
ON SOME ANALOGUES OF KY FAN-TYPE INEQUALITIES

PENG GAO

Abstract. We study the behavior of means under equal increments of their variables and we apply
the results to Ky Fan-type inequalities and certain bounds for the differences of means. We also
give a sharpening of Sierpiński’s inequality and prove a Rado-type inequality.

1. Introduction

Let Pn,r(x) be the generalized weighted power means: Pn,r(x) = (
∑n

i=1 ωix
r
i )

1
r , where ωi >

0, 1 ≤ i ≤ n with
∑n

i=1 ωi = 1 and x = (x1, x2, · · · , xn). Here Pn,0(x) denotes the limit of Pn,r(x)
as r → 0+. Unless specified, we always assume 0 ≤ x1 ≤ x2 · · · ≤ xn,m = min{xi},M = max{xi}.
We denote σn =

∑n
i=1 ωi(xi −An)2.

To any given x, t ≥ 0 we associate x′ = (1 − x1, 1 − x2, · · · , 1 − xn),xt = (x1 + t, · · · , xn + t).
When there is no risk of confusion, We shall write Pn,r for Pn,r(x), Pn,r,t for Pn,r(xt) and P

′
n,r for

Pn,r(x′) if 1 − xi ≥ 0 for all i. We also define An = Pn,1, Gn = Pn,0,Hn = Pn,−1 and similarly for
An,t, Gn,t,Hn,t, A′n, G

′
n,H

′
n.

To simplify expressions, we define

(1.1) ∆r,s,t,α =
Pα

n,r,t − Pα
n,s,t

Pα
n,r − Pα

n,s

,∆′
r,s =

P ′n,r − P ′n,s

Pn,r − Pn,s

with ∆r,s,t,0 = (ln Pn,r,t

Pn,s,t
)/(ln Pn,r

Pn,s
). We also write ∆r,s,t for ∆r,s,t,1. In order to include the case of

equality for various inequalities in our discussions, for any given inequality, we define 0/0 to be the
number which makes the inequality an equality.

Recently, the author([8],[9]) proved the following result:
Theorem 1.1. For r > s,m > 0, t ≥ 0, the following inequalities are equivalent:

r − s

2m
σn ≥ Pn,r − Pn,s ≥ r − s

2M
σn(1.2)

M

1−M
≥ ∆′

r,s ≥ m

1−m
(1.3)

M

t + m
≥ ∆r,s,t ≥ m

t + M
(1.4)

where in (1.3) we require M < 1.
D.Cartwright and M.Field[6] first proved the validity of (1.2) for r = 1, s = 0. For other

extensions and refinements of (1.2), see [3], [7],[11] and [12]. (1.3) is commonly referred as the
additive Ky Fan’s inequality. We refer the reader to the survey article[2] and the references therein
for an account of Ky Fan’s inequality.

J.Aczél and Zs. Pâles[1] proved ∆1,s,t ≤ 1 for any s 6= 1. We can interpret their result as
an assertion of the monotonicity of An,t − Pn,s,t as a function of t. The asymptotic behavior of
t(Pn,r,t − An,t) was studied by J.Brenner and B. Carlson[5] and in this paper, we will study the
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monotonicities of (t + M)(Pn,r,t − Pn,s,t) and (t + m)(Pn,r,t − Pn,s,t) as functions of t for r = 1 or
s = 1 and then apply the result to inequalities of the type (1.2).

The following inequality connecting three classical means(with ωi = 1/n here) is due to P.F.Wang
and W.L.Wang[15](right-hand side inequality), H. Alzer, S. Ruscheweyh and L. Salinas[4](left-hand
side inequality):

(1.5) (
Hn

H ′
n

)n−1 An

A′n
≤ (

Gn

G′n
)n ≤ (

An

A′n
)n−1 Hn

H ′
n

(1.5) was refined in [8] and in section 5 we will give a further refinement of the above inequality.
We will also prove a Rado-type inequality in the last section.

