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1 Introduction

Let Ω ⊂ RN (N ≥ 3) be a smooth bounded domain. Denote by B either the Dirichlet boundary operator Du := u
or the Neumann/Robin boundary operator Ru := uν + β(x)u, where ν is the unit outward normal to ∂Ω and
β ≥ 0 is in C1,µ(∂Ω), 0 < µ < 1.

Consider the semilinear elliptic equation

∆u+ au = b(x)f(u) in Ω, (1)

where f ∈ C1[0,∞), a ∈ R is a parameter and b ∈ C0,µ(Ω) satisfies b ≥ 0, b 6≡ 0 in Ω.
Such equations are also known as the stationary version of the Fisher equation [18] and the Kolmogoroff–

Petrovsky–Piscounoff equation [30] and they have been studied by Kazdan–Warner [28], Ouyang [39], del Pino
[14] and Du–Huang [15]. We point out that if f(u) = u(N+2)/(N−2), then this equation originates from the
Yamabe problem, which is a basic problem in Riemannian geometry (see, e.g., [34]).

The existence of positive solutions of (1) subject to the boundary condition

Bu = 0 on ∂Ω (2)

has been intensively studied in the case f(u) = up, p > 1 (see, e.g., [1], [2], [12], [14], [19] and [39]); this problem
is basic population model (see [24]) and is also related to some prescribed curvature problems in Riemannian

∗The research of F. Ĉırstea was done under the IPRS Programme funded by the Australian Government through DETYA.
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geometry (see [28] and [39]). Moreover, if b > 0 in Ω, then it is referred to as the logistic equation and it has a
unique positive solution if and only if a > λ1(Ω), where λ1(Ω) denotes the first eigenvalue of (−∆) in Ω subject
to the boundary condition (2).

Our general setting includes some simple prototype models from population dynamics. For instance, the
problem  ∆u+ au = b(x)up in Ω

u = 0 on ∂Ω
(3)

is (cf. [37]) the paradigmatic model in population dynamics. More precisely, the above problem has been
proposed as a model for population density of a steady-state single species u(x) when Ω is fully surrounded
by inhospitable areas. Since the unknown u corresponds to the density of the population, we investigate only
nonnegative solutions of this problem. There is a huge amount of recent papers dealing with the logistic equation
when b(x) is positive and bounded away from zero. Quite surprisingly, the general problem when the species
u is free from crowding effects on some subdomain of Ω, i.e., when b(x) vanishes on some subdomain of Ω, has
not been tackled until very recently. Assume that b(x) is positive in a proper smooth subdomain Ω′ ⊂⊂ Ω and
vanishes outside it. In this context, the heterogeneous environment Ω represents the region inhabited by the
species u, a measures its birth rate, while b(x) denotes the capacity of Ω′ to support the species u. From the
results of Brezis–Oswald [8] (see also [19, 39]), a positive solution of (3) can only exist when a ∈ (λ1(Ω), λ1(Ω′)),
being unique in that range. Here λ1(Ω) (resp., λ1(Ω′)) stands for the first Dirichlet eigenvalue of (−∆) in Ω
(resp., Ω′). Paper [21] ascertains the exact pointwise growth of the positive solutions as a↗ λ1(Ω′): the solutions
grow to infinity uniformly on compact subsets of Ω \ Ω′ and they stabilize in Ω′ to the minimal solution of the
boundary blow-up problem  ∆u+ au = b(x)up in Ω′

u = ∞ on ∂Ω′
(4)

being a = λ1(Ω′) and b ≡ 0 on ∂Ω′ in this precise case.
In the understanding of (1), as well as for (3), an important role is played by the zero set of b, namely

Ω0 := int {x ∈ Ω : b(x) = 0}

where population is free from crowding and symbiosis effects.
We suppose throughout this paper that Ω0 is smooth (possibly empty), Ω0 ⊂ Ω and b > 0 in Ω \ Ω0.
Our framework includes the Holling–Tanner population model (see [25]) that corresponds to the case b ≡ 1

and f(u) = u2 + mu/(1 + u), where m is a real constant. If m = 0 we regain the well-known diffusive logistic
problem. If m > 0 then the term −mu/(1 + u) in the equation

∆u+ au− u2 − mu

1 + u
= 0

is one example of a predation term. In this case, u is considered to be a population of prey whose growth rate is
decreased because of the existence of some predators.

By large (or blow-up) solution of (1), we mean any nonnegative solution u such that u(x) → ∞ as d(x) :=
dist (x, ∂Ω) → 0. Problems related to large solutions have a long history and have been studied by many authors
and in many contexts.

Singular value problems having large solutions have been initially studied for the special case f(u) = eu by
Bieberbach [5] (if N = 2). Problems of this type arise in Riemannian geometry. More precisely, if a Riemannian
metric of the form |ds|2 = e2u(x)|dx|2 has constant Gaussian curvature −g2 then ∆u = g2e2u. This study was
continued by Rademacher [40] (if N = 3), in connection with some concrete questions arising in the theory of
Riemann surfaces, automorphic functions and in the theory of the electric potential in a glowing hollow metal
body.
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The question of large solutions was later considered in N -dimensional domains and for other classes of nonlin-
earities (see [3], [4], [9]–[11], [13], [15], [22], [29], [31]–[33], [35], [36], [38]). For instance, Lazer and McKenna [32]
extended the results of Bieberbach and Rademacher for bounded domains in RN satisfying a uniform external
sphere condition and for nonlinearities of the type b(x)eu, where b is continuous and strictly positive on Ω.

If a ≡ 0 and b ≡ 1, Keller and Osserman (see [29], [38]) supplied a necessary and sufficient condition for the
existence of large solutions of (1), namely

(A0)
∫ ∞

1

dt√
F (t)

<∞ , where F (t) =
∫ t

0

f(s) ds

provided that f ∈ C1[0,∞) is positive and nondecreasing on (0,∞) with f(0) = 0.
In higher dimensions the notion of Gaussian curvature has to be replaced by the scalar curvature. It turns

out that if a metric of the form |ds|2 = u(x)4/(N−2)|dx|2 has constant scalar curvature −g2, then u satisfies (1)
for f(u) = u(N+2)/(N−2), a = 0 and b(x) = [(N −2)g2]/[4(N −1)]. In a celebrated paper, Loewner and Nirenberg
[35] described the precise asymptotic behavior at the boundary of large solutions to this equation and used this
result in order to establish the uniqueness of the solution. Their main result is derived under the assumption that
∂Ω consists of the disjoint union of finitely compact C∞ manifolds, each having codimension less than N/2 + 1.
More precisely, the uniqueness of a large solution is a consequence of the fact that every large solution u satisfies

u(x) = Γ(d(x)) + o(Γ(d(x))) as d(x) → 0, (5)

where Γ is defined by ∫ ∞

Γ(t)

ds√
2F (s)

=
(

(N − 2)g2

4(N − 1)

)1/2

t, for all t > 0. (6)

Kondrat’ev and Nikishkin [31] established the uniqueness of a large solution for the case a = 0, b = 1 and
f(u) = up (p ≥ 3), when ∂Ω is a C2-manifold and ∆ is replaced by a more general second order elliptic operator.

