NEW TAYLOR-LIKE EXPANSIONS FOR FUNCTIONS OF TWO VARIABLES AND ESTIMATES OF THEIR REMAINDERS

S.S. DRAGOMIR, F. QI, G. HANNA, AND P. CERONE

AbSTRACt. In this article, a generalisation of Sard's inequality for Appell polynomials is ob-
tained. Estimates for the remainder are also provided.

1. Introduction

Let $x \in[a, b]$ and $y \in[c, d]$. If $f(x, y)$ is a function of two variables we shall adopt the following notation for partial derivatives of $f(x, y)$:

$$
\begin{align*}
& f^{(i, j)}(x, y) \triangleq \frac{\partial^{i+j} f(x, y)}{\partial x^{i} \partial y^{j}} \\
& f^{(0,0)}(x, y) \triangleq f(x, y) \tag{1}\\
& \left.f^{(i, j)}(\alpha, \beta) \triangleq f^{(i, j)}(x, y)\right|_{(x, y)=(\alpha, \beta)}
\end{align*}
$$

for $0 \leq i, j \in \mathbb{N}$ and $(\alpha, \beta) \in[a, b] \times[c, d]$.
A. H. Stroud has pointed out in [6] that one of the most important tools in the numerical integration of double integrals is the following Taylor's formula [6, p. 138 and p. 157] due to A. Sard [5]:
Theorem A. If $f(x, y)$ satisfies the condition that all the derivatives $f^{(i, j)}(x, y)$ for $i+j \leq m$ are defined and continous on $[a, b] \times[c, d]$, then $f(x, y)$ has the expansion

$$
\begin{align*}
f(x, y)= & \sum_{i+j \leq m} \frac{(x-a)^{i}}{i!} \frac{(y-c)^{j}}{j!} f^{(i, j)}(a, c) \\
& +\sum_{j<q} \frac{(y-c)^{j}}{j!} \int_{a}^{x} \frac{(x-u)^{m-j-1}}{(m-j-1)!} f^{(m-j, j)}(u, c) d u \tag{2}\\
& +\sum_{i<p} \frac{(x-a)^{i}}{i!} \int_{c}^{y} \frac{(y-v)^{m-i-1}}{(m-i-1)!} f^{(i, m-i)}(a, v) d v \\
& +\int_{a}^{x} \int_{c}^{y} \frac{(x-u)^{p-1}}{(p-1)!} \frac{(y-v)^{q-1}}{(q-1)!} f^{(p, q)}(u, v) d v d u
\end{align*}
$$

where i, j are nonnegative integers; p, q are positive integers; and $m \triangleq p+q \geq 2$.

[^0]Essentially, the representation (2) is used for obtaining the fundamental Kernel Theorems and Error Estimates in numerical integration of double integrals [6, p. 142, p. 145 and p. 158] and has both theoretical and practical importance in the domain as a whole.
Definition 1. A sequence of polynomials $\left\{P_{i}(x)\right\}_{i=0}^{\infty}$ is called harmonic [4] if it satisfies the recursive formula

$$
\begin{equation*}
P_{i}^{\prime}(x)=P_{i-1}(x) \tag{3}
\end{equation*}
$$

for $i \in \mathbb{N}$ and $P_{0}(x)=1$.
A slightly different concept that specifies the connection between the variables is the following one.
Definition 2. We say that a sequence of polynomials $\left\{P_{i}(t, x)\right\}_{i=0}^{\infty}$ satisfies the Appell condition [2] if

$$
\begin{equation*}
\frac{\partial P_{i}(t, x)}{\partial t}=P_{i-1}(t, x) \tag{4}
\end{equation*}
$$

and $P_{0}(t, x)=1$ for all defined (t, x) and $n \in \mathbb{N}$.
It is wellknown that the Bernoulli polynomials $B_{i}(t)$ can be defined by the following expansion

$$
\begin{equation*}
\frac{x e^{t x}}{e^{x}-1}=\sum_{i=0}^{\infty} \frac{B_{i}(t)}{i!} x^{i}, \quad|x|<2 \pi, \quad t \in \mathbb{R} \tag{5}
\end{equation*}
$$

It can be shown that the polynomials $B_{i}(t), i \in \mathbb{N}$, are uniquely determined by the two formulae

$$
\begin{gather*}
B_{i}^{\prime}(t)=i B_{i-1}(t), \quad B_{0}(t)=1 \tag{6}\\
\text { and } \quad B_{i}(t+1)-B_{i}(t)=i t^{i-1} \tag{7}
\end{gather*}
$$

The Euler polynomials can be defined by the expansion

$$
\begin{equation*}
\frac{2 e^{t x}}{e^{x}+1}=\sum_{i=0}^{\infty} \frac{E_{i}(t)}{i!} x^{i}, \quad|x|<\pi, \quad t \in \mathbb{R} \tag{8}
\end{equation*}
$$

It can also be shown that the polynomials $E_{i}(t), i \in \mathbb{N}$, are uniquely determined by the two properties

$$
\begin{align*}
& E_{i}^{\prime}(t)=i E_{i-1}(t), \quad E_{0}(t)=1 \tag{9}\\
& \text { and } \quad E_{i}(t+1)+E_{i}(t)=2 t^{i} \tag{10}
\end{align*}
$$

For further details about Bernoulli polynomials and Euler polynomials, please refer to [1, 23.1.5 and 23.1.6].
There are many examples of Appell polynomials. For instance, for i a nonegative integer, $\theta \in \mathbb{R}$ and $\lambda \in[0,1]$,

$$
\begin{align*}
& P_{i, \lambda}(t) \triangleq P_{i, \lambda}(t ; x ; \theta)=\frac{[t-(\lambda \theta+(1-\lambda) x)]^{i}}{i!}, \tag{11}\\
& P_{i, B}(t) \triangleq P_{i, B}(t ; x ; \theta)=\frac{(x-\theta)^{i}}{i!} B_{i}\left(\frac{t-\theta}{x-\theta}\right)([4]), \tag{12}\\
& P_{i, E}(t) \triangleq P_{i, E}(t ; x ; \theta)=\frac{(x-\theta)^{i}}{i!} E_{i}\left(\frac{t-\theta}{x-\theta}\right)([4]) . \tag{13}
\end{align*}
$$

In [4], the following generalized Taylor's formula was established.

