ON SOME ANALOGUES OF KY FAN-TYPE INEQUALITIES

PENG GAO

Abstract

We study the behavior of means under equal increments of their variables and we apply the results to Ky Fan-type inequalities and certain bounds for the differences of means. We also give a sharpening of Sierpiński's inequality and prove a Rado-type inequality.

1. Introduction

Let $P_{n, r}(\mathbf{x})$ be the generalized weighted power means: $P_{n, r}(\mathbf{x})=\left(\sum_{i=1}^{n} \omega_{i} x_{i}^{r}\right)^{\frac{1}{r}}$, where $\omega_{i}>$ $0,1 \leq i \leq n$ with $\sum_{i=1}^{n} \omega_{i}=1$ and $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. Here $P_{n, 0}(\mathbf{x})$ denotes the limit of $P_{n, r}(\mathbf{x})$ as $r \rightarrow 0^{+}$. Unless specified, we always assume $0 \leq x_{1} \leq x_{2} \cdots \leq x_{n}, m=\min \left\{x_{i}\right\}, M=\max \left\{x_{i}\right\}$. We denote $\sigma_{n}=\sum_{i=1}^{n} \omega_{i}\left(x_{i}-A_{n}\right)^{2}$.

To any given $\mathbf{x}, t \geq 0$ we associate $\mathbf{x}^{\prime}=\left(1-x_{1}, 1-x_{2}, \cdots, 1-x_{n}\right), \mathbf{x}_{t}=\left(x_{1}+t, \cdots, x_{n}+t\right)$. When there is no risk of confusion, We shall write $P_{n, r}$ for $P_{n, r}(\mathbf{x}), P_{n, r, t}$ for $P_{n, r}\left(\mathbf{x}_{t}\right)$ and $P_{n, r}^{\prime}$ for $P_{n, r}\left(\mathbf{x}^{\prime}\right)$ if $1-x_{i} \geq 0$ for all i. We also define $A_{n}=P_{n, 1}, G_{n}=P_{n, 0}, H_{n}=P_{n,-1}$ and similarly for $A_{n, t}, G_{n, t}, H_{n, t}, A_{n}^{\prime}, G_{n}^{\prime}, H_{n}^{\prime}$.

To simplify expressions, we define

$$
\begin{equation*}
\Delta_{r, s, t, \alpha}=\frac{P_{n, r, t}^{\alpha}-P_{n, s, t}^{\alpha}}{P_{n, r}^{\alpha}-P_{n, s}^{\alpha}}, \Delta_{r, s}^{\prime}=\frac{P_{n, r}^{\prime}-P_{n, s}^{\prime}}{P_{n, r}-P_{n, s}} \tag{1.1}
\end{equation*}
$$

with $\Delta_{r, s, t, 0}=\left(\ln \frac{P_{n, r, t}}{P_{n, s, t}}\right) /\left(\ln \frac{P_{n, r}}{P_{n, s}}\right)$. We also write $\Delta_{r, s, t}$ for $\Delta_{r, s, t, 1}$. In order to include the case of equality for various inequalities in our discussions, for any given inequality, we define $0 / 0$ to be the number which makes the inequality an equality.

Recently, the author($(8,9)$ proved the following result:
Theorem 1.1. For $r>s, m>0, t \geq 0$, the following inequalities are equivalent:

$$
\begin{align*}
\frac{r-s}{2 m} \sigma_{n} & \geq P_{n, r}-P_{n, s} & \geq \frac{r-s}{2 M} \sigma_{n} \tag{1.2}\\
\frac{M}{1-M} & \geq \Delta_{r, s}^{\prime} & \geq \frac{m}{1-m} \tag{1.3}\\
\frac{M}{t+m} & \geq \Delta_{r, s, t} & \geq \frac{m}{t+M} \tag{1.4}
\end{align*}
$$

where in (1.3) we require $M<1$.
D.Cartwright and M.Field (6) first proved the validity of (1.2) for $r=1, s=0$. For other extensions and refinements of (1.2), see (3), 7, (11] and [12. (1.3) is commonly referred as the additive Ky Fan's inequality. We refer the reader to the survey article 22 and the references therein for an account of Ky Fan's inequality.
J.Aczél and Zs. Pâles 1 proved $\Delta_{1, s, t} \leq 1$ for any $s \neq 1$. We can interpret their result as an assertion of the monotonicity of $A_{n, t}-P_{n, s, t}$ as a function of t. The asymptotic behavior of $t\left(P_{n, r, t}-A_{n, t}\right)$ was studied by J.Brenner and B. Carlson 5 and in this paper, we will study the

[^0]Key words and phrases. Ky Fan's inequality,Sierpiński's inequality, Rado's inequality, generalized weighted means.
monotonicities of $(t+M)\left(P_{n, r, t}-P_{n, s, t}\right)$ and $(t+m)\left(P_{n, r, t}-P_{n, s, t}\right)$ as functions of t for $r=1$ or $s=1$ and then apply the result to inequalities of the type (1.2).