Recently, Dynkin [16] showed that there exist certain relations between hitting probabilities for some Markov
processes called superdiffusions and maximal solutions of (1) with a = 0, b = 1 and f(u) = up (1 < p ≤ 2). By
means of a probabilistic representation, a uniqueness result in domains with nonsmooth boundary was established
by le Gall [20] when p = 2. We point out that the case p = 2 arises in the study of the subsonic motion of a gas.
In this connection the question of uniqueness is of special interest.

An existence result for the problem ∆u = up with 1 < p <∞ was obtained in [36], where Matero constructed
a boundary blow-up solution in a two-dimensional domain with fractal boundary called the von Koch snowflake
domain. His approach is based on the comparison with boundary blow-up solutions in a cut-off open cone.

2 Preliminaries

In [1] it is developed an exhaustive study of positive solutions of (1), subject to u = 0 on ∂Ω, under the assumption

(A1) f ≥ 0 and f(u)/u is increasing on (0,∞).

Let H∞ define the Dirichlet Laplacian on the set Ω0 ⊂ Ω as the unique self-adjoint operator associated to the
quadratic form ψ1(u) =

∫
Ω
|∇u|2 dx with form domain

H1
D(Ω0) = {u ∈ H1

0 (Ω) : u(x) = 0 for a.e. x ∈ Ω \ Ω0}.

If ∂Ω0 satisfies an exterior cone condition, then H1
D(Ω0) coincides with H1

0 (Ω0) and H∞ is the classical
Laplace operator with Dirichlet condition on ∂Ω0.

Let λ∞,1 be the first Dirichlet eigenvalue of H∞ in Ω0. Set λ∞,1 = +∞ if Ω0 = ∅.
Define µ0 := limu↘0

f(u)
u and µ∞ := limu→∞

f(u)
u . Denote by λ1(µ0) (resp., λ1(µ∞)) the first eigenvalue of

Hµ0 = −∆ + µ0b (resp., Hµ∞ = −∆ + µ∞b) in H1
0 (Ω).

Cf. [1, Theorem A (bis)], problem (1) subject to u = 0 on ∂Ω has a positive solution if and only if a ∈
(λ1(µ0), λ1(µ∞)); moreover, this solution is unique for a in the above range.
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A corresponding result but for large solutions is provided by Theorem 1.1 in [10]. More precisely, if (A0) and
(A1) are fulfilled, then (1) has a large solution if and only if a ∈ (−∞, λ∞,1).

Note that, assuming (A1), any large solution of (1) is positive and it can exist only if the Keller–Osserman
condition (A0) holds (see [10, Remark 3.1 and Corollary A.2]).

3 Aims and outcomes

Our purpose is to find general uniqueness results of large solutions of (1) and then to give an exact two-term
asymptotic expansion of the blow-up solution near ∂Ω.

These questions find an answer in [22], but only in the special case f(u) = up (p > 1), b > 0 in Ω and b ≡ 0
on ∂Ω such that

b(x) = c[d(x)]2α + o([d(x)]2α) as d(x) → 0, for some constants c, α > 0. (7)

However, it was shown there that the degenerate case b ≡ 0 on ∂Ω is a natural restriction for b inherited from the
logistic equation. Therefore, we are still interested in this case and replace (7) by a general condition, namely

(B) b(x) = k2(d) + o(k2(d)) as d(x) → 0, for some k in K, defined later in §3.2.

But how can be extended the results of [22] to nonlinearities f other than the superlinear powers in order to
cover situations when the potential b vanishes in Ω and its behavior near ∂Ω is different from the power case.

The special feature of this paper is that the theory of regular variation plays the key role in developing the
answer.

3.1 Regular variation

The theory of regular variation was instituted in 1930 by Karamata [26, 27] and subsequently developed by him
and many others. Although Karamata originally introduced his theory in order to use it in Tauberian theorems,
regularly varying functions have been later applied in several branches of Analysis: Abelian theorems (asymptotic
of series and integrals—Fouries ones in particular), analytic (entire) functions, analytic number theory, etc. The
great potential of regular variation for probability theory and its applications was realised by Feller [17] and also
stimulated by de Haan [23]. The first monograph on regularly varying functions was written by Seneta [41],
while the theory and various applications of the subject are presented in the comprehensive treatise of Bingham,
Goldie and Teugels [6].

We denote by RVρ the set of all functions that are regularly varying at infinity with index ρ ∈ R. For brevity,
we do not specify at infinity when the regular variation occurs there. We recall in Appendix the basic definitions
and main properties of the class of regularly varying functions.

Definition 1 extends to regular variation at the origin. Precisely, we say that Z is regularly varying (on the
right) at the origin with index ρ (and write, Z ∈ RVρ(0+)) if Z(1/u) ∈ RV−ρ. Moreover, by Z ∈ NRVρ(0+) we
mean that Z(1/u) ∈ NRV−ρ. The meaning of NRVρ is given by (72) in the Appendix.

For α ≥ 0, we define

Pα =

 k : k( 1
u ) = c0

uα exp{
∫ u

c1

E(t)
t dt} (u ≥ c1), where α ≥ E ∈ C[c1,∞),

limu→∞E(u) = 0 and ci > 0 are constants

 .

By Proposition 5, Pα = NRVα(0+), for α > 0 and P0 is the set of all normalised slowly varying functions at
the origin that are nondecreasing on (0, ν), for some ν > 0.

3.2 Our framework

In [10] we prove the existence of large solutions of (1) in the general setting (A0) and (A1). Note that the paper
[22] gives the uniqueness of a large solution for the canonical varying function f(u) = up ∈ NRVp (p > 1). Thus,
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it is natural to assume (A1) and f ∈ NRVρ+1, for some ρ > 0. We do not need to require (A0), since this is
automatically fulfilled (see Remark 1 (ii)).

Recall that f ∈ NRVρ+1 (ρ > 0) if and only if f(u) can be written as

f(u) = Cuρ+1exp
{∫ u

B

ϕ(t)
t

dt

}
, ∀u ≥ B, (8)

for some constants B, C > 0, where ϕ ∈ C[B,∞) vanishes at infinity. But, for B large enough, f(u)/u is
increasing on [B,∞). So, the assumptions on f are achieved once we “paste” on [0, B] a suitable smooth
function to fulfil (A1). For instance, we may simply define f(u) = Cuρ+1exp

{∫ u

0
z(t)

t dt
}

, for all u ≥ 0, where
0 ≤ z ∈ C[0,∞) satisfies limt↘0 z(t)/t ∈ [0,∞) and limu→∞ z(u) = 0. Clearly, f(u) = up, f(u) = up ln(u + 1),
and f(u) = up arctanu, p > 1, fall into this category.