2. A Few Lemmas

Lemma 2.1. Let J(x) be the smallest closed interval that contains all of xi and f(x), g(x) ∈
C2(J(x)) be two twice differentiable functions, then

(2.1)
∑n

i=1 ωif(xi)− f(
∑n

i=1 ωixi)∑n
i=1 ωig(xi)− g(

∑n
i=1 ωixi)

=
f ′′(ξ)
g′′(ξ)

for some ξ ∈ J(x), provided that the denominator of the left-hand side is nonzero.
Lemma 2.1 and the following consequence of it are due to A.M.Mercer[10]:

Lemma 2.2. For w > u,w 6= v, u 6= v, x1 > 0

(2.2) | u(u− v)
w(w − v)

| 1
xw−u

1

≥ |
(P u

n,u − P u
n,v)

(Pw
n,w − Pw

n,v)
| ≥ | u(u− v)

w(w − v)
| 1
xw−u

n

with equality holding if and only if x1 = · · · = xn.
Apply Lemma 2.1 to f(x) = (t + x)r, g(x) = xr, r 6= 0 and f(x) = ln(t + x), g(x) = lnx when

r = 0, we obtain
Corollary 2.1. For x1 > 0

(2.3) min{( t + xn

xn
)r−2, (

t + x1

x1
)r−2} ≤ ∆r,1,t,r ≤ max{( t + xn

xn
)r−2, (

t + x1

x1
)r−2}

We now give a generalization of the result of Aczél and Pâles:
Lemma 2.3. Let r > s, t ≥ 0, α ≤ 1.

(i). For s 6= 1,∆1,s,t,α ≤ 1.
(ii). If ∆r,s,t ≤ xn

t+xn
, then ∆r,s,t,α ≤ ( xn

t+xn
)2−α.

(iii). If ∆r,s,t ≥ x1
t+x1

, then ∆r,s,t,α ≥ ( x1
t+x1

)2−α.

Proof. We will prove (i) for s < 1, α 6= 0, (ii) for 0 < α < 1 and the other proofs are similar. For
(i), let f(t) = Aα

n,t − Pα
n,s,t, then

f ′(t) = α(Aα−1
n,t − Pα−1

n,s,t (
Pn,s,t

Pn,s−1,t
)1−s){

≤ α(Aα−1
n,t − Pα−1

n,s,t ) ≤ 0, 0 < α ≤ 1
≥ αPα−1

n,s,t (1− ( Pn,s,t

Pn,s−1,t
)1−s) ≥ 0, α < 0

The conclusion then follows from the monotonicity of f(t).
For (ii), let f(t) = (t + xn)2−α(Pα

n,r,t − Pα
n,s,t), then it suffices to show f ′(0) ≤ 0 or equivalently

(2− α)(Pα
n,r − Pα

n,s) ≤ αxn(Pα−1
n,s (

Pn,s

Pn,s−1
)1−s − Pα−1

n,r (
Pn,r

Pn,r−1
)1−r)

We also have

(2.4)
P 1−α

n,s

α
(Pα

n,r − Pα
n,s) ≤ Pn,r − Pn,s ≤ xn((

Pn,s

Pn,s−1
)1−s − (

Pn,r

Pn,r−1
)1−r)
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where the first inequality above follows from the mean value theorem and the second inequality
follows from ∆r,s,t ≤ xn

t+xn
. Similarly, by using the mean value theorem, we get

(2.5)
Pα

n,r − Pα
n,s

Pα−1
n,s − Pα−1

n,r
≤ α

1− α
Pn,r ≤

α

1− α
xn(

Pn,r

Pn,r−1
)1−r

where the last inequality follows from P r
n,r =

∑n
i=1 ωix

r
i ≤

∑n
i=1 ωixnxr−1

i = xnP r−1
n,r−1. Now (ii)

follows by rewriting (2.4), (2.5) as

Pα
n,r − Pα

n,s ≤ αPα−1
n,s xn((

Pn,s

Pn,s−1
)1−s − (

Pn,r

Pn,r−1
)1−r)(2.6)

(1− α)(Pα
n,r − Pα

n,s) ≤ αxn(Pα−1
n,s − Pα−1

n,r )(
Pn,r

Pn,r−1
)1−r(2.7)

and adding (2.6) and (2.7). �

The following two lemmas will be needed in section 5.