Theorem B. Let $\left\{P_{i}(x)\right\}_{i=0}^{\infty}$ be a harmonic sequence of polynomials. Further, let $I \subset \mathbb{R}$ be a closed interval and $a \in I$. If $f: I \rightarrow \mathbb{R}$ is any function such that $f^{(n)}(x)$ is absolutely continuous for some $n \in \mathbb{N}$, then, for any $x \in I$, we have

$$
\begin{equation*}
f(x)=f(a)+\sum_{k=1}^{m}(-1)^{k+1}\left[P_{k}(x) f^{(k)}(x)-P_{k}(a) f^{(k)}(a)\right]+R_{n}(f ; a, x) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}(f ; a, x)=(-1)^{n} \int_{a}^{x} P_{n}(t) f^{(n+1)}(t) d t . \tag{15}
\end{equation*}
$$

The fundamental aim of this article is to obtain a generalisation of the Taylor-like formula (2) for Appell polynomials and to study its impact on the numerical integration of double integrals.

2. Two New Taylor-like Expansions

Following a similar argument to the proof of Theorem 2 in [4], we obtain the following result. Theorem 1. If $g:[a, b] \rightarrow \mathbb{R}$ is such that $g^{(n-1)}$ is absolutely continuous on $[a, b]$, then we have the generalised integration by parts formula for $x \in[a, b]$

$$
\begin{align*}
\int_{a}^{b} g(t) d t= & \sum_{k=1}^{n}(-1)^{k+1}\left[P_{k}(b, x) g^{(k-1)}(b)-P_{k}(a, x) g^{(k-1)}(a)\right] \\
& +(-1)^{n} \int_{a}^{b} P_{n}(t, x) g^{(n)}(t) d t \tag{16}
\end{align*}
$$

Proof. By integration by parts we obtain, on using the Appell condition (4),

$$
\begin{align*}
& (-1)^{n} \int_{a}^{b} P_{n}(t, x) g^{(n)}(t) d t \\
= & \left.(-1)^{n} P_{n}(t, x) g^{(n-1)}(t)\right|_{a} ^{b}+(-1)^{n-1} \int_{a}^{b} P_{n-1}(t, x) g^{(n-1)}(t) d t \tag{17}\\
= & (-1)^{n}\left[P_{n}(b, x) g^{(n-1)}(b)-P_{n}(a, x) g^{(n-1)}(a)-\int_{a}^{b} P_{n-1}(t, x) g^{(n-1)}(t) d t\right] .
\end{align*}
$$

Clearly, the same procedure can be used for the term $\int_{a}^{b} P_{n-1}(t, x) g^{(n-1)}(t) d t$. Therefore, formula (16) follows from successive integration by parts.
Theorem 2. Let D be a domain in \mathbb{R}^{2} and the point $(a, c) \in D$. Also, let $\left\{P_{i}(t, x)\right\}_{i=0}^{\infty}$ and $\left\{Q_{j}(s, y)\right\}_{j=0}^{\infty}$ be two Appell polynomials. If $f: D \rightarrow \mathbb{R}$ is such that $f^{(i, j)}(x, y)$ are continuous on D for all $0 \leq i \leq m$ and $0 \leq j \leq n$, then

$$
\begin{equation*}
f(x, y)=f(a, c)+C\left(f, P_{m}, Q_{n}\right)+D\left(f, P_{m}, Q_{n}\right)+S\left(f, P_{m}, Q_{n}\right)+T\left(f, P_{m}, Q_{n}\right), \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
C\left(f, P_{m}, Q_{n}\right)= & \sum_{i=1}^{m}(-1)^{i+1}\left[P_{i}(x, x) f^{(i, 0)}(x, c)-P_{i}(a, x) f^{(i, 0)}(a, c)\right] \\
& +\sum_{j=1}^{n}(-1)^{j+1}\left[Q_{j}(y, y) f^{(0, j)}(a, y)-Q_{j}(c, y) f^{(0, j)}(a, c)\right] \tag{19}
\end{align*}
$$

$D\left(f, P_{m}, Q_{n}\right)$

$$
\begin{align*}
=\sum_{i=1}^{m} \sum_{j=1}^{n} & (-1)^{i+j} P_{i}(x, x)\left[Q_{j}(y, y) f^{(i, j)}(x, y)-Q_{j}(c, y) f^{(i, j)}(x, c)\right] \\
& -\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i+j} P_{i}(a, x)\left[Q_{j}(y, y) f^{(i, j)}(a, y)-Q_{j}(c, y) f^{(i, j)}(a, c)\right] \tag{20}
\end{align*}
$$

$$
\begin{align*}
& S\left(f, P_{m}, Q_{n}\right) \\
& \qquad=(-1)^{m} \int_{a}^{x} P_{m}(t, x) f^{(m+1,0)}(t, c) d t+(-1)^{n} \int_{c}^{y} Q_{n}(s, y) f^{(0, n+1)}(a, s) d s \\
& + \\
& \sum_{i=1}^{m}(-1)^{n+i+1} \int_{c}^{y} Q_{n}(s, y)\left[P_{i}(x, x) f^{(i, n+1)}(x, s)-P_{i}(a, x) f^{(i, n+1)}(a, s)\right] d s \tag{21}\\
& \quad+\sum_{j=1}^{n}(-1)^{m+j+1} \int_{a}^{x} P_{m}(t, x)\left[Q_{j}(y, y) f^{(m+1, j)}(t, y)-Q_{j}(c, y) f^{(m+1, j)}(t, c)\right] d t
\end{align*}
$$

and

$$
\begin{equation*}
T\left(f, P_{m}, Q_{n}\right)=(-1)^{m+n} \int_{a}^{x} \int_{c}^{y} P_{m}(t, x) Q_{n}(s, y) f^{(m+1, n+1)}(t, s) d s d t \tag{22}
\end{equation*}
$$