Remark 1 Let (A1) be fulfilled and f ∈ NRVρ+1. Then
(i) ρ ≥ 0. Indeed, if ρ < 0 then Proposition 6 yields limu→∞ f(u)/u = 0, which contradicts (A1).
(ii) If ρ 6= 0, then (A0) holds (since limu→∞ f(u)/ur = ∞, for all r ∈ (1, 1 + ρ)). The converse implication is

not always true as we can see by taking f(u) = u ln4(u+ 1). But, there are cases for which ρ = 0 and (A0) fails
so that (1) has no large solutions. This is illustrated by f(u) = u lnj(u+ 1) with j ∈ [0, 2].

Regarding b, assume that (B) holds with K defined as the set of all positive, nondecreasing k ∈ C1(0, ν) that
satisfy

lim
t↘0

(∫ t

0
k(s) ds
k(t)

)(i)

:= `i, i = 0, 1.

Remark 2 For every k ∈ K, `0 = 0 and `1 ∈ [0, 1]. Indeed, `0 = 0 since limt↘0 ln
(∫ t

0
k(s) ds

)
= −∞. By

l’Hospital’s rule, we derive `1 ≥ 0. By the definition of `1 and monotonicity of k, we deduce `1 ≤ 1.

Consequently, K = K(01] ∪ K0, where K(01] := {k ∈ K : `1 ∈ (0, 1]} and K0 := {k ∈ K : `1 = 0}.
We now show how to built at once functions k ∈ K for each `1 ∈ [0, 1].

Proposition 1 Let S ∈ NRVm, for some m > 0. Hence
(i) k(t) = exp{−S(1/t)} ∈ K with `1 = 0.
(ii) k(t) = 1/S(1/t) ∈ K with `1 = 1/(m+ 1) ∈ (0, 1).
(iii) k(t) = 1/ ln[S(1/t)] ∈ K with `1 = 1.

Note that (7) is the particular case of (B) with k(t) =
√
c tα ∈ K∩Pα (α > 0). Hence, it is natural to ask us

if there is any connection between K and Pα. The answer is that K is a huge class of functions, even larger than⋃
α≥0 Pα. More precisely, we prove that K(01] ≡

⋃
α≥0 Pα and K0 ≡ R0, where

R0 =

 k : k( 1
u ) = d0u

Λ(u) exp{−
∫ u

d1

ds
sΛ(s)} (u ≥ d1), where 0 < Λ ∈ C1[d1,∞),

limu→∞ Λ(u) = 0, limu→∞ uΛ′(u) = 0 and di > 0 are constants

 .

Proposition 2 (Characterisation Theorem of K). We have

K =
⋃
α≥0

Pα

⋃
R0.

Moreover, k ∈ K(01] if and only if k ∈ Pα for some α ≥ 0, where α = (1− `1)/`1.
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4 Main results

We first prove the uniqueness of a large solution for (1). This lies upon the crucial observation that all blow-up
solutions have the same boundary behavior (9). More exactly, we find

Theorem 1 Assume f ∈ NRVρ+1 with ρ > 0, (A1) and (B) hold. Then, for any a ∈ (−∞, λ∞,1), (1) admits a
unique large solution ua. Moreover, the asymptotic behavior is given by

ua(x) = ξ0h(d) + o(h(d)) as d(x) → 0, (9)

where ξ0 =
(

2+`1ρ
2+ρ

)1/ρ

and h is defined by

∫ ∞

h(t)

ds√
2F (s)

=
∫ t

0

k(s) ds, ∀t ∈ (0, ν). (10)

Through a very general and unitary approach, our Theorem 1 recovers the previous results of [35] and [22].
Indeed, for k(t) = [(N−2)g2/4(N−1)]1/2 in (B) and f(u) = u(N+2)/(N−2), (9) reduces to relation (5), prescribed
by Loewner and Nirenberg [35] for their problem. Moreover, if f(u) = up (p > 1) and k(t) =

√
c tα (α > 0), then

we regain the uniqueness results of [22].
The aim of Theorems 2 and 3 is to find the two-term blow-up rate of ua under the assumptions of Theorem 1,

but with (B) subsequently replaced by

(B̃) b(x) = k2(d)(1 + c̃dθ + o(dθ)) as d(x) → 0, where θ > 0, c̃ ∈ R are constants.

The two-term asymptotic expansion of ua near ∂Ω depends on the chosen subclass for k ∈ K and the additional
hypotheses on f (by means of ϕ given by (8)).

In order to avoid repetition, we define

Fρη = {f ∈ NRVρ+1 (ρ > 0) : either ϕ ∈ RVη or − ϕ ∈ RVη} , η ∈ (−ρ− 2, 0]
Fρ0,τ = {f ∈ Fρ0 : lim

u→∞
(lnu)τϕ(u) = `? ∈ R}, τ ∈ (0,∞)

Pα,τ = {k ∈ Pα : lim
u→∞

(lnu)τE(u) = `] ∈ R}, α ∈ [0,∞)

R0,ζ =
{
k ∈ R0 : lim

u→∞
uζ+1Λ′(u) = `? ∈ R

}
, ζ ∈ (0,∞).

Further in the paper, η, τ , α, and ζ are understood in the above range.

Theorem 2 Assume k ∈ R0,ζ , (A1), (B̃) and any one of the cases
(i) f(u) = Cuρ+1 in a neighborhood of infinity (i.e., ϕ ≡ 0 in (8)).
(ii) f ∈ Fρη with η 6= 0.
(iii) f ∈ Fρ0,τ1 with τ1 = $/ζ, where $ = min{θ, ζ}.
Then, for any a ∈ (−∞, λ∞,1), the two-term blow-up rate of ua is

ua(x) = ξ0h(d)(1 + χd$ + o(d$)) as d(x) ↘ 0 (11)

where

χ =


− (1 + ζ)`?

2ζ
Heaviside(θ − ζ)− c̃

ρ
Heaviside(ζ − θ) := χ1 for (i) and (ii)

χ1 −
`?

ρ

(
−ρ`?

2

)τ1
(

1
ρ+ 2

+ ln ξ0

)
for (iii).

Theorem 3 Assume k ∈ Pα,τ , (A1), (B̃) and any one of the cases
(i) f ∈ Fρη with η`] 6= 0.
(ii) f ∈ Fρ0,τ with (α2 + `2] )[(`

?)2 + `2] ] 6= 0.
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Then, for any a ∈ (−∞, λ∞,1), the two-term blow-up rate of ua is

ua(x) = ξ0h(d)[1 + χ̃ (− ln d)−τ + o((− ln d)−τ )] as d(x) ↘ 0, (12)

where

χ̃ =


`]

(α+ 1)(ρ+ 2α+ 2)
:= χ2 for (i)

χ2 −
`?