The following inequality connecting three classical means(with $\omega_{i}=1 / n$ here) is due to P.F.Wang and W.L.Wang (15](right-hand side inequality), H. Alzer, S. Ruscheweyh and L. Salinas 4 (left-hand side inequality):

$$
\begin{equation*}
\left(\frac{H_{n}}{H_{n}^{\prime}}\right)^{n-1} \frac{A_{n}}{A_{n}^{\prime}} \leq\left(\frac{G_{n}}{G_{n}^{\prime}}\right)^{n} \leq\left(\frac{A_{n}}{A_{n}^{\prime}}\right)^{n-1} \frac{H_{n}}{H_{n}^{\prime}} \tag{1.5}
\end{equation*}
$$

(1.5) was refined in 8 and in section 5 we will give a further refinement of the above inequality. We will also prove a Rado-type inequality in the last section.

2. A Few Lemmas

Lemma 2.1. Let $J(x)$ be the smallest closed interval that contains all of x_{i} and $f(x), g(x) \in$ $C^{2}(J(x))$ be two twice differentiable functions, then

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} \omega_{i} x_{i}\right)}{\sum_{i=1}^{n} \omega_{i} g\left(x_{i}\right)-g\left(\sum_{i=1}^{n} \omega_{i} x_{i}\right)}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} \tag{2.1}
\end{equation*}
$$

for some $\xi \in J(x)$, provided that the denominator of the left-hand side is nonzero.
Lemma 2.1 and the following consequence of it are due to A.M.Mercer 10:
Lemma 2.2. For $w>u, w \neq v, u \neq v, x_{1}>0$

$$
\begin{equation*}
\left|\frac{u(u-v)}{w(w-v)}\right| \frac{1}{x_{1}^{w-u}} \geq\left|\frac{\left(P_{n, u}^{u}-P_{n, v}^{u}\right)}{\left(P_{n, w}^{w}-P_{n, v}^{w}\right)}\right| \geq\left|\frac{u(u-v)}{w(w-v)}\right| \frac{1}{x_{n}^{w-u}} \tag{2.2}
\end{equation*}
$$

with equality holding if and only if $x_{1}=\cdots=x_{n}$.
Apply Lemma 2.1 to $f(x)=(t+x)^{r}, g(x)=x^{r}, r \neq 0$ and $f(x)=\ln (t+x), g(x)=\ln x$ when $r=0$, we obtain
Corollary 2.1. For $x_{1}>0$

$$
\begin{equation*}
\min \left\{\left(\frac{t+x_{n}}{x_{n}}\right)^{r-2},\left(\frac{t+x_{1}}{x_{1}}\right)^{r-2}\right\} \leq \Delta_{r, 1, t, r} \leq \max \left\{\left(\frac{t+x_{n}}{x_{n}}\right)^{r-2},\left(\frac{t+x_{1}}{x_{1}}\right)^{r-2}\right\} \tag{2.3}
\end{equation*}
$$

We now give a generalization of the result of Aczél and Pâles:
Lemma 2.3. Let $r>s, t \geq 0, \alpha \leq 1$.
(i). For $s \neq 1, \Delta_{1, s, t, \alpha} \leq 1$.
(ii). If $\Delta_{r, s, t} \leq \frac{x_{n}}{t+x_{n}}$, then $\Delta_{r, s, t, \alpha} \leq\left(\frac{x_{n}}{t+x_{n}}\right)^{2-\alpha}$.
(iii). If $\Delta_{r, s, t} \geq \frac{x_{1}}{t+x_{1}}$, then $\Delta_{r, s, t, \alpha} \geq\left(\frac{x_{1}}{t+x_{1}}\right)^{2-\alpha}$.

Proof. We will prove (i) for $s<1, \alpha \neq 0$, (ii) for $0<\alpha<1$ and the other proofs are similar. For (i), let $f(t)=A_{n, t}^{\alpha}-P_{n, s, t}^{\alpha}$, then

$$
f^{\prime}(t)=\alpha\left(A_{n, t}^{\alpha-1}-P_{n, s, t}^{\alpha-1}\left(\frac{P_{n, s, t}}{P_{n, s-1, t}}\right)^{1-s}\right) \begin{cases}\leq \alpha\left(A_{n, t}^{\alpha-1}-P_{n, s, t}^{\alpha-1}\right) & \leq 0,0<\alpha \leq 1 \\ \geq \alpha P_{n, s, t}^{\alpha-1}\left(1-\left(\frac{P}{P, s, t} P_{n, s-1, t}\right)^{1-s}\right) & \geq 0, \alpha<0\end{cases}
$$