Proof. Let $P_{m}(t, x)$ be an Appell polynomial. Applying formula (14) to the function $f(x, y)$ with respect to variable x yields

$$
\begin{align*}
f(x, y)= & f(a, y)+\sum_{i=1}^{m}(-1)^{i+1}\left[P_{i}(x, x) f^{(i, 0)}(x, y)-P_{i}(a, x) f^{(i, 0)}(a, y)\right] \tag{23}\\
& +(-1)^{m} \int_{a}^{x} P_{m}(t, x) f^{(m+1,0)}(t, y) d t
\end{align*}
$$

Similarly, for the functions $f^{(i, 0)}(x, y), f^{(i, 0)}(a, y), f^{(m+1,0)}(t, y)$ and $f(a, y)$, we have

$$
\begin{align*}
f^{(i, 0)}(x, y)= & f^{(i, 0)}(x, c)+(-1)^{n} \int_{c}^{y} Q_{n}(s, y) f^{(i, n+1)}(x, s) d s \\
& +\sum_{j=1}^{n}(-1)^{j+1}\left[Q_{j}(y, y) f^{(i, j)}(x, y)-Q_{j}(c, y) f^{(i, j)}(x, c)\right] \tag{24}\\
f^{(i, 0)}(a, y)= & f^{(i, 0)}(a, c)+(-1)^{n} \int_{c}^{y} Q_{n}(s, y) f^{(i, n+1)}(a, s) d s \\
& +\sum_{j=1}^{n}(-1)^{j+1}\left[Q_{j}(y, y) f^{(i, j)}(a, y)-Q_{j}(c, y) f^{(i, j)}(a, c)\right] \tag{25}\\
f^{(m+1,0)}(t, y)= & f^{(m+1,0)}(t, c)+(-1)^{n} \int_{c}^{y} Q_{n}(s, y) f^{(m+1, n+1)}(a, s) d s \\
& +\sum_{j=1}^{n}(-1)^{j+1}\left[Q_{j}(y, y) f^{(m+1, j)}(t, y)-Q_{j}(c, y) f^{(m+1, j)}(t, c)\right] \tag{26}
\end{align*}
$$

$$
\begin{align*}
f(a, y)= & f(a, c)+(-1)^{n} \int_{c}^{y} Q_{n}(s, y) f^{(0, n+1)}(a, s) d s \\
& +\sum_{j=1}^{n}(-1)^{j+1}\left[Q_{j}(y, y) f^{(0, j)}(a, y)-Q_{j}(c, y) f^{(0, j)}(a, c)\right] \tag{27}
\end{align*}
$$

Substituting formulae (24)-(27) into (23) produces

$$
\begin{align*}
& f(x, y)=f(a, c)+\sum_{i=1}^{m}(-1)^{i+1}\left[P_{i}(x, x) f^{(i, 0)}(x, c)-P_{i}(a, x) f^{(i, 0)}(a, c)\right] \\
& +\sum_{j=1}^{n}(-1)^{j+1}\left[Q_{j}(y, y) f^{(0, j)}(a, y)-Q_{j}(c, y) f^{(0, j)}(a, c)\right] \\
& +\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i+j} P_{i}(x, x)\left[Q_{j}(y, y) f^{(i, j)}(x, y)-Q_{j}(c, y) f^{(i, j)}(x, c)\right] \\
& -\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i+j} P_{i}(a, x)\left[Q_{j}(y, y) f^{(i, j)}(a, y)-Q_{j}(c, y) f^{(i, j)}(a, c)\right] \\
& +(-1)^{m} \int_{a}^{x} P_{m}(t, x) f^{(m+1,0)}(t, c) d t+(-1)^{n} \int_{c}^{y} Q_{n}(s, y) f^{(0, n+1)}(a, s) d s \tag{28}\\
& +\sum_{i=1}^{m}(-1)^{n+i+1} \int_{c}^{y} Q_{n}(s, y)\left[P_{i}(x, x) f^{(i, n+1)}(x, s)-P_{i}(a, x) f^{(i, n+1)}(a, s)\right] d s \\
& +\sum_{j=1}^{n}(-1)^{m+j+1} \int_{a}^{x} P_{m}(t, x)\left[Q_{j}(y, y) f^{(m+1, j)}(t, y)-Q_{j}(c, y) f^{(m+1, j)}(t, c)\right] d t \\
& +(-1)^{m+n} \int_{a}^{x} \int_{c}^{y} P_{m}(t, x) Q_{n}(s, y) f^{(m+1, n+1)}(t, s) \mathrm{d} s \mathrm{~d} t .
\end{align*}
$$