ρ

(
ρ

2(α+ 1)

)τ [ 2α
(ρ+ 2)(ρ+ 2α+ 2)

+ ln ξ0

]
for (ii).

We point out that the asymptotic general results stated in the above theorems do not concern the difference
or the quotient of u(x) and ψ(d(x)), as established in [4, 5, 33, 40] for a = 0 and b = 1, where ψ is a large solution
of

ψ′′(r) = f(ψ(r)) on (0,∞) .

For instance, Bieberbach [5] and Rademacher [40] proved that |u(x) − ψ(d(x))| is bounded in a neighborhood
of the boundary. Their result was improved by Bandle and Essén [3] who established the more precise estimate
limd(x)→0 (u(x)− ψ(d(x))) = 0.

The next result specifies the subset K0,ζ of K0 (resp., the subset K(01],τ of K(01]) which is equivalent to R0,ζ

(resp.,
⋃

α≥0 Pα,τ ). This reveals, on the one hand, the properties of k in R0,ζ (resp., Pα,τ ) captured through
Λ(u) (resp., E(u)). On the other hand, the selection of functions k in K0,ζ (resp., K(01],τ ) can be carried out by
deciding whether or not the form of k is like that described by R0,ζ (resp., Pα,τ ). Set

K0,ζ =

{
k ∈ K0 : lim

t↘0

1
tζ

(∫ t

0
k(s) ds
k(t)

)′
:= L? ∈ R

}
,

K(01],τ =

{
k ∈ K(01] : lim

t↘0
(− ln t)τ

[(∫ t

0
k(s) ds
k(t)

)′
− `1

]
:= L] ∈ R

}
.

Proposition 3 The following hold:
(i) R0,ζ ≡ K0,ζ and the relation between L? and `? is

ζL? + (1 + ζ)`? = 0.

(ii)
⋃

α≥0 Pα,τ ≡ K(01],τ . Moreover, k ∈ Pα,τ (α ≥ 0) if and only if k ∈ K(01],τ , where α = (1 − `1)/`1 and
the relation between L] and `] is

(1 + α)2L] − `] = 0.

For the proofs of Propositions 1–3 we refer to §6.

5 Properties of f and h

Firstly, we show that f ∈ NRVρ+1 can be stated in different ways, provided that (A1) holds. Secondly, under
the assumptions of Theorem 1, we explore a whole range of properties for the function h, defined implicitely by
(10) (see Lemma 2). Function h can be seen as the link between f and k. In view of (9), the information we
can get about h is critical in describing the unique large solution ua of (1). Thirdly, we study some asymptotical
properties of f ∈ Fρη (see Lemma 3).

Lemma 1 Assume (A1). The following assertions are equivalent:
(i) f ∈ NRVρ+1.
(ii) f ′ ∈ RVρ.
(iii) limu→∞ uf ′(u)/f(u) := ϑ <∞.
(iv) limu→∞ (F/f)′ (u) := γ > 0.
Moreover, ρ, ϑ and γ are connected by γ = 1/(ρ+ 2) = 1/(ϑ+ 1).
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Proof. For the equivalence between (i) and (iii) we refer to Appendix.
Since ρ ≥ 0 (by Remark 1 (i)), Proposition 7 (i) shows that (iii) is implied by (ii) and ϑ = ρ+1. The converse

implication follows by Proposition 8 (i).
We now prove that (iii) is equivalent to (iv). If (iii) holds, then by L’Hospital’s rule
limu→∞

uf(u)
F (u) = 1 + ϑ. Hence ϑ

1+ϑ = limu→∞[1− (F/f)′(u)] i.e., γ = 1
ϑ+1 .

Conversely, (iv) yields (F/f)′ ≥ γ/2 on [s1,∞), for some s1 > 0. Thus,

(F/f)(u) ≥ γ(u− s1)/2 + (F/f)(s1) , ∀u ≥ s1 .

Passing to the limit as u → ∞, we find limu→∞
F (u)
f(u) = ∞. Thus, limu→∞

uf(u)
F (u) = 1

γ . Since 1 − γ :=

limu→∞
F (u)f ′(u)

f2(u) , we obtain limu→∞
uf ′(u)
f(u) = 1−γ

γ . So, (iii) holds with ϑ = (1− γ)/γ.

Corollary 1 If f ∈ NRVρ+1 with ρ > 0 and (A1) holds, then

lim
u→∞

Ξ(u) := lim
u→∞

√
F (u)

f(u)
∫∞

u
[F (s)]−1/2 ds

=
ρ

2(ρ+ 2)
.

Proof. By L’Hospital’s rule, limu→∞
F (u)
f2(u) = 0. Using Lemma 1 and L’Hospital’s rule, we deduce

lim
u→∞

Ξ(u) = lim
u→∞

(
−1

2
+
f ′(u)F (u)
f2(u)

)
=

1
2
− γ =

ρ

2(ρ+ 2)
.

Lemma 2 Assume f ∈ NRVρ+1 with ρ > 0, (A1) and (B) hold. Then function h, defined by (10), has the
following properties:

(i) h ∈ C2(0, ν), limt↘0 h(t) = ∞ and limt↘0 h
′(t) = −∞.

(ii) limt↘0 h
′′(t)/[k2(t)f(h(t)ξ)] = (2 + ρ`1)/[ξρ+1(2 + ρ)], ∀ξ > 0.

(iii) limt↘0 h(t)/h′′(t) = limt↘0 h
′(t)/h′′(t) = limt↘0 h(t)/h′(t) = 0.

(iv) limt↘0 h(t)h′′(t)/[h′(t)]2 = (2 + ρ`1)/2.
(v) limt↘0[ln k(t)]/[lnh(t)] = ρ(`1 − 1)/2.
(vi) limt↘0 h

′(t)/[th′′(t)] = −ρ`1/(2 + ρ`1).
(vii) limt↘0 h(t)/[t2h′′(t)] = ρ2`21/[2(2 + ρ`1)].
(viii) limt↘0 h(t)/[th′(t)] = limt↘0[ln t]/[lnh(t)] = −ρ`1/2.
(ix) Assuming `1 = 0, we find limt↘0 t

jh(t) = ∞, for all j > 0.
(x) Furthermore, if k ∈ R0,ζ then

lim
t↘0

1
tζ lnh(t)

= −ρ`?
2

and lim
t↘0

h′(t)
tζ+1h′′(t)

=
ρ`?
2ζ

. (13)

Proof. (i) and (ii). Using (10), we see that h ∈ C2(0, ν) and limt↘0 h(t) = ∞. Next, for any t ∈ (0, ν), we have
h′(t) = −k(t)

√
2F (h(t)) and

h′′(t) = k2(t)f(h(t))

{
1 + 2Ξ(h(t))