The conclusion then follows from the monotonicity of $f(t)$.
For (ii), let $f(t)=\left(t+x_{n}\right)^{2-\alpha}\left(P_{n, r, t}^{\alpha}-P_{n, s, t}^{\alpha}\right)$, then it suffices to show $f^{\prime}(0) \leq 0$ or equivalently

$$
(2-\alpha)\left(P_{n, r}^{\alpha}-P_{n, s}^{\alpha}\right) \leq \alpha x_{n}\left(P_{n, s}^{\alpha-1}\left(\frac{P_{n, s}}{P_{n, s-1}}\right)^{1-s}-P_{n, r}^{\alpha-1}\left(\frac{P_{n, r}}{P_{n, r-1}}\right)^{1-r}\right)
$$

We also have

$$
\begin{equation*}
\frac{P_{n, s}^{1-\alpha}}{\alpha}\left(P_{n, r}^{\alpha}-P_{n, s}^{\alpha}\right) \leq P_{n, r}-P_{n, s} \leq x_{n}\left(\left(\frac{P_{n, s}}{P_{n, s-1}}\right)^{1-s}-\left(\frac{P_{n, r}}{P_{n, r-1}}\right)^{1-r}\right) \tag{2.4}
\end{equation*}
$$

where the first inequality above follows from the mean value theorem and the second inequality follows from $\Delta_{r, s, t} \leq \frac{x_{n}}{t+x_{n}}$. Similarly, by using the mean value theorem, we get

$$
\begin{equation*}
\frac{P_{n, r}^{\alpha}-P_{n, s}^{\alpha}}{P_{n, s}^{\alpha-1}-P_{n, r}^{\alpha-1}} \leq \frac{\alpha}{1-\alpha} P_{n, r} \leq \frac{\alpha}{1-\alpha} x_{n}\left(\frac{P_{n, r}}{P_{n, r-1}}\right)^{1-r} \tag{2.5}
\end{equation*}
$$

where the last inequality follows from $P_{n, r}^{r}=\sum_{i=1}^{n} \omega_{i} x_{i}^{r} \leq \sum_{i=1}^{n} \omega_{i} x_{n} x_{i}^{r-1}=x_{n} P_{n, r-1}^{r-1}$. Now (ii) follows by rewriting (2.4), (2.5) as

$$
\begin{align*}
P_{n, r}^{\alpha}-P_{n, s}^{\alpha} & \leq \alpha P_{n, s}^{\alpha-1} x_{n}\left(\left(\frac{P_{n, s}}{P_{n, s-1}}\right)^{1-s}-\left(\frac{P_{n, r}}{P_{n, r-1}}\right)^{1-r}\right) \tag{2.6}\\
(1-\alpha)\left(P_{n, r}^{\alpha}-P_{n, s}^{\alpha}\right) & \leq \alpha x_{n}\left(P_{n, s}^{\alpha-1}-P_{n, r}^{\alpha-1}\right)\left(\frac{P_{n, r}}{P_{n, r-1}}\right)^{1-r} \tag{2.7}
\end{align*}
$$

and adding (2.6) and (2.7).
The following two lemmas will be needed in section 5 .
Lemma 2.4. Let x, b, u, v, t be real numbers with $0<x \leq b, u \geq 1, v \geq 1, t \geq 0$, then $f(u, v, x, b) \leq$ $f(u, v, x+t, b+t)$ where

$$
f(u, v, x, b)=b^{2}\left(\frac{u+v-1}{u x+v b}+\frac{1}{x^{2}(u / x+v / b)}-\frac{1}{x}\right)
$$

with equality holding if and only if $x=b$ or $u=v=1$ or $t=0$.
Proof. Let $x<b, t>0$ and $u>1, v>1$. Write $D(u, v, x, b, t)=f(u, v, x, b)-f(u, v, x+t, b+t)$, then

$$
\begin{aligned}
D(u, v, x, b, t)= & v(b-x)\left[-\frac{(u-1) b / x+(v-1)}{(v+u x / b)(u+v x / b)}+\right. \\
& \left.+\frac{(u-1)(b+t) /(x+t)+(v-1)}{(v+u(x+t) /(b+t))(u+v(x+t) /(b+t))}\right] \\
< & \frac{v(b-x)}{(v+u x / b)(u+v x / b)}[(u-1)(b+t) /(x+t)+(v-1)-((u-1) b / x+(v-1))] \\
= & -\frac{v(u-1)(b-x)^{2} t}{(v+u x / b)(u+v x / b) x(x+t)}<0
\end{aligned}
$$

since $(x+t) /(b+t) \geq x / b$. Thus we conclude that $D(u, v, x, b, t) \leq 0$ for $0<x \leq b, u \geq 1, v \geq 1$.
We remark here from the proof of the Lemma 2.4, one finds $f(u, v, s, b) \leq 0$ and we have $D \leq 0$ as long as the condition $u+v \geq 2, u \geq 1, v \geq 0$ is satisfied, we don't really need $v \geq 1$.
Lemma 2.5. Let x, a, b, u, v, s, t be real numbers with $t \geq 0,0<x \leq a \leq b, u \geq 1, v \geq 1, u+v \geq 3$ and $0 \leq s \leq v$, then $g(u, s, v, x, a, b) \leq g(u, s, v, x+t, a+t, b+t)$ where

$$
g(u, s, v, x, a, b)=b^{2}\left[\frac{u+v-1}{u x+s a+(v-s) b}+\frac{1}{x^{2}(u / x+s / a+(v-s) / b)}-\frac{1}{x}\right]
$$

with equality holding if and only if one of the following cases is true: 1. $x=a=b$; 2. $s=0, x=b$; 3. $t=0$.

