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ABSTRACT. In this paper we develop some approximations of the two-dimensional
Finite-Fourier transform in terms of the complex exponential mean. A cubature
formula is developed as a numerical application and explored via a numerical
experiment.

1. INTRODUCTION

The Fourier transform has long been a principle analytical tool in such diverse fields
as linear systems, optics, random process modeling, probability theory, quantum
physics, and boundary-value problems [3]. In particular, it has been very success-
fully applied to the restoration of astronomical data [2]. The Fourier transform,
a pervasive and versatile tool, is used in many fields of science as a mathemati-
cal or physical tool to alter a problem into one that can be more easily solved.
Some scientists understand Fourier theory as a physical phenomenon, not simply
as a mathematical tool. In some branches of science, the Fourier transform of one
function may yield another physical function [1]. Utilizing some integral identities
and inequalities developed in [4, 5, 6], we point out some approximations of the
two-dimensional Finite-Fourier transform in terms of the complex exponential mean
E (z,w) and estimate the error of approximation for different classes of continuous
mappings defined on finite intervals.

In this paper f : [a,b] X [¢,d] — R will be a continuous mapping defined on the
finite interval [a, b] X [c,d] and F (f) its Finite-Fourier transform. That is

F(f) (u,v;a,b,c,d)

/ / f x y —27i( ux+vy)dyd$ (1)

(u,v) € [a,b] X [c,d]. For a function of one variable we use the notation

b
F (g) (u:a,b) = / g (x) e 2w

2. SOME INTEGRAL INEQUALITIES

In this section we employ an identity obtained in [4] and develop inequalities for

the estimation of the two dimensional Fourier transform. The following inequality

holds.
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Theorem 1. Let f : [a,b] X [¢,d] — R be an absolutely continuous mapping on
" 21 exists on (a,b) x (c,d), then we have the

[a,b] x [c,d] and assume that [, = 555

inequality

F(f) (w,v;a,b,¢,d) —J; — Iy + I3

b= A= o if 2y € L] X )
b—a)(d—-c _
< [”wf)((q””) ] 120, i i € et x ed), @)
%+%:1,p>1;
(b—ad—a) |12, if £2, € L (18] x c.d)

for all (u,v) € [a,b] X [c,d], where

J1 =9 (u,v;a,b,c,d) :E(u)/ F(f(s,:)) (v;e,d)ds,

Jy 0 = Ja(u,v;a,b,¢,d) = E(v)/ F(f(-,t)) (u;a,b)dt,

b pd
J3: =J3(u,v;a,b,c,d) = E (u) E(v)/ / f (s,t)dtds

with
E(u) : = E (—2mwiub, —2miua) , and E(v):=

E is the exponential mean of complexr numbers, that is

e —ev
E(z,w) { z—w Zf z#wforz,wEC

w if z=w

E (—2rmivd, —2mivc) , given that

e

Furthermore we define the usual Lebesgue norms
&f (s,1)

| < d
“ondy 00, an

1fzulle = sup

t)€Ela,b]x[c,d]

dtds) 1 <p<oo.

8x8y




Proof. Using the identity obtained by Barnett and Dragomir in [4],

f f s,y)ds+fcdf(:c,t)dt

flay) === — T
f: fcdf (s,t)dtds
(b—a)(d—c)
f f P(x,5)Q(y,t) fi, (s,t) dtds 3)
(b—a)(d c)
provided that f is continuous on [a, b] X [c, d] and
s—a, a<s<zx t—c, c<t<y
(z,5) s—b, r<s<b and - Q (y.1) t—d, y<t<d.

If we replace f (z,y) in (1) by its representation from (3), we get

fu,v;a,b,c,d)

// (jfcjy / f(s,y) )dydx
+// (E/ f(x,t)dt)dydx
/ / (bj’:(uﬂvy / / f(s:t) dtds) dydz

+ R(f,u,v;a,b, ¢ d), (4)
where
R(f,u,v;a,b,c,d)
b — a — C / / 727rz u:r+vy
X {/ / P(x,s)Q (y,t) f;/’y (s,t) dtds] dydz. (5)
Let

727m (uztvy)
// ( /f S,y ds) dydx, then
b —2miux
31—/ b—adm(/ 2”“’9(/fsyds)dy>
e—27riub — ¢~ 2miua b d -
T 2riu(b—a) / (/ T (s) dy) o

— E(u) / F(F (s,)) (v, d) ds.