The proof of Theorem 2 is complete.
Remark 1. If we take

$$
\begin{equation*}
P_{i}(t, x)=P_{m, \lambda}(t, x ; a), \quad Q_{j}(s, y)=Q_{j, \mu}(s, y ; c) \tag{29}
\end{equation*}
$$

for $0 \leq i \leq m, 0 \leq j \leq n$ and $\lambda, \mu \in[0,1]$ in Theorem 2, then the expressions simplify to give, on using (11),

$$
\begin{align*}
C\left(f, P_{m}, Q_{n}\right)= & \sum_{i=1}^{m} \frac{(x-a)^{i}}{i!}\left[(1-\lambda)^{i} f^{(i, 0)}(a, c)+\lambda^{i} f^{(i, 0)}(x, c)\right] \\
& +\sum_{j=1}^{n} \frac{(y-c)^{j}}{j!}\left[(1-\mu)^{j} f^{(0, j)}(a, c)+\mu^{j} f^{(0, j)}(a, y)\right] \tag{30}\\
D\left(f, P_{m}, Q_{n}\right)= & \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\lambda^{i}(x-a)^{i}(y-c)^{j}}{i!\cdot j!}\left[\mu^{j} f^{(i, j)}(x, y)+(1-\mu)^{j} f^{(i, j)}(x, c)\right]
\end{align*}
$$

$$
\begin{equation*}
-\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(1-\lambda)^{i}(x-a)^{i}(y-c)^{j}}{i!\cdot j!}\left[\mu^{j} f^{(i, j)}(a, y)+(1-\mu)^{j} f^{(i, j)}(a, c)\right] \tag{31}
\end{equation*}
$$

$$
\begin{align*}
& S\left(f, P_{m}, Q_{n}\right)=(-1)^{m} \int_{a}^{x} \frac{[t-(\lambda a+(1-\lambda) x)]^{m}}{m!} f^{(m+1,0)}(t, c) \mathrm{d} t \\
&+(-1)^{n} \int_{c}^{y} \frac{[s-(\mu c+(1-\mu) y)]^{n}}{n!} f^{(0, n+1)}(a, s) \mathrm{d} s \\
& \quad+\sum_{i=1}^{m} \int_{c}^{y} \frac{[\mu c+(1-\mu) y-s]^{n}(x-a)^{i}}{n!\cdot i!}\left[(\lambda-1)^{i} f^{(i, n+1)}(a, s)-\lambda^{i} f^{(i, n+1)}(x, s)\right] d s \\
& \quad+\sum_{j=1}^{n} \int_{a}^{x} \frac{[\lambda a+(1-\lambda) x-t]^{m}(y-c)^{j}}{m!\cdot j!}\left[(\mu-1)^{j} f^{(m+1, j)}(t, c)-\mu^{j} f^{(m+1, j)}(t, y)\right] d t \tag{32}
\end{align*}
$$

and

$$
\begin{align*}
& T\left(f, P_{m}, Q_{n}\right)= \\
& \int_{a}^{x} \int_{c}^{y} \frac{[(\lambda a+(1-\lambda) x)-t]^{m}[(\mu c+(1-\mu) y)-s]^{n}}{m!\cdot n!} f^{(m+1, n+1)}(t, s) d s d t . \tag{33}
\end{align*}
$$

Notice that, taking $\lambda=0$ and $\mu=0$ in (29), then we can deduce Theorem A from Theorem 2. Other choices of Appell type polynomials will provide generalizations of Theorem A.
The following approximation of double integrals in terms of Appell polynomials holds.
Theorem 3. Let $\left\{P_{i}(t, x)\right\}_{i=0}^{\infty}$ and $\left\{Q_{j}(s, y)\right\}_{j=0}^{\infty}$ be two Appell polynomials and $f:[a, b] \times$ $[c, d] \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f^{(i, j)}(x, y)$ are continuous on $[a, b] \times[c, d]$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. We then have

$$
\begin{equation*}
\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t=A\left(f, P_{m}, Q_{n}\right)+B\left(f, P_{m}, Q_{n}\right)+R\left(f, P_{m}, Q_{n}\right) \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
& A\left(f, P_{m}, Q_{n}\right)= \\
& \sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i+j} P_{i}(a, b)\left[Q_{j}(d, d) f^{(i-1, j-1)}(a, d)-Q_{j}(c, d) f^{(i-1, j-1)}(a, c)\right] \tag{35}\\
& -\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i+j} P_{i}(b, b)\left[Q_{j}(d, d) f^{(i-1, j-1)}(b, d)-Q_{j}(c, d) f^{(i-1, j-1)}(b, c)\right]
\end{align*}
$$

$$
\begin{align*}
B\left(f, P_{m}, Q_{n}\right)= & \sum_{j=1}^{n}(-1)^{j} Q_{j}(c, d) \int_{a}^{b} f^{(0, j-1)}(t, c) d t \\
& -\sum_{j=1}^{n}(-1)^{j} Q_{j}(d, d) \int_{a}^{b} f^{(0, j-1)}(t, d) d t \tag{36}\\
& +\sum_{i=1}^{m}(-1)^{i} P_{i}(a, b) \int_{c}^{d} f^{(i-1,0)}(a, s) d s \\
& -\sum_{i=1}^{m}(-1)^{i} P_{i}(b, b) \int_{c}^{d} f^{(i-1,0)}(b, s) d s
\end{align*}
$$

and

$$
\begin{equation*}
R\left(f, P_{m}, Q_{n}\right)=(-1)^{m+n} \int_{a}^{b} \int_{c}^{d} P_{m}(t, b) Q_{n}(s, d) f^{(m, n)}(t, s) d s d t \tag{37}
\end{equation*}
$$