Proof. We may assume $t>0$ and let $M=\left\{(s, a) \in R^{2} \mid 0 \leq s \leq v, x \leq a \leq b\right\}$. Furthermore, we define $H(s, a)=g(u, s, v, x, a, b)-g(u, s, v, x+t, a+t, b+t)$, where $(s, a) \in M$. It suffices to show $H(s, a) \leq 0$. Let $m=\left(s_{0}, a_{0}\right)$ be the point in which the absolute minimum of H is reached. If m
is an interior point of M, then we obtain

$$
\begin{aligned}
0 & =\frac{1}{s} \frac{\partial H}{\partial a}-\left.\frac{1}{a-b} \frac{\partial H}{\partial s}\right|_{(s, a)=\left(s_{0}, a_{0}\right)}=\frac{(b-a) b / x}{x a^{2}(u+s x / a+(v-s) x / b)^{2}}- \\
& -\frac{(b-a)(b+t) /(x+t)}{(x+t)(a+t)^{2}\left((u+s(x+t) /(a+t)+(v-s)(x+t) /(b+t))^{2}\right.}>0
\end{aligned}
$$

where the inequality follows from $b / x>(b+t) /(x+t),(x+t) /(a+t)>x / a$. Hence, m is a boundary point of M, so that we get $m \in\left\{\left(s_{0}, x\right),\left(s_{0}, b\right),\left(0, a_{0}\right),\left(v, a_{0}\right)\right\}$. Using Lemma 2.4 we obtain $H\left(s_{0}, b\right)=H\left(0, a_{0}\right)=D(u, v, x, b, t) \leq 0$ and

$$
H\left(s_{0}, x\right)=D\left(u+s_{0}, v-s_{0}, x, b, t\right) \leq 0
$$

The above inequality follows from the remark after the proof of the Lemma 2.4, since here $v-s_{0} \geq 0$ but may not exceed 1. Finally,

$$
H\left(v, a_{0}\right)=b^{2} / a_{0}^{2} f\left(u, v, x, a_{0}\right)-(b+t)^{2} /\left(a_{0}+t\right)^{2} f\left(u, v, x+t, a_{0}+t\right) \leq 0
$$

The above inequality holds since $f\left(u, v, x, a_{0}\right) \leq f\left(u, v, x+t, a_{0}+t\right) \leq 0$ by the remark after the proof of the Lemma 2.4 and $b / a_{0} \geq(b+t) /\left(a_{0}+t\right)$. Thus if $(s, a) \in M$, then $H(s, a) \leq 0$. The conditions for equality can be easily checked by using Lemma 2.4 and noticing the condition $u+v \geq 3$.

3. The Main Theorem

Theorem 3.1. For $t \geq 0, x_{1}>0,-1 \leq s \neq 1 \leq 2$

$$
\begin{equation*}
\frac{x_{1}}{t+x_{1}} \leq \Delta_{1, s, t} \leq \frac{x_{n}}{t+x_{n}} \tag{3.1}
\end{equation*}
$$

with equality holding if and only if $t=0$ or $x_{1}=\cdots=x_{n}$.
Proof. The case $s=0$ has been treated in 9 so we will assume $s \neq 0$ and prove the left-hand side inequality of (3.1) and the other proofs are similar. For $0<s<1$, let

$$
D_{n}(\mathbf{x}, t)=x_{n}\left(A_{n}-P_{n, s}\right)-\left(t+x_{n}\right)\left(A_{n, t}-P_{n, s, t}\right)
$$

We want to show $D_{n} \geq 0$ here. We can assume $x_{1}<x_{2}<\cdots<x_{n}$ and prove by induction, the case $n=1$ is clear so we will start with $n>1$ variables assuming the inequality holds for $n-1$ variables. Then

$$
\begin{aligned}
\frac{\partial D_{n}}{\partial x_{n}} & =\left(A_{n}-P_{n, s}\right)-\left(A_{n, t}-P_{n, s, t}\right)+\omega_{n}\left[\left(A_{n}-P_{n, s}^{1-s} x_{n}^{s}\right)-\left(A_{n, t}-P_{n, s, t}^{1-s}\left(t+x_{n}\right)^{s}\right)\right] \\
& \geq \omega_{n}\left[\left(A_{n}-P_{n, s}\right)-\left(A_{n, t}-P_{n, s, t}\right)+\left(A_{n}-P_{n, s}^{1-s} x_{n}^{s}\right)-\left(A_{n, t}-P_{n, s, t}^{1-s}\left(t+x_{n}\right)^{s}\right)\right] \\
& =\omega_{n}\left[P_{n, s, t}^{1-s}\left(t+x_{n}\right)^{s}+P_{n, s, t}-2 t-P_{n, s}-P_{n, s}^{1-s} x_{n}^{s}\right]
\end{aligned}
$$