Lemma 2.4. Let x, b, u, v, t be real numbers with 0 < x ≤ b, u ≥ 1, v ≥ 1, t ≥ 0, then f(u, v, x, b) ≤
f(u, v, x + t, b + t) where

f(u, v, x, b) = b2(
u + v − 1
ux + vb

+
1

x2(u/x + v/b)
− 1

x
)

with equality holding if and only if x = b or u = v = 1 or t = 0.

Proof. Let x < b, t > 0 and u > 1, v > 1. Write D(u, v, x, b, t) = f(u, v, x, b)−f(u, v, x+t, b+t),then

D(u, v, x, b, t) = v(b− x)[− (u− 1)b/x + (v − 1)
(v + ux/b)(u + vx/b)

+

+
(u− 1)(b + t)/(x + t) + (v − 1)

(v + u(x + t)/(b + t))(u + v(x + t)/(b + t))
]

<
v(b− x)

(v + ux/b)(u + vx/b)
[(u− 1)(b + t)/(x + t) + (v − 1)− ((u− 1)b/x + (v − 1))]

= − v(u− 1)(b− x)2t
(v + ux/b)(u + vx/b)x(x + t)

< 0

since (x+t)/(b+t) ≥ x/b. Thus we conclude that D(u, v, x, b, t) ≤ 0 for 0 < x ≤ b, u ≥ 1, v ≥ 1. �

We remark here from the proof of the Lemma 2.4, one finds f(u, v, s, b) ≤ 0 and we have D ≤ 0
as long as the condition u + v ≥ 2, u ≥ 1, v ≥ 0 is satisfied, we don’t really need v ≥ 1.

Lemma 2.5. Let x, a, b, u, v, s, t be real numbers with t ≥ 0, 0 < x ≤ a ≤ b, u ≥ 1, v ≥ 1, u + v ≥ 3
and 0 ≤ s ≤ v, then g(u, s, v, x, a, b) ≤ g(u, s, v, x + t, a + t, b + t) where

g(u, s, v, x, a, b) = b2[
u + v − 1

ux + sa + (v − s)b
+

1
x2(u/x + s/a + (v − s)/b)

− 1
x

]

with equality holding if and only if one of the following cases is true: 1. x = a = b; 2. s = 0, x = b;
3. t = 0.

Proof. We may assume t > 0 and let M = {(s, a) ∈ R2|0 ≤ s ≤ v, x ≤ a ≤ b}. Furthermore, we
define H(s, a) = g(u, s, v, x, a, b)− g(u, s, v, x + t, a + t, b + t), where (s, a) ∈ M . It suffices to show
H(s, a) ≤ 0. Let m = (s0, a0) be the point in which the absolute minimum of H is reached. If m
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is an interior point of M , then we obtain

0 =
1
s

∂H

∂a
− 1

a− b

∂H

∂s
|(s,a)=(s0,a0) =

(b− a)b/x

xa2(u + sx/a + (v − s)x/b)2
−

− (b− a)(b + t)/(x + t)
(x + t)(a + t)2((u + s(x + t)/(a + t) + (v − s)(x + t)/(b + t))2

> 0

where the inequality follows from b/x > (b + t)/(x + t), (x + t)/(a + t) > x/a. Hence, m is a
boundary point of M , so that we get m ∈ {(s0, x), (s0, b), (0, a0), (v, a0)}. Using Lemma 2.4 we
obtain H(s0, b) = H(0, a0) = D(u, v, x, b, t) ≤ 0 and

H(s0, x) = D(u + s0, v − s0, x, b, t) ≤ 0

The above inequality follows from the remark after the proof of the Lemma 2.4, since here v−s0 ≥ 0
but may not exceed 1. Finally,

H(v, a0) = b2/a2
0f(u, v, x, a0)− (b + t)2/(a0 + t)2f(u, v, x + t, a0 + t) ≤ 0

The above inequality holds since f(u, v, x, a0) ≤ f(u, v, x + t, a0 + t) ≤ 0 by the remark after
the proof of the Lemma 2.4 and b/a0 ≥ (b + t)/(a0 + t). Thus if (s, a) ∈ M , then H(s, a) ≤ 0.
The conditions for equality can be easily checked by using Lemma 2.4 and noticing the condition
u + v ≥ 3. �

3. The Main Theorem

Theorem 3.1. For t ≥ 0, x1 > 0, −1 ≤ s 6= 1 ≤ 2

(3.1)
x1

t + x1
≤ ∆1,s,t ≤

xn

t + xn

with equality holding if and only if t = 0 or x1 = · · · = xn.