In a similar fashion we obtain

5, = / / (mmvy / f(x,t)dt) dyda

- <v>/ F(f (1)) (us 0, D) dt

/ / ( e et / / F(s,0) dtds) dydz
- 573 (d_c) / / £ (s,4) dtds x / / o2 | =2mivy g g
) /ab/cdf(s,t)dtds.

Using the properties of modulus on (4), we have

F(f uvabcd—f]l—f]2+f]3]

and

—27rz (uz+vy)

b—a) P(x,5)Q (y, 1) x [/, (s, t)dtds)dydx
—2m um+vy)

(b—a (d (z,5)]1Q (y,1)] x ‘f s t)|dtdsdydx

P(
/ / / | bx s) ||Q (y,t |tzmes‘f;/y(s,t)|dtdsdydx.
—a) ’

Now, we observe that

[ [ ][ 1P on@ e 0| adsi
<tz [[ ([ 1reaia)as ([ ewoia)a]
=120 /{ Gl U ”}dx
| T2
sl |( [ 5 e [ %d)
([ [

b—a)’ (d—c)’
il (S5 5
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Substituting in (8) with (9)), we obtain the first inequality in (2).

Applying Holder’s integral inequality for double integrals, we get

/b /d/b/d'”%sm(y,tﬂ |12, (s,0)| dtdsdyda
(/ / / / P (2,5) Q (v, )|thdsdydx>
(/ [ ][ St|pdtd8dydx)p o
iy -« ([ ([ 1P )
([ ([ awora)a)
o ([
X(/f((y;f)f“+<d;f>f“)dy)é

142 142

_ q (d — q

-yl [EU 0 )
(g +1)(g+2))

Utilizing (8) with (11), we get the second inequality of (2).

Finally, we obtain that

////\Pa:s (y,1) | st)‘dtdsdydx (12)

< sup |P(x,s)| sup |Q(y,t) ////{ ’dtdsdydx
(,5)€[a,b)? (y,t)€le,d)?

~(h—a) —c////|f | dtdsdydz

H H b—a d—c)

Substituting in (8) with (12), gives the final inequality in (2), where we have used
the fact that

max {X,Y} =

X+Y ‘Y—X
5 + .

Thus the theorem is completely proved. 1



3. A NUMERICAL CUBATURE FORMULA

To illustrate the use of a cubature formula, we form a composite rule from the in
equality (2).

Let us consider the arbitrary divisions I,, 1 a = 29 < x; < --- < x, = b on [a, b] and
Imic=yp <y <---<y,=don [c,d], define the sum

n—1 m—1 n—1 m—1 n—1 m—1
(.f Ina Jmau U = Z Z jl + jQ(SQ) - j3(8®) (13)
k=0 [=0 k=0 (=0 k=0 1=0

where

(83) = (U, UV Ty Thet1, Y1, yH—l);
hi = app —ap (k=0,1,2,--- ,n—1) and v:=y—y (=01 ,m-1)
Under the above assumptions the following theorem can be obtained.

Theorem 2. Let f : [a,b] X [c,d] — R be continuous mapping on [a,b] X [c,d], then
we have the cubature formula

9(f)(u,2]; a, b, C, d) = S(f, In» Jm,uu U) + R(f) In» Jm,ua U)a (14)

where F(f, In, Jm, -, ) approxzimates the Fourier Transform F(f) at every point (u,v) €
[a,b] x [c,d], and the remainder term R(f, I, Jm,-,) satisfies the bounds

|R(f I, Jm, v)|

IN

{M} (Z )y h) i, (15)
(BT ()12,

3

where

k(h) := max {hg| k=0,--- ,n—1}, and 7(v) := maz {v;|  =0,--- ,m — 1}.
Proof. Applying Theorem (1| over every subinterval [z, zri1] and [y, yi41], we can
state that

‘?(f) (8D) - 31(5D) ~ % (5D) + 1(5D)

0*f (s,t)‘

hkvl sup 92y

(szt)e[mk’zk+1] X [ylvyl+1]

9

g+1

2 [hkvl] 2
(¢+1)(¢+2)