Proof. Using the generalized integration by parts formula consecutively yields

$$
\begin{aligned}
& \int_{a}^{b} \int_{c}^{d} P_{m}(t, b) Q_{n}(s, d) f^{(m, n)}(t, s) d s d t \\
= & \int_{a}^{b} P_{m}(t, b)\left[\int_{c}^{d} Q_{n}(s, d) f^{(m, n)}(t, s) d s\right] d t \\
= & (-1)^{m} \int_{a}^{b} P_{m}(t, b)\left\{\int_{c}^{d} f^{(m, 0)}(t, s) d s\right. \\
& \left.+\sum_{j=1}^{n}(-1)^{j}\left[Q_{j}(d, d) f^{(m, j-1)}(t, d)-Q_{j}(c, d) f^{(m, j-1)}(t, c)\right]\right\} d t \\
= & (-1)^{m} \int_{a}^{b} \int_{c}^{d} P_{m}(t, b) f^{(m, 0)}(t, s) d s d t \\
& +\sum_{j=1}^{n}(-1)^{m+j} Q_{j}(d, d) \int_{a}^{b} P_{m}(t, b) f^{(m, j-1)}(t, d) d t \\
& -\sum_{j=1}^{n}(-1)^{m+j} Q_{j}(c, d) \int_{a}^{b} P_{m}(t, b) f^{(m, j-1)}(t, c) d t \\
= & (-1)^{m} \int_{c}^{d}(-1)^{n}\left\{\int_{a}^{b} f(t, s) d t\right. \\
& \left.+\sum_{i=1}^{m}(-1)^{i}\left[P_{i}(b, b) f^{(i-1,0)}(b, s)-P_{i}(a, b) f^{(i-1,0)}(a, s)\right]\right\} d s \\
& +\sum_{j=1}^{n}(-1)^{n+j} Q_{j}(d, d)\left\{(- 1) ^ { m } \left[\int_{a}^{b} f^{(0, j-1)}(t, d) d t\right.\right. \\
& \left.\left.+\sum_{i=1}^{m}(-1)^{j}\left(P_{i}(b, b) f^{(i-1, j-1)}(b, d)-P_{i}(a, b) f^{(i-1, j-1)}(a, d)\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{j=1}^{n}(-1)^{n+j} Q_{j}(c, d)\left\{(- 1) ^ { m } \left[\int_{a}^{b} f^{(0, j-1)}(t, c) d t\right.\right. \\
& \left.\left.+\sum_{i=1}^{m}(-1)^{i}\left(P_{i}(b, b) f^{(i-1, j-1)}(b, c)-P_{i}(a, b) f^{(i-1, j-1)}(a, c)\right)\right]\right\} \\
& =(-1)^{m+n} \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \\
& +\sum_{i=1}^{m}(-1)^{m+n+i} \int_{c}^{d}\left[P_{i}(b, b) f^{(i-1,0)}(b, s)-P_{i}(a, b) f^{(i-1,0)}(a, s)\right] d s \\
& +\sum_{j=1}^{n}(-1)^{m+n+j} Q_{j}(d, d) \int_{a}^{b} f^{(0, j-1)}(t, d) d t \\
& +\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{m+n+i+j} P_{i}(b, b) Q_{j}(d, d) f^{(i-1, j-1)}(b, d) \\
& -\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{m+n+i+j} P_{i}(a, b) Q_{j}(d, d) f^{(i-1, j-1)}(a, d) \\
& -\sum_{j=1}^{n}(-1)^{m+n+j} Q_{j}(c, d) \int_{a}^{b} f^{(0, j-1)}(t, c) d t \\
& +\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{m+n+i+j} P_{i}(a, b) Q_{j}(c, d) f^{(i-1, j-1)}(a, c) \\
& -\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{m+n+i+j} P_{i}(b, b) Q_{j}(c, d) f^{(i-1, j-1)}(b, c) \\
& =(-1)^{m+n} \sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i+j} P_{i}(b, b)\left[Q_{j}(d, d) f^{(i-1, j-1)}(b, d)\right. \\
& \left.-Q_{j}(c, d) f^{(i-1, j-1)}(b, c)\right] \\
& +(-1)^{m+n} \sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i+j} P_{i}(a, b)\left[Q_{j}(c, d) f^{(i-1, j-1)}(a, c)\right. \\
& \left.-Q_{j}(d, d) f^{(i-1, j-1)}(a, d)\right] \\
& +(-1)^{m+n} \sum_{i=1}^{m}(-1)^{i} P_{i}(b, b) \int_{c}^{d} f^{(i-1,0)}(b, s) d s \\
& -(-1)^{m+n} \sum_{i=1}^{m}(-1)^{j} P_{i}(a, b) \int_{c}^{d} f^{(i-1,0)}(a, s) d s \\
& +(-1)^{m+n} \sum_{j=1}^{n}(-1)^{j} Q_{j}(d, d) \int_{a}^{b} f^{(0, j-1)}(t, d) d t
\end{aligned}
$$

$$
\begin{aligned}
& -(-1)^{m+n} \sum_{j=1}^{n}(-1)^{i} Q_{j}(c, d) \int_{a}^{b} f^{(0, j-1)}(t, c) d t \\
& +(-1)^{m+n} \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t
\end{aligned}
$$

The proof of Theorem 3 is complete.
Remark 2. As usual, let $B_{i}, i \in \mathbb{N}$, denote Bernoulli numbers.
From properties (6) and (7), (9) and (10) of the Bernoulli and Euler polynomials respectively, we can easily obtain that, for $i \geq 1$,

$$
\begin{equation*}
B_{i+1}(0)=B_{i+1}(1)=B_{i+1}, \quad B_{1}(0)=-B_{1}(1)=-\frac{1}{2} \tag{38}
\end{equation*}
$$

and, for $j \in \mathbb{N}$,

$$
\begin{equation*}
E_{j}(0)=-E_{j}(1)=-\frac{2}{j+1}\left(2^{j+1}-1\right) B_{j+1} \tag{39}
\end{equation*}
$$