[(∫ t

0
k(s) ds
k(t)

)′
− 1

]}
. (14)

By Corollary 1 and (14), we conclude (ii) for ξ = 1. But f ∈ RVρ+1 so that we easily derive (ii), for each ξ > 0.
Consequently, h′′(t) > 0 on (0, δ) for some δ > 0. This and limt↘0 h(t) = ∞ imply limt↘0 h

′(t) = −∞.
(iii). Using (ii), Corollary 1 and Remark 2, we obtain

lim
t↘0

h′(t)
h′′(t)

=
−2(2 + ρ)
2 + ρ`1

lim
t↘0

∫ t

0
k(s) ds
k(t)

Ξ(h(t)) =
−ρ`0

2 + ρ`1
= 0. (15)

Thus, from limt↘0 h
′(t) = −∞ and L’Hospital’s rule, we infer that limt↘0

h(t)
h′(t) = 0. This and (15) lead to

limt↘0
h(t)

h′′(t) = 0 which concludes (iii).
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(iv). By L’Hospital’s rule, limu→∞
uf(u)
F (u) = 1

γ = ρ+ 2. Using (ii), we have

lim
t↘0

h(t)h′′(t)
[h′(t)]2

= lim
t↘0

h′′(t)
k2(t)f(h(t))

h(t)f(h(t))
2F (h(t))

=
2 + ρ`1

2
. (16)

(v). By Corollary 1, we obtain

lim
t↘0

k′(t)
k(t)

h(t)
h′(t)

= lim
t↘0

h(t)f(h(t))
F (h(t))

−k′(t)
(∫ t

0
k(s) ds

)
k2(t)

Ξ(h(t)) =
ρ(`1 − 1)

2
. (17)

By L’Hospital’s rule, it follows that limt↘0
ln k(t)
ln h(t) = ρ(`1−1)

2 .
(vi). Using (ii) and Corollary 1, we find

lim
t↘0

h′(t)
th′′(t)

=
−2(2 + ρ)
2 + ρ`1

lim
t↘0

∫ t

0
k(s) ds
tk(t)

Ξ(h(t)) =
−ρ`1

2 + ρ`1
.

(vii). By (iv) and (vi), we have

lim
t↘0

h(t)
t2h′′(t)

= lim
t↘0

h(t)h′′(t)
[h′(t)]2

[
h′(t)
th′′(t)

]2
=

ρ2`21
2(2 + ρ`1)

.

(viii). If `1 6= 0, then by (vi) and (vii), we have

lim
t↘0

h(t)
th′(t)

= lim
t↘0

h(t)
t2h′′(t)

th′′(t)
h′(t)

=
−ρ`1

2
.

If `1 = 0, then

lim
t↘0

k(t)
tk′(t)

= lim
t↘0

k2(t)

k′(t)
(∫ t

0
k(s) ds

) ∫ t

0
k(s) ds
tk(t)

= 0 (18)

which, together with (17), yields

lim
t↘0

h(t)
th′(t)

= lim
t↘0

k′(t)h(t)
k(t)h′(t)

k(t)
tk′(t)

= 0.

Therefore, by L’Hospital’s rule, we conclude that

lim
t↘0

ln t
lnh(t)

= lim
t↘0

h(t)
th′(t)

=
−ρ`1

2
.

(ix). By (viii), limt↘0
ln t

ln h(t) = 0 provided that `1 = 0. Thus,

lim
t↘0

ln[tjh(t)] = lim
t↘0

[
1 + j

ln t
lnh(t)

]
lnh(t) = ∞, ∀j > 0

which proves (ix).

(x). Assume that k ∈ R0,ζ , for some ζ > 0. Then, by Proposition 3, k ∈ K0,ζ and limt↘0

∫ t

0
k(s) ds

tζ+1k(t)
=

L?/(ζ + 1) = −`?/ζ. It follows that

−`?
ζ

= lim
t↘0

∫ t

0
k(s) ds

tζ+1k(t)
k2(t)

k′(t)
(∫ t

0
k(s) ds

) = lim
t↘0

k(t)
tζ+1k′(t)

. (19)

By L’Hospital’s rule, we obtain

lim
t↘0

1
tζ ln k(t)

= lim
t↘0

−ζk(t)
tζ+1k′(t)

= `?. (20)
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Using assertion (v) and (20), we find

lim
t↘0

1
tζ lnh(t)

= lim
t↘0

1
tζ ln k(t)

ln k(t)
lnh(t)

=
−ρ`?

2
.

By Corollary 1 and (15), we deduce

lim
t↘0

h′(t)
tζ+1h′′(t)

= −ρ
2

lim
t↘0

∫ t

0
k(s) ds

tζ+1k(t)
=
ρ`?
2ζ

.

This completes the proof of the lemma.

For any u > 0, define

T1,τ (u) =
[

ρ

2(ρ+ 2)
− Ξ(u)

]
(lnu)τ and T2,τ (u) =

[
f(ξ0u)
ξ0f(u)

− ξρ
0

]
(lnu)τ . (21)

Remark 3 If ϕ ≡ 0 in (8), then T1,τ (u) = T2,τ (u) = 0, for any u ≥ B.

Lemma 3 Assume (A1) and f ∈ Fρη. The following hold:
(i) If f ∈ Fρ0,τ , then

lim
u→∞

T1,τ (u) =
−`?

(ρ+ 2)2
and lim

u→∞
T2,τ (u) = ξρ

0`
? ln ξ0.

(ii) If f ∈ Fρη with η 6= 0, then limu→∞ T1,τ (u) = limu→∞ T2,τ (u) = 0.

Proof. Using limu→∞
uf(u)
F (u) = ρ+ 2, Corollary 1 and L’Hospital’s rule, we find

lim
u→∞

T1,τ (u) =
ρ

2
lim

u→∞

ρ
2(ρ+2)

∫∞
u

[F (s)]−1/2 ds−
√

F (u)

f(u)

u[F (u)]−1/2 (lnu)−τ

= lim
u→∞

[
ρ+ 1
ρ+ 2

− F (u)f ′(u)
f2(u)

]
(lnu)τ := lim

u→∞
Q1,τ (u).

A simple calculation shows that, for any u > 0,

Q1,τ (u) =
1

ρ+ 2

[
ρ+ 1− uf ′(u)

f(u)

]
(lnu)τ +

uf ′(u)
f(u)

[
1

ρ+ 2
− F (u)
uf(u)

]
(lnu)τ

=:
1

ρ+ 2
Q2,τ (u) +

uf ′(u)
f(u)

Q3,τ (u).

Since (8) holds with ϕ ∈ RVη or −ϕ ∈ RVη, we can assume B > 0 such that ϕ 6= 0 on [B,∞). For any u > B,
we have Q2,τ (u) = −ϕ(u)(lnu)τ and

Q3,τ (u) =

(
−
∫ B

0

f(s) ds+
CBρ+2

ρ+ 2

)
(lnu)τ

uf(u)
+

∫ u

B
f(s)ϕ(s) ds

(ρ+ 2)uf(u)ϕ(u)
ϕ(u)(lnu)τ .