where the inequality follows from $\Delta_{1, s, t} \leq 1$. Now consider

$$
g(t)=P_{n, s, t}^{1-s}\left(t+x_{n}\right)^{s}+P_{n, s, t}-2 t
$$

and we have

$$
\begin{aligned}
g^{\prime}(t) & =(1-s)\left(\frac{t+x_{n}}{P_{n, s, t}}\right)^{s}\left(\frac{P_{n, s, t}}{P_{n, s-1, t}}\right)^{1-s}+s\left(\frac{P_{n, s, t}}{t+x_{n}}\right)^{1-s}+\left(\frac{P_{n, s, t}}{P_{n, s-1, t}}\right)^{1-s}-2 \\
& \geq(1-s) y^{s}+s y^{s-1}-1:=h(y)
\end{aligned}
$$

where $y=\frac{t+x_{n}}{P_{n, s, t}} \geq 1$ and the inequality follows from $\left(\frac{P_{n, s, t}}{P_{n, s-1, t}}\right)^{1-s} \geq 1$. Note $h^{\prime}(y)=0$ has only one root $y=1$, which implies $h(y) \geq \min \left\{h(1), \lim _{y \rightarrow \infty} h(y)\right\}=0$. Thus $g^{\prime}(t) \geq 0$, hence $g(t) \geq g(0)=P_{n, s}+P_{n, s}^{1-s} x_{n}^{s}$ and it follows $\frac{\partial D_{n}}{\partial x_{n}} \geq 0$ and by letting x_{n} tend to x_{n-1}, we have $D_{n} \geq D_{n-1}$ (with weights $\left.\omega_{1}, \cdots, \omega_{n-2}, \omega_{n-1}+\omega_{n}\right)$ and thus the right-hand side inequality of (3.1) holds by induction. It is easy to see the equality holds if and only if $t=0$ or $x_{1}=\cdots=x_{n}$.

For $-1 \leq s<0$, we have

$$
\frac{1}{\omega_{1}} \frac{\partial D_{n}}{\partial x_{1}}=-t-x_{n}\left(\frac{P_{n, s}}{x_{1}}\right)^{1-s}+\left(t+x_{n}\right)\left(\frac{P_{n, s, t}}{t+x_{1}}\right)^{1-s}:=-t-f\left(x_{1}\right)
$$

Consider

$$
f^{\prime}\left(x_{1}\right)=-(1-s) \sum_{j=2}^{n} \omega_{j}\left[\left(\frac{P_{n, s}}{x_{1}}\right)^{1-2 s} \cdot \frac{x_{n} x_{j}^{s}}{x_{1}^{s+1}}-\left(\frac{P_{n, s, t}}{t+x_{1}}\right)^{1-2 s} \frac{\left(t+x_{n}\right)\left(t+x_{j}\right)^{s}}{\left(t+x_{1}\right)^{s+1}}\right] \leq 0
$$

The last inequality holds, since when $-1 \leq s<0, j=2, \cdots, n$, we have

$$
\left(\frac{P_{n, s}}{x_{1}}\right)^{1-2 s} \geq\left(\frac{P_{n, s, t}}{t+x_{1}}\right)^{1-2 s}, \frac{x_{j}}{x_{1}} \geq \frac{t+x_{j}}{t+x_{1}}, \frac{x_{n}}{t+x_{n}} \cdot\left(\frac{x_{j}}{t+x_{j}}\right)^{s} \geq\left(\frac{x_{j}}{t+x_{j}}\right)^{1+s} \geq\left(\frac{x_{1}}{t+x_{1}}\right)^{1+s}
$$

Thus by a similar argument as above, we deduce $f\left(x_{1}\right) \geq-t$ and $\frac{\partial D_{n}}{\partial x_{1}} \leq 0$, which implies $D_{n} \geq 0$ with equality holding if and only if $t=0$ or $x_{1}=\cdots=x_{n}$.

For $1<s \leq 2$, it suffices to show $\frac{\partial D_{n}}{\partial t} \leq 0$, which is equivalent to

$$
\frac{P_{n, s}^{s-1}}{x_{n}} \leq \frac{\left(P_{n, s}^{s-1}-P_{n, s-1}^{s-1}\right)}{\left(P_{n, s}-A_{n}\right)}
$$

The above inequality follows from $\frac{P_{n, s}^{s-1}}{x_{n}} \leq x_{n}^{s-2}$ and Lemma 2.2 with $u=s-1, v=s, w=1$.