Proof. The case s = 0 has been treated in [9] so we will assume s 6= 0 and prove the left-hand side
inequality of (3.1) and the other proofs are similar. For 0 < s < 1, let

Dn(x, t) = xn(An − Pn,s)− (t + xn)(An,t − Pn,s,t)

We want to show Dn ≥ 0 here. We can assume x1 < x2 < · · · < xn and prove by induction, the
case n = 1 is clear so we will start with n > 1 variables assuming the inequality holds for n − 1
variables. Then

∂Dn

∂xn
= (An − Pn,s)− (An,t − Pn,s,t) + ωn[(An − P 1−s

n,s xs
n)− (An,t − P 1−s

n,s,t(t + xn)s)]

≥ ωn[(An − Pn,s)− (An,t − Pn,s,t) + (An − P 1−s
n,s xs

n)− (An,t − P 1−s
n,s,t(t + xn)s)]

= ωn[P 1−s
n,s,t(t + xn)s + Pn,s,t − 2t− Pn,s − P 1−s

n,s xs
n]

where the inequality follows from ∆1,s,t ≤ 1. Now consider

g(t) = P 1−s
n,s,t(t + xn)s + Pn,s,t − 2t

and we have

g′(t) = (1− s)(
t + xn

Pn,s,t
)s(

Pn,s,t

Pn,s−1,t
)1−s + s(

Pn,s,t

t + xn
)1−s + (

Pn,s,t

Pn,s−1,t
)1−s − 2

≥ (1− s)ys + sys−1 − 1 := h(y)

where y = t+xn
Pn,s,t

≥ 1 and the inequality follows from ( Pn,s,t

Pn,s−1,t
)1−s ≥ 1. Note h′(y) = 0 has

only one root y = 1, which implies h(y) ≥ min{h(1), limy→∞ h(y)} = 0. Thus g′(t) ≥ 0, hence
g(t) ≥ g(0) = Pn,s + P 1−s

n,s xs
n and it follows ∂Dn

∂xn
≥ 0 and by letting xn tend to xn−1, we have

Dn ≥ Dn−1(with weights ω1, · · · , ωn−2, ωn−1 + ωn) and thus the right-hand side inequality of (3.1)
holds by induction. It is easy to see the equality holds if and only if t = 0 or x1 = · · · = xn.
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For −1 ≤ s < 0, we have

1
ω1

∂Dn

∂x1
= −t− xn(

Pn,s

x1
)1−s + (t + xn)(

Pn,s,t

t + x1
)1−s := −t− f(x1)

Consider

f ′(x1) = −(1− s)
n∑

j=2

ωj [(
Pn,s

x1
)1−2s ·

xnxs
j

xs+1
1

− (
Pn,s,t

t + x1
)1−2s (t + xn)(t + xj)s

(t + x1)s+1
] ≤ 0

The last inequality holds, since when −1 ≤ s < 0, j = 2, · · · , n, we have

(
Pn,s

x1
)1−2s ≥ (

Pn,s,t

t + x1
)1−2s,

xj

x1
≥ t + xj

t + x1
,

xn

t + xn
· ( xj

t + xj
)s ≥ (

xj

t + xj
)1+s ≥ (

x1

t + x1
)1+s

Thus by a similar argument as above, we deduce f(x1) ≥ −t and ∂Dn
∂x1

≤ 0, which implies Dn ≥ 0
with equality holding if and only if t = 0 or x1 = · · · = xn.