Since either fϕ ∈ RVρ+η+1 or −fϕ ∈ RVρ+η+1, Proposition 7 (i) leads to

lim
u→∞

uf(u)ϕ(u)∫ u

B
f(x)ϕ(x) dx

= ρ+ η + 2.

If (i) holds, then limu→∞Q2,τ (u) = −`? and limu→∞Q3,τ (u) = `?/(ρ+ 2)2. Thus,

lim
u→∞

T1,τ (u) = lim
u→∞

Q1,τ (u) = −`?/(ρ+ 2)2.
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If (ii) holds, then limu→∞(lnu)τϕ(u) = 0 (see Proposition 6). It follows that

lim
u→∞

Q2,τ (u) = lim
u→∞

Q3,τ (u) = 0

which yields limu→∞ T1,τ (u) = 0. Note that the proof is finished if ξ0 = 1, since T2,τ (u) = 0 for each u > 0.
Arguing by contradiction, let us suppose that ξ0 6= 1. Then, by (8),

T2,τ (u) = ξρ
0

[
exp

{∫ ξ0u

u

ϕ(t)
t

dt

}
− 1

]
(lnu)τ , ∀u > B/ξ0.

But, limu→∞ ϕ(us)/s = 0, uniformly with respect to s ∈ [ξ0, 1]. So

lim
u→∞

∫ ξ0u

u

ϕ(t)
t

dt = lim
u→∞

∫ ξ0

1

ϕ(su)
s

ds = 0

which leads to

lim
u→∞

T2,τ (u) = ξρ
0 lim

u→∞

(∫ ξ0u

u

ϕ(t)
t

dt

)
(lnu)τ .

If (i) occurs then, by Proposition 4,

lim
u→∞

T2,τ (u) = ξρ
0 lim

u→∞
(lnu)τϕ(u)

∫ ξ0

1

ϕ(tu)
ϕ(u)

dt

t
= ξρ

0`
? ln ξ0.

If (ii) occurs, then by L’Hospital’s rule and Proposition 6, we infer that

lim
u→∞

T2,τ (u) =
−ξρ

0

τ
lim

u→∞
[ϕ(ξ0u)− ϕ(u)] (lnu)τ+1 = 0.

The proof of our lemma is now complete.

6 Characterisation of K and its subclasses

We present here the proofs of Propositions 1–3.

Proof of Proposition 1. The assumption S ∈ NRVm yields limu→∞
uS′(u)
S(u) = m > 0. Thus, in any of the cases

(i), (ii) or (iii), limt↘0 k(t) = 0 and k is an increasing C1-function on (0, ν), for ν > 0 small enough.
(i) It is clear that limt↘0

tk′(t)
k(t) ln k(t) = limt↘0

−S′(1/t)
tS(1/t) = −m. By l’Hospital’s rule, `0 = limt↘0

k(t)
k′(t) = 0 and

limt↘0

(∫ t

0
k(s) ds

)
ln k(t)

tk(t) = − 1
m . Consequently, 1− `1 := limt↘0

(∫ t

0
k(s) ds

)
k′(t)

k2(t) = 1.

(ii) We see that limt↘0
tk′(t)
k(t) = limt↘0

S′(1/t)
tS(1/t) = m. By l’Hospital’s rule, `0 = 0 and limt↘0

∫ t

0
k(s) ds

tk(t) = 1
m+1 .

So, `1 = 1− limt↘0

∫ t

0
k(s) ds

tk(t)
tk′(t)
k(t) = 1

m+1 .

(iii) We have limt↘0
tk′(t)
k2(t) = limt↘0

S′(1/t)
tS(1/t) = m. By l’Hospital’s rule, we find limt↘0

∫ t

0
k(s) ds

tk(t) = 1. Thus,

`0 = 0 and `1 = 1− limt↘0

∫ t

0
k(s) ds

t
tk′(t)
k2(t) = 1.

Proof of Proposition 2. Let us denote P (u) = k(1/u).
Let k ∈ K be arbitrary. Assume that `1 6= 0. A simple calculation shows that

(0,∞) 3 1
`1

= lim
t↘0

tk(t)∫ t

0
k(s) ds

= lim
u→∞

P (u)
u∫∞

u
P (s)
s2 ds

(22)

lim
t↘0

tk′(t)
k(t)

= lim
t↘0

(∫ t

0
k(s) ds

)
k′(t)

k2(t)
tk(t)∫ t

0
k(s) ds

=
1− `1
`1

. (23)
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From Proposition 8 (ii) and (22), we find P ∈ RV1−1/`1 . Furthermore, by (23)

lim
u→∞

uP ′(u)
P (u)

= lim
u→∞

−k′(1/u)
uk(1/u)

=
`1 − 1
`1

so that P ∈ NRV1−1/`1 . Hence, k ∈ NRV1/`1−1(0+). This implies K(01] ⊆
⋃

α≥0 Pα.
Conversely, assume that k ∈ Pα for an arbitrary α ≥ 0. Hence, P ∈ NRV−α.
On the one hand, we have

α = lim
u→∞

−uP ′(u)
P (u)

= lim
u→∞

k′(1/u)
uk(1/u)

= lim
t↘0

tk′(t)
k(t)

. (24)

If k ∈ Pα, α > 0, then k is increasing on some neighborhood (on the right) of zero.
On the other hand, by Proposition 7 (ii) we find

α+ 1 = lim
u→∞

P (u)
u∫∞

u
P (x)
x2 dx

= lim
t↘0

tk(t)∫ t

0
k(s) ds

(25)

which yields `0 = limt↘0

∫ t

0
k(s) ds

k(t) = 0. Combining (24) and (25), we deduce

`1 = lim
t↘0

(∫ t

0
k(s) ds
k(t)

)′
= 1− lim

t↘0

∫ t

0
k(s) ds
tk(t)

tk′(t)
k(t)

=
1

α+ 1
.

We easily conclude that Pα ⊆ K(01].
We now prove that K0 ≡ R0. Let k ∈ K0. For any u ∈ (1/ν,∞), we define

Λ(u) =

∫∞
u

P (s)
s2 ds

P (u)
u

=

∫ 1/u

0
k(s) ds

1
uk(

1
u )

. (26)

From the definition of `1 and L’Hospital’s rule, we infer that

lim
t↘0

(∫ t

0
k(s) ds

)
k′(t)

k2(t)
= 1 and lim

t↘0

∫ t

0
k(s) ds
tk(t)

= 0. (27)

It follows that limu→∞ Λ(u) = 0. A simple calculation gives

1
xΛ(x)

=
P (x)
x2∫∞

x
P (s)
s2 ds

= −
[
ln
(∫ ∞

x

P (s)
s2

ds

)]′
, ∀x > d1 := 1/ν.