It is also a well known fact that $B_{2 i+1}=0$ for all $i \in \mathbb{N}$.
As an example, taking $P_{i}(t, x)=P_{i, B}(t, x ; a)$ and $Q_{j}(s, y)=P_{j, E}(s, y ; c)$ from (12) and (13) for $0 \leq i \leq m$ and $0 \leq j \leq n$ in Theorem 3 and using (38) and (39) yields

$$
\begin{gather*}
A\left(f, P_{m}, Q_{n}\right)=\sum_{i=1}^{m} \sum_{j=2}^{n} \frac{(a-b)^{i}(c-d)^{j}}{i!\cdot j!} \cdot \frac{2\left(2^{j+1}-1\right)}{j+1} B_{i} B_{j+1} \\
\times\left[f^{(i-1, j-1)}(a, d)+f^{(i-1, j-1)}(a, c)-f^{(i-1, j-1)}(b, d)-f^{(i-1, j-1)}(b, c)\right] \tag{40}\\
\quad+(b-a) \sum_{i=1}^{m} \frac{\left(2^{i+1}-1\right)(c-d)^{j}}{(i+1)!} B_{j+1} \\
\times\left[f^{(i-1,0)}(a, d)+f^{(i-1,0)}(a, c)+f^{(i-1,0)}(b, d)+f^{(i-1,0)}(b, c)\right], \\
B\left(f, P_{m}, Q_{n}\right)= \\
\quad 2 \sum_{j=1}^{n} \frac{\left(1-2^{j+1}\right)(c-d)^{j}}{(j+1)!} B_{j+1} \int_{a}^{b}\left[f^{(0, j-1)}(t, c)+f^{(0, j-1)}(t, d)\right] d t \\
\quad+\sum_{j=2}^{n} \frac{(a-b)^{j}}{j!} B_{j} \int_{c}^{d}\left[f^{(i-1,0)}(a, s)-f^{(i-1,0)}(b, s)\right] d s \tag{41}\\
\quad+\frac{b-a}{2} \int_{c}^{d}[f(a, s)+f(b, s)] d s,
\end{gather*}
$$

and

$$
\begin{align*}
R\left(f, P_{m}, Q_{n}\right) & = \tag{42}\\
& \frac{(a-b)^{m}(c-d)^{n}}{m!\cdot n!} \int_{a}^{b} \int_{c}^{d} B_{m}\left(\frac{t-a}{b-a}\right) E_{n}\left(\frac{s-c}{d-c}\right) f^{(m, n)}(t, s) d s d t .
\end{align*}
$$

3. Estimates of the Remainders

In this section, we will give some estimates for the remainders of expansions in Theorem 2 and Theorem 3.

We firstly need to introduce some notation.
For a function $\ell:[a, b] \times[c, d] \rightarrow \mathbb{R}$, then for any $x, y \in[a, b], u, v \in[c, d]$ we define

$$
\begin{aligned}
\|\ell\|_{[x, y] \times[u, v], \infty} & :=\operatorname{ess} \sup \{|\ell(t, s)|\}, \\
& t \in[x, y] \text { or }[y, x] \text { and } s \in[u, v] \text { or }[v, u]
\end{aligned}
$$

and

$$
\|\ell\|_{[x, y] \times[u, v], p}:=\left.\left.\left|\int_{x}^{y} \int_{u}^{v}\right| h(t, s)\right|^{p} d s d t\right|^{\frac{1}{p}}, p \geq 1 .
$$

The following result establishing bounds for the remainder in the Taylor-like formula (18) holds.
Theorem 4. Assume that $\left\{P_{i}(t, x)\right\}_{i=0}^{\infty},\left\{Q_{j}(s, y)\right\}_{j=0}^{\infty}$ and f satisfy the assumptions of Theorem 2. Then we have the representation (18) and the remainder satisfies the estimate

$$
\left|T\left(f, P_{m}, Q_{n}\right)\right| \leq\left\{\begin{array}{l}
\left\|P_{m}(\cdot, x)\right\|_{[a, x], \infty}\left\|Q_{n}(\cdot, y)\right\|_{[c, y], \infty}\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], 1}, \tag{43}\\
\left\|P_{m}(\cdot, x)\right\|_{[a, x], p}\left\|Q_{n}(\cdot, y)\right\|_{[c, y], p}\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], p}, \\
\text { where } p>1, \frac{1}{p}+\frac{p}{q}=1 \\
\left\|P_{m}(\cdot, x)\right\|_{[a, x], 1}\left\|Q_{n}(\cdot, y)\right\|_{[c, y], 1}\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], \infty}
\end{array}\right.
$$

The proof follows in a straightforward fashion on using Hölder's inequality applied for the integral representation of the remainder $T\left(f, P_{m}, Q_{n}\right)$ provided by equation (22). We omit the details.

The integral remainder in the cubature formula (34) may be estimated in the following manner. Theorem 5. Assume that $\left\{P_{i}(t, x)\right\}_{i=0}^{\infty},\left\{Q_{j}(s, y)\right\}_{j=0}^{\infty}$ and f satisfy the assumptions in Theorem 3. Then one has the cubature formula (34) and, the remainder $R\left(f, P_{m}, Q_{n}\right)$ satisfies the estimate:

$$
\left|R\left(f, P_{m}, Q_{n}\right)\right| \leq\left\{\begin{array}{l}
\left\|P_{m}(\cdot, b)\right\|_{[a, b], \infty}\left\|Q_{n}(\cdot, d)\right\|_{[c, d], \infty}\left\|f^{(m, n)}\right\|_{[a, b] \times[c, d], 1}, \tag{44}\\
\left\|P_{m}(\cdot, b)\right\|_{[a, b], p}\left\|Q_{n}(\cdot, d)\right\|_{[c, d], p}\left\|f^{(m, n)}\right\|_{[a, b] \times[c, d], p}, \\
\text { where } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\left\|P_{m}(\cdot, b)\right\|_{[a, b], 1}\left\|Q_{n}(\cdot, d)\right\|_{[c, d], 1}\left\|f^{(m, n)}\right\|_{[a, b] \times[c, d], \infty}
\end{array}\right.
$$

Remark 1. If we consider the particular instances of Appell polynomials provided by (11), (12) and (13), then a number of particular formulae may be obtained. Their remainder may be estimated by the use of Theorems 4 and 5, providing a 2 -dimensional version of the results in [4].