For 1 < s ≤ 2, it suffices to show ∂Dn
∂t ≤ 0, which is equivalent to

P s−1
n,s

xn
≤

(P s−1
n,s − P s−1

n,s−1)
(Pn,s −An)

The above inequality follows from P s−1
n,s

xn
≤ xs−2

n and Lemma 2.2 with u = s− 1, v = s, w = 1. �

4. Some Consequences of Theorem 3.1

Corollary 4.1. (1.2) holds for r = 1,−1 ≤ s < 1 and 1 < r ≤ 2, s = 1.

Proof. This follows from Theorems 3.1 and 1.1. �

The above result was first proved by the author in [8], in fact it was shown there those are the
only cases (1.2) can hold for r = 1 or s = 1. Thus by Theorem 1.1, we have

Corollary 4.2. (3.1) holds for all t ≥ 0 if and only if −1 ≤ s 6= 1 ≤ 2.

Corollary 4.3. For −1 ≤ s < 1

(4.1)
x1

P 1−s
n,s−1

≤ (An − Pn,s)
(P 1−s

n,s − P 1−s
n,s−1)

≤ xn

P 1−s
n,s−1

Proof. Theorem 3.1 implies f(t) = (t+xn)(An,t−Pn,s,t) is a decreasing function of t and f ′(0) ≤ 0
implies the right-hand side inequality of (4.1) and the proof of the left-hand side inequality of (4.1)
is similar. �

By a change of variables xi → 1/xi and let x1 = m > 0, the right-hand side inequality of (4.1)
when s = −1 gives

(4.2) An −Hn ≤
Hn

x1An
σn

a refinement of the left-hand side inequality of (1.2) for r = 1, s = −1. We note here one can
use the method in [9] to give a direct proof of (4.2) and show the equality holds if and only if
x1 = · · · = xn. We will leave the details to the reader.
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5. A sharpening of Sierpiński’s inequality

Theorem 5.1. For 0 < x1 ≤ · · · ≤ xn, t ≥ 0, q = min{ωi}

(
xn

xn + t
)2 ≥ (1− q) ln An,t + q lnHn,t − lnGn,t

(1− q) ln An + q lnHn − lnGn
≥ (

x1

x1 + t
)2(5.1)

(
xn

xn + t
)2 ≥ lnGn,t − q lnAn,t − (1− q) ln Hn,t

lnGn − q lnAn − (1− q) ln Hn
≥ (

x1

x1 + t
)2(5.2)

with equality holding if and only if t = 0 or q = 1/2 or x1 = · · · = xn.

Proof. The proof uses the ideas in [4]. We will prove the left-hand side inequality of (5.1) and the
proofs for other inequalities are similar. We may assume t > 0 being fixed and q > 0, 0 < x =
x1, xn = b with x1 < xn, we define

fn(xn, q) = x2
n[(1− q) ln An + q lnHn − lnGn]−
−(xn + t)2[(1− q) ln An,t + q lnHn,t − lnGn,t]

where we regard An, Gn,Hn, An,t, Gn,t,Hn,t as functions of xn = (x1, · · · , xn). Then

gn(x2, · · · , xn−1) :=
1
ω1

∂fn

∂x1
= x2

n[
1− q

An
+

qHn

x2
1

− 1
x1

]− (xn + t)2[
1− q

An,t
+

qHn,t

(x1 + t)2
− 1

x1 + t
]

We want to show gn ≤ 0. Let D = {(x2, · · · , xn−1) ∈ Rn−2|0 < x ≤ x2 ≤ · · · ≤ xn−1 ≤ b}. Let
a = (a2, · · · , an−1) ∈ D be the point in which the absolute minimum of gn is reached. Next, we
show that

(5.3) a = (x, · · · , x, a, · · · , a, b, · · · , b) with x < a < b

where the numbers x, a, and b appear u, v, and w times, respectively, with u, v, w ≥ 0, u + v + w =
n− 2.