Integrating with respect to x over [d1, u] (u > d1), we obtain∫ u

d1

dx

xΛ(x)
= − ln

(∫ ∞

u

P (s)
s2

ds

)
+ ln

(∫ ∞

d1

P (s)
s2

ds

)
= − ln

(
P (u)Λ(u)

u

)
+ ln

(∫ ∞

d1

P (s)
s2

ds

)
, ∀u > d1.

This yields

k(1/u) =
d0u

Λ(u)
exp

{
−
∫ u

d1

ds

sΛ(s)

}
(u > d1), where d0 = Const. > 0. (28)

By a direct computation, we find
k′(1/u)
uk(1/u)

= −1 +
1

Λ(u)
+
uΛ′(u)
Λ(u)

. (29)
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Combining (26), (27) and (29), we arrive at

1 = lim
u→∞

(∫ 1/u

0
k(s) ds

)
k′(1/u)

k2(1/u)
= 1 + lim

u→∞
(uΛ′(u)− Λ(u))

which produces limu→∞ uΛ′(u) = 0. Consequently, K0 ⊆ R0.
Conversely, suppose k ∈ R0 is arbitrary. Notice that limu→∞ Λ(u) = 0 yields limu→∞

∫ u

d1

ds
sΛ(s) = ∞. Since k

has the form (28), we recover (29) and, moreover,

P (u)
u2

=
k(1/u)
u2

= −d0

(
exp

{
−
∫ u

d1

ds

sΛ(s)

})′
, ∀u > d1.

Hence, by integration we obtain∫ ∞

u

P (x)
x2

dx = d0 exp
{
−
∫ u

d1

ds

sΛ(s)

}
=

Λ(u)P (u)
u

, ∀u > d1

which gives the expression of Λ(u), namely (26). Since limu→∞ Λ(u) = 0, we can read (26) as limt↘0

∫ t

0
k(s) ds

tk(t) = 0.

So, in particular, limt↘0

∫ t

0
k(s) ds

k(t) = 0.
Using the given properties of Λ and the regained relations (26), (29) we deduce

lim
u→∞

(∫ 1/u

0
k(s) ds

)
k′(1/u)

k2(1/u)
= 1 + lim

u→∞
(uΛ′(u)− Λ(u)) = 1.

It follows that limt↘0

(∫ t

0
k(s) ds

)
k′(t)

k2(t) = 1 which shows that `1 = 0 and k′ > 0 on some interval (0, ν). Therefore,
R0 ⊆ K0. This concludes the proof.

Proof of Proposition 3. Note that Proposition 2 tells us that R0 ≡ K0 and
⋃

α≥0 Pα ≡ K(01].
(i) By the proof of Proposition 2, the expression of Λ in terms of k is given by (26) and

1−

(∫ 1/u

0
k(s) ds

)
k′(1/u)

k2(1/u)
= Λ(u)− uΛ′(u). (30)

We first prove that R0,ζ ⊆ K0,ζ . Let k ∈ R0,ζ be arbitrary. By L’Hospital’s rule, limu→∞ uζΛ(u) = −`?/ζ.
By using (30), we find

lim
u→∞

uζ

1−

(∫ 1/u

0
k(s) ds

)
k′(1/u)

k2(1/u)

 = − (1 + ζ)`?
ζ

.

Therefore, k ∈ K0,ζ and L? = −(1 + ζ)`?/ζ.
Second, we choose arbitrarily k ∈ K0,ζ in order to prove that k ∈ R0,ζ . Since `0 = 0 (see Remark 2), by

L’Hospital’s rule, we derive limt↘0

∫ t

0
k(s) ds

k(t)tζ+1 = L?

ζ+1 . This, combined with (26), yields limu→∞ uζΛ(u) = L?/(ζ+1).
By the definition of L? and (30), we conclude that

L? = lim
u→∞

uζ(Λ(u)− uΛ′(u)) =
L?

ζ + 1
− lim

u→∞
uζ+1Λ′(u).

Consequently, limu→∞ uζ+1Λ′(u) = −ζL?/(ζ + 1), i.e., k ∈ R0,ζ .
(ii) Suppose that k ∈ Pα,τ , for some α ≥ 0. A simple calculation leads to

lim
t↘0

(− ln t)τ

[
1− `1
`1

− tk′(t)
k(t)

]
= lim

u→∞
(lnu)τE(u) = `] (31)
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since α and `1 are connected by α = 1/`1 − 1. By L’Hospital’s rule, we find

lim
t↘0

(− ln t)τ

[
`1 −

∫ t

0
k(s) ds
tk(t)

]
= lim

t↘0

(`1 − 1)k(t) + `1tk
′(t)

k(t)(− ln t)−τ
[
1 + tk′(t)

k(t) −
τ

ln t

]
(32)

= −`21 lim
t↘0

(− ln t)τ

[
1− `1
`1

− tk′(t)
k(t)

]
=

−`]
(α+ 1)2

.

Clearly, for each t ∈ (0, ν), we have

(− ln t)τ

[(∫ t

0
k(s) ds
k(t)

)′
− `1

]
= (− ln t)τ

1− `1 −

(∫ t

0
k(s) ds

)
k′(t)

k2(t)


(33)

=
tk′(t)
k(t)

(− ln t)τ

[
`1 −

∫ t

0
k(s) ds
tk(t)

]
+ `1 (− ln t)τ

[
1− `1
`1

− tk′(t)
k(t)

]
.

By (31)–(33), we derive that k ∈ K(01],τ and L] = `]/(1 + α)2.
Conversely, let k ∈ K(01],τ be arbitrary. Then k ∈ Pα with α = 1/`1 − 1. Moreover, by L’Hospital’s rule, we

find

lim
t↘0

(− ln t)τ

(∫ t

0
k(s) ds
tk(t)

− `1

)
= lim

t↘0

(∫ t

0
k(s) ds

k(t)

)′
− `1

(− ln t)−τ
(
1− τ

ln t

) = L]. (34)

By virtue of (33) and (34), we deduce that

L] = −αL] +
1

α+ 1
lim

u→∞
(lnu)τE(u).

Consequently, limu→∞(lnu)τE(u) = (1 + α)2L]. Hence, k ∈ Pα,τ with `] = (1 + α)2L]. This completes the
proof.

Lemma 4 If k ∈ R0 or k ∈ Pα,τ with α2 + `2] 6= 0, then

lim
t↘0

k′(t)
k(t)tθ−1

= ∞, for every θ > 0. (35)

Proof. If k ∈ R0 then, by Proposition 2, k ∈ K0. Hence, (27) holds. Consequently, limt↘0
tk′(t)
k(t) = ∞, which

leads to (35).
Assume that k ∈ Pα,τ with α2 + `2] 6= 0. Two cases may occur:

(i) α > 0. We have limt↘0
tk′(t)
k(t) = α, which yields (35).