4. Some Consequences of Theorem 3.1

Corollary 4.1. 1.2 holds for $r=1,-1 \leq s<1$ and $1<r \leq 2, s=1$.
Proof. This follows from Theorems 3.1 and 1.1.
The above result was first proved by the author in [8], in fact it was shown there those are the only cases 1.2) can hold for $r=1$ or $s=1$. Thus by Theorem 1.1, we have
Corollary 4.2. (3.1) holds for all $t \geq 0$ if and only if $-1 \leq s \neq 1 \leq 2$.
Corollary 4.3. For $-1 \leq s<1$

$$
\begin{equation*}
\frac{x_{1}}{P_{n, s-1}^{1-s}} \leq \frac{\left(A_{n}-P_{n, s}\right)}{\left(P_{n, s}^{1-s}-P_{n, s-1}^{1-s}\right)} \leq \frac{x_{n}}{P_{n, s-1}^{1-s}} \tag{4.1}
\end{equation*}
$$

Proof. Theorem 3.1 implies $f(t)=\left(t+x_{n}\right)\left(A_{n, t}-P_{n, s, t}\right)$ is a decreasing function of t and $f^{\prime}(0) \leq 0$ implies the right-hand side inequality of (4.1) and the proof of the left-hand side inequality of (4.1) is similar.

By a change of variables $x_{i} \rightarrow 1 / x_{i}$ and let $x_{1}=m>0$, the right-hand side inequality of (4.1) when $s=-1$ gives

$$
\begin{equation*}
A_{n}-H_{n} \leq \frac{H_{n}}{x_{1} A_{n}} \sigma_{n} \tag{4.2}
\end{equation*}
$$

a refinement of the left-hand side inequality of (1.2) for $r=1, s=-1$. We note here one can use the method in 9 to give a direct proof of (4.2) and show the equality holds if and only if $x_{1}=\cdots=x_{n}$. We will leave the details to the reader.

5. A Sharpening of SierpińSki's inequality

Theorem 5.1. For $0<x_{1} \leq \cdots \leq x_{n}, t \geq 0, q=\min \left\{\omega_{i}\right\}$

$$
\begin{align*}
& \left(\frac{x_{n}}{x_{n}+t}\right)^{2} \geq \frac{(1-q) \ln A_{n, t}+q \ln H_{n, t}-\ln G_{n, t}}{(1-q) \ln A_{n}+q \ln H_{n}-\ln G_{n}} \geq\left(\frac{x_{1}}{x_{1}+t}\right)^{2} \tag{5.1}\\
& \left(\frac{x_{n}}{x_{n}+t}\right)^{2} \geq \frac{\ln G_{n, t}-q \ln A_{n, t}-(1-q) \ln H_{n, t}}{\ln G_{n}-q \ln A_{n}-(1-q) \ln H_{n}} \geq\left(\frac{x_{1}}{x_{1}+t}\right)^{2} \tag{5.2}
\end{align*}
$$

with equality holding if and only if $t=0$ or $q=1 / 2$ or $x_{1}=\cdots=x_{n}$.
Proof. The proof uses the ideas in (4). We will prove the left-hand side inequality of (5.1) and the proofs for other inequalities are similar. We may assume $t>0$ being fixed and $q>0,0<x=$ $x_{1}, x_{n}=b$ with $x_{1}<x_{n}$, we define

$$
\begin{aligned}
f_{n}\left(\mathbf{x}_{n}, q\right)= & x_{n}^{2}\left[(1-q) \ln A_{n}+q \ln H_{n}-\ln G_{n}\right]- \\
& -\left(x_{n}+t\right)^{2}\left[(1-q) \ln A_{n, t}+q \ln H_{n, t}-\ln G_{n, t}\right]
\end{aligned}
$$

where we regard $A_{n}, G_{n}, H_{n}, A_{n, t}, G_{n, t}, H_{n, t}$ as functions of $\mathbf{x}_{n}=\left(x_{1}, \cdots, x_{n}\right)$. Then

$$
g_{n}\left(x_{2}, \cdots, x_{n-1}\right):=\frac{1}{\omega_{1}} \frac{\partial f_{n}}{\partial x_{1}}=x_{n}^{2}\left[\frac{1-q}{A_{n}}+\frac{q H_{n}}{x_{1}^{2}}-\frac{1}{x_{1}}\right]-\left(x_{n}+t\right)^{2}\left[\frac{1-q}{A_{n, t}}+\frac{q H_{n, t}}{\left(x_{1}+t\right)^{2}}-\frac{1}{x_{1}+t}\right]
$$

We want to show $g_{n} \leq 0$. Let $D=\left\{\left(x_{2}, \cdots, x_{n-1}\right) \in R^{n-2} \mid 0<x \leq x_{2} \leq \cdots \leq x_{n-1} \leq b\right\}$. Let $\mathbf{a}=\left(a_{2}, \cdots, a_{n-1}\right) \in D$ be the point in which the absolute minimum of g_{n} is reached. Next, we show that

$$
\begin{equation*}
\mathbf{a}=(x, \cdots, x, a, \cdots, a, b, \cdots, b) \text { with } x<a<b \tag{5.3}
\end{equation*}
$$

where the numbers x, a, and b appear u, v, and w times, respectively, with $u, v, w \geq 0, u+v+w=$ $n-2$.