IA

DI

2f(s,t) |P

Tr+1 (Y141
\ hkvl f 0xdy

Tk Y

dtds




where

8x8y

Th+1 Yi+1 p %
DI§ = ( / / dtds) ,

Summing over k from 0 to n — 1 and [ from 0 to m — 1, and using the triangle
inequality, we obtain

|R(f, Ly, Jim, u,v)|
= |gj<f ('LL,U; a, ba C, d) - g(fa Ina Jma u?”)‘

1 0? t
- sup —f (5,%) hiv}
9= = soclnarnl <yl | 0T0Y
n—1 m—1 % %
(XX )
< k=0 =0 DI
q¢+1)(q+2)
n-lm-1 Tl LYi+1 an (S t) p
hk'Ul/ / 8—67 dtds.
( k=0 1=0 Tk v Ty
where
0% f (s,t 0?f (s,t
W i B a2 | | 1l
(s;t) €[ zrr1) X [Y1,Y141] oy (5,t)E€[a,b] X [c,d] TOoY

thus the first inequality in (15) is obtained. Using Holder’s discrete inequality, we

have
n—- 1m21 g+l Tht1  [LYI+1 p %
hkyl T (/ / dtds)
k=0 1=0 axay
n—1m—1 - %
(S ()]
k=0
lm—1 Tp41 Yi4+1 p % p %
dtd
S [ ) T

=0

n— —1
_ ( (thz)q“) L
k=0 [=0
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which proves the second inequality in (15).
For the last inequality, we observe that

”z_i mz:l Tht1 Yi+1
hki/l/ / ‘dtd
e azzay
Th+1 Yi+1
Z hyv, / / 83: ay ‘ dtds
| dtds
= r(h)T(v) ||1

and the theorem is completely proved.

In practical applications, it is convenient to consider the equidistant partitioning of
the region [a,b] X [c,d]. Thus let

b—
L,:xy,=a+k- a’ k=0,1,---,n and
n
d—
Jm:yl:C+l' Ca lzovla"'ama
m

and we defined the sum

gn,m(f, [n7 Jm7 u, U)

n—1m-—1 n—1m-—1 n—1m-—1
= J1(ES) + Jo(ES) — J3(ES) (16)
k=0 1=0 k=0 1=0 k=0 1=0
b—a b—a —c d—c
where (£8) := (u,v;a+k- ca+ (k+1)- N e+ (l+1)- ).

m
The following corollary of Theorem 2 holds:

Corollary 1. Let f be as defined in Theorem 2. Then we have
F(f)(u,v;a,b,¢,d) = Fam(f, Ln, Jims u, ) + R (fy Iy Jins w, v), (17)

where Fam(f, Ln, Jm, ., .) approximates the Fourier Transform F(f) at every point
(u,v) € [a,b] X [c,d], and the remainder term Ry, ,,(f, In, Jm, ., .) satisfies the bounds

| Ry (fy Iny Jim, w, 0)|

(b=aPd=*)
9nm sy oo
~ ) [2le—a)d— o) oA (18)
(g+1)(q+2) nm
[Py
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4. NUMERICAL EXPERIMENT

To illustrate the use of the cubature formula, we will employ (13) to approximate
the finite Fourier transform of

f(x,y) = e3x—2y<x - y)a O0<z,y<lLl (19)

Since F(f) can be computed analytically we can gauge the performance of the
cubature rule as well as compare it to the theoretical error bound (18).

The results are shown in Table 1 where n? is the number of uniform partitions of the
domain [0, 1] x [0, 1]. It is clearly evident that the cubature rule performs extremely
well and achieves single precision accuracy when n = 16. Halving the interval size
will increase the accuracy by approximately one and a half orders, and a simple
analysis shows that the rate of convergence is at least O((nm)~2). The contrasts
with the theoretical error which is O(1/(nm)). Extending the Peano kernel, that is
using a higher order identity to that of (3), may provide a higher order theoretical
error result.

In Figure 1, we show a three dimensional plot of the finite Fourier transformed ob-
tained using (13).

n Num. Error Ratio Th. Error
1 0.32E+00 3.11 0.13E+02
2 0.13E-01  25.28 0.33E+01
4 0.48E-04 267.37 0.82E400
8 0.16E-05 30.63 0.20E400
16 0.23E-07 67.49 0.51E-01
32 0.34E-09 68.02 0.13E-01
64 0.77E-11  44.09 0.32E-02

Table 1: Numerical error (column 2) and theoretical error (column 4) in approximating

the finite Fourier transform of (19) using equation (15).

Figure 1: Finite Fourier transform of f(x,y) = €3~ 2Y(x —y), 0 < x,y < 1 evaluated
using the rule (13).
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5. CONCLUSION

The current work has modelled a means for estimating the partition required in
order to be guaranteed a certain acurracy for the two-dimensional Finite-Fourier
transform in term of the complex exponential mean.
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