac{\pi}{2},
\end{aligned}
$$

where $u(m, n, i, b)=(2 m-2 i+b+1)^{2 n}+(2 m-2 i-b+1)^{2 n} \operatorname{sgn}(2 m-2 i-b+1)$ and $1 \leq j \leq 2 n$.

By formula 22, using the L'Hospital rule, from Lemma 2 integration by parts gives us

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\sin ^{2 m} x}{x^{2 n}} \cos (b x) \mathrm{d} x \\
= & \frac{1}{2^{2 m-1}} \int_{0}^{\infty} \frac{\sum_{i=0}^{m-1}(-1)^{m+i} C_{2 m}^{i} \cos [2(m-i) x] \cos (b x)+\frac{1}{2} C_{2 m}^{m} \cos (b x)}{x^{2 n}} \mathrm{~d} x \\
= & \frac{1}{2^{2 m}} \int_{0}^{\infty} \frac{\sum_{i=0}^{m-1}(-1)^{m+i} C_{2 m}^{i}[\cos [(2 m-2 i+b) x]+\cos [(2 m-2 i-b) x]]+C_{2 m}^{m} \cos (b x)}{x^{2 n}} \mathrm{~d} x \\
= & -\frac{1}{2^{2 m}} \cdot \frac{1}{2 n-1} \int_{0}^{\infty}\left[\sum_{i=0}^{m-1}(-1)^{m+i} C_{2 m}^{i}[\cos [(2 m-2 i+b) x]+\cos [(2 m-2 i-b) x]]\right. \\
& \left.+C_{2 m}^{m} \cos (b x)\right] \mathrm{d}\left(\frac{1}{x^{2 n-1}}\right) \\
= & -\frac{1}{(2 n-1) \cdot 2^{2 m}}\left\{\left[\sum_{i=0}^{m-1}(-1)^{m+i} C_{2 m}^{i}[\cos [(2 m-2 i+b) x]\right.\right. \\
& \left.+\cos [(2 m-2 i-b) x]]+C_{2 m}^{m} \cos (b x)\right]\left.\frac{1}{x^{2 n-1}}\right|_{0} ^{\infty} \\
& +\int_{0}^{\infty}\left\{\sum_{i=0}^{m-1}(-1)^{m+i} C_{2 m}^{i}[(2 m-2 i+b) \sin [(2 m-2 i+b) x]\right. \\
& \left.\left.+(2 m-2 i-b) \sin [(2 m-2 i-b) x]]+C_{2 m}^{m} b \sin (b x)\right\} \frac{1}{x^{2 n-1}} \mathrm{~d} x\right\}
\end{aligned}
$$

(by integration by part)

$$
\begin{aligned}
= & -\frac{1}{(2 n-1) \cdot 2^{2 m}} \int_{0}^{\infty}\left\{\sum_{i=0}^{m-1}(-1)^{m+i} C_{2 m}^{i}[(2 m-2 i+b) \sin [(2 m-2 i+b) x]\right. \\
& \left.+(2 m-2 i-b) \sin [(2 m-2 i-b) x]]+C_{2 m}^{m} b \sin (b x)\right\} \frac{1}{x^{2 n-1}} \mathrm{~d} x
\end{aligned}
$$

(by Lemma 2)

$$
\begin{aligned}
= & \frac{(2 n-j-2)!}{2^{2 m}(2 n-1)!}\left\{\left[\sum _ { i = 0 } ^ { m - 1 } (- 1) ^ { m + i } C _ { 2 m } ^ { i } \left[(2 m-2 i+b)^{j} \sin \left[(2 m-2 i+b) x+\frac{(j-1) \pi}{2}\right]\right.\right.\right. \\
& \left.\left.+(2 m-2 i-b)^{j} \sin \left[(2 m-2 i-b) x+\frac{(j-1) \pi}{2}\right]\right]+C_{2 m}^{m} b^{j} \sin \left[b x+\frac{(j-1) \pi}{2}\right]\right]\left.\frac{1}{x^{2 n-j-1}}\right|_{0} ^{\infty} \\
& -\int_{0}^{\infty}\left\{\sum _ { i = 0 } ^ { m - 1 } (- 1) ^ { m + i } C _ { 2 m } ^ { i } \left[(2 m-2 i+b)^{j+1} \sin \left[(2 m-2 i+b) x+\frac{j \pi}{2}\right]\right.\right. \\
+ & \left.\left.\left.(2 m-2 i-b)^{j+1} \sin \left[(2 m-2 i-b) x+\frac{j \pi}{2}\right]\right]+C_{2 m}^{m} b^{j+1} \sin \left[b x+\frac{j \pi}{2}\right]\right\} \frac{1}{x^{2 n-j-1}} \mathrm{~d} x\right\}
\end{aligned}
$$

(by integration by part)

$$
\begin{aligned}
& =\frac{(-1)^{n}}{2^{2 m}(2 n-1)!} \int_{0}^{\infty}\left\{\sum _ { i = 0 } ^ { m - 1 } (- 1) ^ { m + i } C _ { 2 m } ^ { i } \left[(2 m-2 i+b)^{2 n-1} \sin [(2 m-2 i+b) x]\right.\right. \\
& \left.\left.+(2 m-2 i-b)^{2 n-1} \sin [(2 m-2 i-b) x]\right]+C_{2 m}^{m} b^{2 n-1} \sin (b x)\right\} \frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