Suppose not, this implies two components of a have different values and are interior points of D. We denote these values by a_{k} and a_{l}. Partial differentiation shows a_{l}, a_{l} are the roots of

$$
\begin{equation*}
h(x)=\frac{B}{x^{2}}-\frac{B^{\prime}}{(x+t)^{2}}+C=0 \tag{5.4}
\end{equation*}
$$

where

$$
B=q \frac{H_{n}^{2} x_{n}^{2}}{x_{1}^{2}}, B^{\prime}=q \frac{H_{n, t}^{2}\left(x_{n}+t\right)^{2}}{\left(x_{1}+t\right)^{2}}, C=\frac{(1-q)\left(x_{n}+t\right)^{2}}{A_{n, t}^{2}}-\frac{(1-q) x_{n}^{2}}{A_{n}^{2}}
$$

It's easy to show $h^{\prime}(x)$ only has one positive root, which implies $h(x)$ can have at most two distinct positive roots, but $\lim _{x \rightarrow 0} h(x)=\infty, \lim _{x \rightarrow \infty} h(x)=C<0$ implies $h(x)$ can have at most one positive root. Thus (5.4) yields $a_{k}=a_{l}$. This contradicts our assumption that $a_{k} \neq a_{l}$. Thus (5.3) is valid and it suffices to show $g_{n} \leq 0$ for the cases $n=2,3$.

When $n=2$, by setting $x_{1}=x, x_{2}=b, \omega_{1} / q=u, \omega_{2} / q=v, g_{2} \leq 0$ follows from Lemma 2.4.
When $n=3$, by setting $x_{1}=x, x_{2}=a, x_{3}=b, \omega_{1} / q=u, \omega_{2} / q=s, \omega_{3} / q=v-s, g_{3} \leq 0$ follows from Lemma 2.5.

Thus we have shown that $g_{n}=\frac{1}{\omega_{1}} \frac{\partial f_{n}}{\partial x_{1}} \leq 0$ with equality holding if and only if $n=1$ or $n=2, q=1 / 2$. By letting x_{1} tend to x_{2}, we have

$$
f_{n}\left(\mathbf{x}_{n}, q\right) \geq f_{n-1}\left(\mathbf{x}_{n-1}, q\right) \geq f_{n-1}\left(\mathbf{x}_{n-1}, q^{\prime}\right)
$$

where $\mathbf{x}_{n-1}=\left(x_{2}, \cdots, x_{n}\right)$ with weights $\omega_{1}+\omega_{2}, \cdots, \omega_{n-1}, \omega_{n}$ and $q^{\prime}=\min \left\{\omega_{1}+\omega_{2}, \cdots, \omega_{n}\right\}$. Here we have used $\Delta_{1,-1, t, 0} \leq\left(\frac{x_{n}}{t+x_{n}}\right)^{2}$, which is a consequence of Theorem 3.1 and Lemma 2.3.

It then follows by induction that $f_{n} \geq f_{n-1} \geq \cdots \geq f_{2}=0$ when $q=1 / 2$ in f_{2} or else $f_{n} \geq f_{n-1} \geq \cdots \geq f_{1}=0$ and this completes the proof.

By letting $t \rightarrow \infty$ in (5.1), (5.2), we recover the following result of the author 8 , which can be regarded as sharpenings of Sierpiński's inequality 13 for the weighted cases:
Corollary 5.1. For $0<x_{1} \leq \cdots \leq x_{n}, q=\min \left\{\omega_{i}\right\}$

$$
\begin{align*}
& \frac{1-2 q}{2 x_{1}^{2}} \sigma_{n} \geq(1-q) \ln A_{n}+q \ln H_{n}-\ln G_{n} \geq \frac{1-2 q}{2 x_{n}^{2}} \sigma_{n} \tag{5.5}\\
& \frac{1-2 q}{2 x_{1}^{2}} \sigma_{n} \geq \ln G_{n}-q \ln A_{n}-(1-q) \ln H_{n} \geq \frac{1-2 q}{2 x_{n}^{2}} \sigma_{n} \tag{5.6}
\end{align*}
$$

with equality holding if and only if $q=1 / 2$ or $x_{1}=\cdots=x_{n}$.