Suppose not, this implies two components of a have different values and are interior points of D.
We denote these values by ak and al. Partial differentiation shows al, al are the roots of

(5.4) h(x) =
B

x2
− B′

(x + t)2
+ C = 0

where

B = q
H2

nx2
n

x2
1

, B′ = q
H2

n,t(xn + t)2

(x1 + t)2
, C =

(1− q)(xn + t)2

A2
n,t

− (1− q)x2
n

A2
n

It’s easy to show h′(x) only has one positive root, which implies h(x) can have at most two distinct
positive roots, but limx→0 h(x) = ∞, limx→∞ h(x) = C < 0 implies h(x) can have at most one
positive root. Thus (5.4) yields ak = al. This contradicts our assumption that ak 6= al. Thus (5.3)
is valid and it suffices to show gn ≤ 0 for the cases n = 2, 3.

When n = 2, by setting x1 = x, x2 = b, ω1/q = u, ω2/q = v, g2 ≤ 0 follows from Lemma 2.4.
When n = 3, by setting x1 = x, x2 = a, x3 = b, ω1/q = u, ω2/q = s, ω3/q = v − s, g3 ≤ 0 follows

from Lemma 2.5.
Thus we have shown that gn = 1

ω1

∂fn

∂x1
≤ 0 with equality holding if and only if n = 1 or

n = 2, q = 1/2. By letting x1 tend to x2, we have

fn(xn, q) ≥ fn−1(xn−1, q) ≥ fn−1(xn−1, q
′)

where xn−1 = (x2, · · · , xn) with weights ω1 + ω2, · · · , ωn−1, ωn and q′ = min{ω1 + ω2, · · · , ωn}.
Here we have used ∆1,−1,t,0 ≤ ( xn

t+xn
)2 ,which is a consequence of Theorem 3.1 and Lemma 2.3.

It then follows by induction that fn ≥ fn−1 ≥ · · · ≥ f2 = 0 when q = 1/2 in f2 or else
fn ≥ fn−1 ≥ · · · ≥ f1 = 0 and this completes the proof. �
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By letting t → ∞ in (5.1), (5.2), we recover the following result of the author[8], which can be
regarded as sharpenings of Sierpiński’s inequality[13] for the weighted cases:

Corollary 5.1. For 0 < x1 ≤ · · · ≤ xn, q = min{ωi}

1− 2q

2x2
1

σn ≥ (1− q) ln An + q lnHn − lnGn≥
1− 2q

2x2
n

σn(5.5)

1− 2q

2x2
1

σn ≥ lnGn − q lnAn − (1− q) ln Hn≥
1− 2q

2x2
n

σn(5.6)

with equality holding if and only if q = 1/2 or x1 = · · · = xn.

6. A Rado-Type Inequality

By letting ωi = qi/Qn, Qn =
∑n

i=1 qi, qi > 0(note for different n, ωi’s take different values),
C.L.Wang[14] proved the following Rado-type inequality:

Theorem 6.1. If xi ∈ (0, 1/2], i = 1, · · · , n, then

(6.1) Qn(AnG′n −A′nGn) ≥ Qn−1(An−1G
′
n−1 −A′n−1Gn−1)

We end the paper by giving an analogue of Wang’s theorem:

Theorem 6.2. For t > 0, qi > 0, i = 1, · · · , n

(6.2) Qn(AnGn,t −An,tGn) ≥ Qn−1(An−1Gn−1,t −An−1,tGn−1)(
An−1,t −An−1

Gn−1,t −Gn−1
)

qn
Qn

Proof. Let f(xn) = Qn(AnGn,t −An,tGn), by setting

f ′(xn) = qn(xn + An,t)(
Gn,t

t + xn
− Gn

xn
) = 0

we get xn = tGn−1/(Gn−1,t −Gn−1). Moreover, at this point

f ′′(xn) =
qnQn−1

Qn
· Gn

xn
(
An,t

xn
− An

t + xn
) > 0

and it is easy to see that f(xn) takes its absolute minimum at the point, which implies

f(xn) ≥ f(
tGn−1

Gn−1,t −Gn−1
) = Qn−1(An−1Gn−1,t −An−1,tGn−1)(

An−1,t −An−1

Gn−1,t −Gn−1
)

qn
Qn

for any xn ≥ 0, with equality holding if and only if xn = tGn−1/(Gn−1,t −Gn−1). �

We note here by letting t →∞ in (6.2), we get back Rado’s inequality:

Qn(An −Gn) ≥ Qn−1(An−1 −Gn−1)
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