For instance, if we consider from (11),

$$
\begin{align*}
P_{m, \lambda}(t, x ; a) & =\frac{[t-(\lambda a+(1-\lambda) x)]^{m}}{m!} \tag{45}\\
Q_{n, \mu}(s, y ; c) & =\frac{[s-(\mu c+(1-\mu) y)]^{n}}{n!} \tag{46}
\end{align*}
$$

then we obtain the following result.
Theorem 6. Let $\left\{P_{m, \lambda}(t, x ; a)\right\}_{m=0}^{\infty},\left\{Q_{n, \mu}(s, y)\right\}_{n=0}^{\infty}$ and f satisfy the assumptions of Theorem 2. Then we have the representation (18) and the remainder satisfies for $a \leq x, c \leq y$, the estimate

$$
\left|T\left(f, P_{m, \lambda}, Q_{n, \mu}\right)\right| \leq\left\{\begin{array}{l}
\frac{(x-a)^{m}(y-c)^{n}}{m!n!} \lambda_{\infty} \mu_{\infty}\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], 1} \tag{47}\\
\frac{1}{m!n!}\left[\frac{(x-a)^{m q+1}(y-c)^{n q+1}}{(m q+1)(n q+1)}\right]^{\frac{1}{q}} \lambda_{p} \mu_{p}\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], q} \\
\text { where } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\frac{(x-a)^{m+1}(y-c)^{n+1}}{(m+1)!(n+1)!} \lambda_{1} \mu_{1}\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], \infty}
\end{array}\right.
$$

where

$$
\lambda_{1}=\left[\lambda^{m+1}+(1-\lambda)^{m+1}\right], \quad \lambda_{p}=\left[\lambda^{m q+1}+(1-\lambda)^{m q+1}\right]^{\frac{1}{p}} \quad \text { and } \quad \lambda_{\infty}=\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{m} .
$$

and similar for μ_{1}, μ_{p} and μ_{∞}
Proof. Utilizing equations (45) and (46) and using Hölder's inequality for double integrals and the properties of the modulus on equation (22), then we have that

$$
\begin{align*}
&\left|\int_{a}^{x} \int_{c}^{y} T\left(f, P_{m, \lambda}, Q_{n, \mu}\right)\right| \\
&=\left|\int_{a}^{x} \int_{c}^{y} P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c) f^{(m+1, n+1)} d s d t\right| \\
& \leq \int_{a}^{x} \int_{c}^{y}\left|P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c)\right|\left|f^{(m+1, n+1)}\right| d s d t \\
& \leq\left\{\begin{array}{l}
\sup _{(t, s) \in[a, x] \times[c, y]}\left|P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c)\right|\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], 1} \\
\left(\int_{a}^{x} \int_{c}^{y}\left|P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c)\right|^{q} d t d s\right)^{\frac{1}{q}}\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], p} \\
p>1, \underset{p}{\frac{1}{p}+\frac{1}{q}=1}=1 \\
\int_{a}^{x} \int_{c}^{y}\left|P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c)\right| d t d s\left\|f^{(m+1, n+1)}\right\|_{[a, x] \times[c, y], \infty}
\end{array}\right. \tag{48}
\end{align*}
$$

Now, the result in equation (48) can be further simplified by the application of equations (45) and (46), given that,

$$
\alpha=(1-\lambda) x+\lambda a \quad \text { and } \quad \beta=(1-\mu) y+\mu c .
$$

It then follows

$$
\begin{aligned}
\sup _{(t, s) \in[a, x] \times[c, y]} & \left|P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c)\right| \\
& =\sup _{t \in[a, c]}\left|P_{m, \lambda}(t, x ; a)\right| \sup _{s \in[c, y]}\left|Q_{n, \mu}(s, y ; c)\right| \\
& =\max \left\{\frac{(\alpha-a)^{m}}{m!}, \frac{(x-\alpha)^{m}}{m!}\right\} \times \max \left\{\frac{(\beta-c)^{n}}{n!}, \frac{(y-\beta)^{n}}{n!}\right\} \\
& =\frac{(x-a)^{m}(y-c)^{n}}{m!n!}[\max \{(1-\lambda), \lambda\}]^{m} \times[\max \{(1-\mu), \mu\}]^{n} \\
& =\frac{(x-a)^{m}(y-c)^{n}}{m!n!}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{m} \times\left[\frac{1}{2}+\left|\mu-\frac{1}{2}\right|\right]^{n}
\end{aligned}
$$

giving the first inequality in (47) where we have used the fact that

$$
\max \{X, Y\}=\frac{X+Y}{2}+\left|\frac{Y-X}{2}\right|
$$

Further, we have

$$
\begin{aligned}
&\left(\int_{a}^{x} \int_{c}^{y}\left|P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c)\right|^{q} d s d t\right)^{\frac{1}{q}} \\
&=\left(\int_{a}^{x}\left|P_{m, \lambda}(t, x ; a)\right|^{q} d t\right)^{\frac{1}{q}}\left(\int_{c}^{y}\left|Q_{n, \mu}(s, y ; c)\right|^{q} d s d t\right)^{\frac{1}{q}} \\
&= \frac{1}{m!n!}\left[\int_{a}^{\alpha}(\alpha-t)^{m q} d t+\int_{\alpha}^{x}(t-\alpha)^{m q} d t\right]^{\frac{1}{q}} \\
& \quad \times\left[\int_{c}^{\beta}(\beta-s)^{n q} d s+\int_{\beta}^{y}(s-\beta)^{n q} d s\right]^{\frac{1}{q}} \\
&= \frac{1}{m!n!}\left[\frac{(x-a)^{m q+1}(y-c)^{n q+1}}{(m q+1)(n q+1)}\right]^{\frac{1}{q}} \lambda_{p} \mu_{p}
\end{aligned}
$$