6. A Rado-Type Inequality

By letting $\omega_{i}=q_{i} / Q_{n}, Q_{n}=\sum_{i=1}^{n} q_{i}, q_{i}>0$ (note for different n, ω_{i} 's take different values), C.L.Wang 14 proved the following Rado-type inequality:

Theorem 6.1. If $x_{i} \in(0,1 / 2], i=1, \cdots, n$, then

$$
\begin{equation*}
Q_{n}\left(A_{n} G_{n}^{\prime}-A_{n}^{\prime} G_{n}\right) \geq Q_{n-1}\left(A_{n-1} G_{n-1}^{\prime}-A_{n-1}^{\prime} G_{n-1}\right) \tag{6.1}
\end{equation*}
$$

We end the paper by giving an analogue of Wang's theorem:
Theorem 6.2. For $t>0, q_{i}>0, i=1, \cdots, n$

$$
\begin{equation*}
Q_{n}\left(A_{n} G_{n, t}-A_{n, t} G_{n}\right) \geq Q_{n-1}\left(A_{n-1} G_{n-1, t}-A_{n-1, t} G_{n-1}\right)\left(\frac{A_{n-1, t}-A_{n-1}}{G_{n-1, t}-G_{n-1}}\right)^{\frac{q_{n}}{Q_{n}}} \tag{6.2}
\end{equation*}
$$

Proof. Let $f\left(x_{n}\right)=Q_{n}\left(A_{n} G_{n, t}-A_{n, t} G_{n}\right)$, by setting

$$
f^{\prime}\left(x_{n}\right)=q_{n}\left(x_{n}+A_{n, t}\right)\left(\frac{G_{n, t}}{t+x_{n}}-\frac{G_{n}}{x_{n}}\right)=0
$$

we get $x_{n}=t G_{n-1} /\left(G_{n-1, t}-G_{n-1}\right)$. Moreover, at this point

$$
f^{\prime \prime}\left(x_{n}\right)=\frac{q_{n} Q_{n-1}}{Q_{n}} \cdot \frac{G_{n}}{x_{n}}\left(\frac{A_{n, t}}{x_{n}}-\frac{A_{n}}{t+x_{n}}\right)>0
$$

and it is easy to see that $f\left(x_{n}\right)$ takes its absolute minimum at the point, which implies

$$
f\left(x_{n}\right) \geq f\left(\frac{t G_{n-1}}{G_{n-1, t}-G_{n-1}}\right)=Q_{n-1}\left(A_{n-1} G_{n-1, t}-A_{n-1, t} G_{n-1}\right)\left(\frac{A_{n-1, t}-A_{n-1}}{G_{n-1, t}-G_{n-1}}\right)^{\frac{q_{n}}{Q_{n}}}
$$

for any $x_{n} \geq 0$, with equality holding if and only if $x_{n}=t G_{n-1} /\left(G_{n-1, t}-G_{n-1}\right)$.
We note here by letting $t \rightarrow \infty$ in (6.2), we get back Rado's inequality:

$$
Q_{n}\left(A_{n}-G_{n}\right) \geq Q_{n-1}\left(A_{n-1}-G_{n-1}\right)
$$

Acknowledgment

The author is deeply indebted to Professor Huge Montgomery for his encouragement and financial support.

References

[1] J.Aczél and Zs. Pâles,The behaviour of means under equal increments of their variables, Amer. Math. Monthly, 95 (1988), 856-860.
[2] H. Alzer, The inequality of Ky Fan and related results, Acta Appl. Math., 38 (1995), 305-354.
[3] H. Alzer, A new refinement of the arithmetic mean-geometric mean inequality, Rocky Mountain J. Math., 27 (1997), no. 3, 663-667.
[4] H. Alzer, S. Ruscheweyh and L. Salinas, On Ky Fan-type inequalities, Aequationes Math., 62 (2001), 310-320.
[5] J.L.Brenner and B.C.Carlson, homogeneous mean values: weights and asymptotics, J. Math. Anal. Appl., 123 (1987), 265-280.
[6] D. I. Cartwright and M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc. 71 (1978), 36-38.
[7] P. Gao, Certain Bounds for the Differences of Means, RGMIA Research Report Collection 5(3), Article 7, 2002.
[8] P. Gao, Ky Fan Inequality and Bounds for Differences of Means, Int. J. Math. Math. Sci., accepted.
[9] P. Gao, Ky Fan Inequality and Bounds for Differences of Means II, RGMIA Research Report Collection 5(4), Article 15, 2002.
[10] A.McD. Mercer, Some new inequalities involving elementary mean values, J. Math. Anal. Appl., 229 (1999), 677-681.
[11] A.McD. Mercer, Bounds for A-G, A-H, G-H, and a family of inequalities of Ky Fan's type, using a general method, J. Math. Anal. Appl., 243 (2000), 163-173.
[12] A.McD. Mercer, Improved upper and lower bounds for the difference $A_{n}-G_{n}$, Rocky Mountain J. Math., 31 (2001), 553-560.
[13] W. Sierpiński, On an inequality for arithmetic, geometric and harmonic means, Warsch. Sitzungsber., 2 (1909), 354-358(in Polish).
[14] C.L.Wang, On a Ky Fan inequality of the complementary A-G type and its variants, J. Math. Anal. Appl., 73 (1980), 501-505.
[15] P. F. Wang and W. L. Wang, A class of inequalities for the symmetric functions, Acta Math. Sinica, 27 (1984), 485-497(in Chinese).

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
E-mail address: penggao@umich.edu

[^0]: Date: January 29, 2003.
 1991 Mathematics Subject Classification. Primary 26D15.