(by mathematical induction on $j \leq 2 n-2$)

$$
\begin{aligned}
= & \frac{(-1)^{n}}{2^{2 m}(2 n-1)!}\left\{\sum _ { i = 0 } ^ { m - 1 } (- 1) ^ { m + i } C _ { 2 m } ^ { i } \left[(2 m-2 i+b)^{2 n-1} \int_{0}^{\infty} \frac{\sin [(2 m-2 i+b) x]}{x} \mathrm{~d} x\right.\right. \\
& \left.\left.+(2 m-2 i-b)^{2 n-1} \int_{0}^{\infty} \frac{\sin [(2 m-2 i-b) x]}{x} \mathrm{~d} x\right]+C_{2 m}^{m} b^{2 n-1} \int_{0}^{\infty} \frac{\sin (b x)}{x} \mathrm{~d} x\right\} \\
= & \left\{(-1)^{m+n} \sum_{i=0}^{m-1}(-1)^{i} C_{2 m}^{i}\left[(2 m-2 i+b)^{2 n-1}+(2 m-2 i-b)^{2 n-1} \operatorname{sgn}(2 m-2 i-b)\right]\right. \\
& \left.+(-1)^{n} C_{2 m}^{m} b^{2 n-1}\right\} \frac{1}{2^{2 m}(2 n-1)!} \cdot \frac{\pi}{2}
\end{aligned}
$$

(by formula 20)

$$
=\frac{(-1)^{m+n} \sum_{i=0}^{m-1}(-1)^{i} C_{2 m}^{i} v(m, n, i, b)+(-1)^{n} C_{2 m}^{m} b^{2 n-1}}{2^{2 m}(2 n-1)!} \cdot \frac{\pi}{2}
$$

where $v(m, n, i, b)=(2 m-2 i+b)^{2 n-1}+(2 m-2 i-b)^{2 n-1} \operatorname{sgn}(2 m-2 i-b)$.
The proof of Theorem 1 is thus complete.

Proof of Theorem 2. From standard argument, for $\alpha \neq 0$, by transformation $\alpha x=$ t, we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin ^{r}(\alpha x)}{x^{s}} \cos (b x) \mathrm{d} x=\alpha^{s-1} \operatorname{sgn} \alpha \int_{0}^{\infty} \frac{\sin ^{r} t}{t^{s}} \cos \left(\frac{b}{\alpha}\right) \mathrm{d} t \tag{28}
\end{equation*}
$$

From Theorem 1, Theorem 2 follows.

References

[1] Amer. Math. Monthly, 97 (1990), no. 8, 663.
[2] E. T. Erdélyi, et. al., Tables of Integral Transforms, Vol. I and II, McGraw Hill, New York, 1954.
[3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Sries, and Products, Academic Press, 1980.
[4] Group of compilation, Shùxué Shǒucè (Handbook of Mathematics), The People's Education Press, Beijing, China, 1979. (Chinese)
[5] G. Klambauer, Mathematical Analysis, Chinese edition, translated by Ben-Wang Sun, The People's Press of Hunan, Changsha City, Hunan, China, 1981. English edition, Marcel Dekker, Inc., New York, 1975. (Chinese)
[6] G. Klambauer, Problems and Propositions in Analysis, Marcel Dekker, Inc., New York and Basel, 1979.
[7] J.-Ch. Kuang, Chángyòng Bùděngshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
[8] Q.-M. Luo and B.-N. Guo, Evaluations of a class of the first kind of the improper integrals, Math.Gaz.(2002), no. 3, in press.
[9] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill Book Company, 1987. Reprinted in The People's Republic of China by World Publishing Corporation, 1990.
[10] J.-R. She and Z.-Sh. Liu, Shíyòng Yuànsuàn Wēī̄̄i (Applications of Integral Transform to Engineering), Anhui Education Press, Hefei City, China. (Chinese)
[11] A. Sofo, On the integral $\frac{(\sin x)^{p+q}}{x^{q}}$, Internat. J. Math. Ed. Sci. Tech. 29 (1998), no. 6, 914-918.
[12] M. R. Spiegel, Gāoděng Wēij̄ifēn Yuánlǐ jí Tǐjiě (Principles of Advanced Calculus and Solutions to Problems), Schaum Publishing Corporation, 1963. Translated by H.-Zh. Li, Xiaoyuan Press and World Publishing Corporation, Taiwan and Beijing, China, 1993. (Chinese)
[13] Staff Room of Higher Mathematics at Xi'an Jiaotong University, Complex Functions, 4th edition, Higher Education Press, Beijing, China, 2001. (Chinese)
[14] L. Tan, Gàmă Hánshù Zhājì (Reading Notes on the Gamma Function), Zhejiang University Press, Hangzhou City, Zhejiang, China, 1997. (Chinese)
[15] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics on CD-ROM, 1999. Available online at http://www.math.ustc.edu.cn/Encyclopedia/contents/
(Luo) Department of Broadcast-Television-Teaching, Jiaozuo University, Jiaozuo City, Henan 454003, China
(Qi) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, \#142, Mid-Jiefang Road, Jiaozuo City, Henan 454000, China

E-mail address: qifeng@jzit.edu.cn
$U R L:$ http://rgmia.vu.edu.au/qi.html

[^0]: 2000 Mathematics Subject Classification. Primary 26A42; Secondary 26A06, 30E20.
 Key words and phrases. evaluation, improper integral, integral formula, inequality, integration by parts, L'Hospital rule, Dirichlet integral, mathematical induction.

 The authors were supported in part by NNSF (\#10001016) of China, SF for the Prominent Youth of Henan Province (\#0112000200), SF of Henan Innovation Talents at Universities, NSF of Henan Province (\#004051800), SF for Pure Research of Natural Science of the Education Department of Henan Province (\#1999110004), Doctor Fund of Jiaozuo Institute of Technology, China.

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-IATEX.