producing the second inequality in (47).
Finally,

$$
\begin{aligned}
& \int_{a}^{x} \int_{c}^{y}\left|P_{m, \lambda}(t, x ; a) Q_{n, \mu}(s, y ; c)\right| d t d s \\
&=\int_{a}^{x}\left|\frac{(t-\alpha)^{m}}{m!}\right| d t \int_{c}^{y}\left|\frac{(s-\beta)^{n}}{n!}\right| d s \\
&=\left[\int_{a}^{\alpha} \frac{(\alpha-t)^{m}}{m!} d t+\int_{\alpha}^{x} \frac{(t-\alpha)^{m}}{m!} d t\right] \times\left[\int_{c}^{\beta} \frac{(\beta-s)^{n}}{n!} d s+\int_{\beta}^{y} \frac{(s-\beta)^{n}}{n!} d s\right] \\
&=\frac{(x-a)^{m+1}(y-c)^{n+1}}{(m+1)!(n+1)!}\left[(1-\lambda)^{m+1}+\lambda^{m+1}\right] \times\left[(1-\mu)^{n+1}+\mu^{n+1}\right]
\end{aligned}
$$

gives the last inequality in (47). Thus the theorem is completely proved.

Remark 2. By taking $\lambda=\mu=0$ or 1 , we recapture the result obtained by G. Hanna et al. in [3].

In a similar fashion, we can stat the remainder $R\left(f, P_{m, \lambda}, Q_{n, \mu}\right)$ estimate in the cubature formula (34) as in the following

Theorem 7. Let $\left\{P_{m, \lambda}(t, x ; a)\right\}_{m=0}^{\infty},\left\{Q_{n, \mu}(s, y)\right\}_{n=0}^{\infty}$ and f satisfy the assumptions of Theorem 3, then the remainder $R\left(f, P_{m, \lambda}, Q_{n, \mu}\right)$ estimate in the cubature formula (34) satisfies the following

$$
\left|R\left(f, P_{m, \lambda}, Q_{n, \mu}\right)\right| \leq\left\{\begin{array}{c}
\frac{(b-a)^{m}(d-c)^{n}}{m!n!} \lambda_{\infty} \mu_{\infty}\left\|f^{(m, n)}\right\|_{[a, b] \times[c, d], 1}, \tag{49}\\
\frac{1}{m!n!}\left[\frac{(b-a)^{m q+1}(d-c)^{n q+1}}{(m q+1)(n q+1)}\right]^{\frac{1}{q}} \lambda_{p} \mu_{p}\left\|f^{(m, n)}\right\|_{[a, b] \times[c, d], q}, \\
\text { where } p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
\frac{(b-a)^{m+1}(d-c)^{n+1}}{(m+1)!(n+1)!} \lambda_{1} \mu_{1}\left\|f^{(m, n)}\right\|_{[a, b] \times[c, d], \infty} .
\end{array}\right.
$$

The proof is similar to the one in Theorem 6 applied on the interval $[a, b] \times[c, d]$, and we omit the details.

Acknowledgements. This paper was completed during the second author's visit to the RGMIA between November 1, 2001 and January 31, 2002, as a Visiting Professor with grants from the Victoria University of Technology and Jiaozuo Institute of Technology.

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tebles, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Washington, 1965.
[2] P. Appell, Sur une classe de polynômes, Ann. Sci. Ecole. Norm. Sup., 9 (1880), no. 2, 119-144.
[3] G. Hanna, S. S. Dragomir and P. Cerone, A Taylor Like Formula for Mapping of Two Variables Defined on a Rectangle in The Plane, Tamsui Oxford Journal of Mathematical Sciences. 18 (2002), no. 1, 1-16.
[4] M. Matić, J. Pečarić and N. Ujević, On new estimation of the remainder in generalized Taylor's formula, Math. Inequal. Appl. 2 (1999), no. 3, 343-361.
[5] A. Sard, Linear Approximation, Amer. Math. Soc., Providence, R.I., 1963.
[6] A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall Series in Automatic Computation, 1971.
(S. S. Dragomir) School of Communications and Informatics, Victoria University of Technology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html
(Qi) Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, China
E-mail address: qifeng@jzit.edu.cn or qifeng618@hotmail.com
URL: http://rgmia.vu.edu.au/qi.html
(G. Hanna) School of Communications and Informatics, Victoria University of Technology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail address: georgey@sci.vu.edu.au
URL: http://www.staff.vu.edu.au/georgehanna
(P. Cerone) School of Communications and Informatics, Victoria University of Technology, P. O. Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail address: pc@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/cerone

[^0]: 2000 Mathematics Subject Classification. Primary 26D10, 26D15; Secondary 41A55.
 Key words and phrases. Appell polynomials, Bernoulli polynomials, Euler polynomials, generalized Taylor's formula, Taylor-like expansion, double integral, remainder.

 The second author was supported in part by NNSF ($\# 10001016$) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (\#004051800), SF for Pure Research of Natural Science of the Education Department of Henan Province (\#1999110004), Doctor Fund of Jiaozuo Institute of Technology, China.

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-1} \mathrm{E}_{\mathrm{E}} \mathrm{X}$.