(ii) α = 0 when α2 + `2] 6= 0 reads `] 6= 0. Since k ∈ P0,τ , we deduce

lim
t↘0

k′(t)
k(t)tθ−1

= lim
u→∞

−E(u)uθ = −`] lim
u→∞

uθ

(lnu)τ
= ∞.

7 Proof of Theorem 1

Fix a ∈ (−∞, λ∞,1). Then, by [10, Theorem 1.1], equation (1) has at least a large solution. We show that, in
order to establish the uniqueness, it is enough to prove that (9) holds for any large solution of (1). Indeed, if
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u1 and u2 are two arbitrary large solutions of (1) then (9) yields limd(x)↘0
u1(x)
u2(x) = 1. Hence, for any ε ∈ (0, 1),

there exists δ = δ(ε) > 0 such that

(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), ∀x ∈ Ω with 0 < d(x) ≤ δ. (36)

Choosing eventually a smaller δ > 0, we can assume that Ω0 ⊂ Cδ, where

Cδ := {x ∈ Ω : d(x) > δ}.

Obviously, u1 is a positive solution of the boundary value problem ∆ϕ+ aϕ = b(x)f(ϕ) in Cδ,

ϕ = u1 on ∂Cδ.
(37)

By (A1) and (36), we see that ϕ− = (1−ε)u2 (resp., ϕ+ = (1+ε)u2) is a positive subsolution (resp., supersolution)
of (37). By the sub and supersolutions method, (37) has a positive solution ϕ1 satisfying ϕ− ≤ ϕ1 ≤ ϕ+ in Cδ.
Since b > 0 on Cδ \Ω0 and a ∈ (−∞, λ∞,1) by [10, Lemma 3.2] we derive that (37) has a unique positive solution,
i.e., u1 ≡ ϕ1 in Cδ. This yields

(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x) in Cδ,

so that (36) holds in Ω. Passing to the limit as ε↘ 0, we conclude that u1 ≡ u2.
In what follows, ua denotes an arbitrary large solution of (1). Fix ε ∈ (0, 1/2). Since (B) holds, we take δ > 0

such that
(i) d(x) is a C2 function on the set {x ∈ RN : d(x) < δ}.
(ii) k is nondecreasing on (0, δ).
(iii) (1− ε)k2(d(x)) < b(x) < (1 + ε)k2(d(x)), ∀x ∈ Ω with 0 < d(x) < δ.
(iv) h′(t) < 0 and h′′(t) > 0 ∀t ∈ (0, δ) (see (i) and (ii) of Lemma 2).

Define ξ± =
[

2+`1ρ
(1∓2ε)(2+ρ)

]1/ρ

and u±(x) = ξ±h(d(x)), for any x with d(x) ∈ (0, δ).
The proof of (9) will be divided into three steps:
Step 1. There exists δ1 ∈ (0, δ) small such that ∆u+ + au+ − (1− ε)k2(d)f(u+) ≤ 0, ∀x with d(x) ∈ (0, δ1)

∆u− + au− − (1 + ε)k2(d)f(u−) ≥ 0, ∀x with d(x) ∈ (0, δ1).
(38)

Indeed, for every x ∈ Ω with 0 < d(x) < δ, we have

∆u± + au± − (1∓ ε)k2(d)f(u±)
(39)

= ξ±h′′(d)
(

1 + a
h(d)
h′′(d)

+ ∆d
h′(d)
h′′(d)

− (1∓ ε)
k2(d)f(u±)
ξ±h′′(d)

)
.

The definition of u±, together with Lemma 2 (ii), yields

lim
d↘0

k2(d)f(u±)
ξ±h′′(d)

=
2 + ρ

2 + ρ`1
(ξ±)ρ =

1
1∓ 2ε

. (40)

By (39), (40), and Lemma 2 (iii) we easily deduce that (38) holds.
Step 2. There exists M+, δ+ > 0 such that

ua(x) ≤ u+(x) +M+, ∀x ∈ Ω with 0 < d < δ+.
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For x ∈ Ω with d(x) ∈ (0, δ1), define (0,∞) 3 u 7−→ Ψx(u) = au − b(x)f(u). Clearly, Ψx(u) is decreasing
when a ≤ 0. Suppose now that a is positive. By (A1), f ′(t) ≥ f(t)

t for any t > 0. Since f ∈ C1[0,∞) and
limu→∞ f(u)/u = ∞, we deduce that f(t)

t : (0,∞) → (f ′(0),∞) is bijective. Let δ2 ∈ (0, δ1) be small enough
such that

b(x) < b1 := 1 + lim
d(x)→0

b(x), ∀x ∈ Ω with d(x) ∈ (0, δ2).

Set Cb := 1+f ′(0)b1/a. For each x ∈ Ω with d(x) ∈ (0, δ2), let ux ∈ (0,∞) be the unique solution of the equation

b(x)f(u)
u

= aCb.

We see that, for any x with d(x) ∈ (0, δ2), u 7−→ Ψx(u) is decreasing on (ux,∞).
Using (40) and Lemma 2 (iii), we have

lim
d(x)↘0

b(x)f(u+(x))
u+(x)

= lim
d↘0

k2(d)f(u+)
ξ+h′′(d)

h′′(d)
h(d)

= ∞. (41)

So, by diminishing δ2 (if necessary), u+(x) > ux, for all x ∈ Ω with d ∈ (0, δ2). Thus,

Ψx(u+(x) +M) ≤ Ψx(u+(x)), ∀M > 0 and ∀x ∈ Ω with 0 < d(x) < δ2. (42)

Fix σ ∈ (0, δ2/4) and set Nσ := {x ∈ Ω : σ < d(x) < δ2/2}.
For M+ > 0 to be specified later, we define u∗σ(x) = u+(d−σ, s)+M+, where (d, s) are the local coordinates

of x ∈ Nσ. By (ii), (iii), (38) and (42) we obtain

−∆u∗σ(x) = −∆u+(d− σ, s) ≥ au+(d− σ, s)− (1− ε)k2(d− σ)f(u+(d− σ, s))
≥ au+(d− σ, s)− (1− ε)k2(d)f(u+(d− σ, s))
≥ au+(d− σ, s)− b(x)f(u+(d− σ, s))
≥ a(u+(d− σ, s) +M+)− b(x)f(u+(d− σ, s) +M+)
= au∗σ(x)− b(x)f(u∗σ(x)) in Nσ.

So, uniformly with respect to σ, we have the inequality

∆u∗σ(x) + au∗σ(x) ≤ b(x)f(u∗σ(x)) in Nσ. (43)

Obviously, u∗σ(x) →∞ as d↘ σ. Let M+ > 0 be large enough such that

u∗σ(δ2/2, s) = u+(δ2/2− σ, s) +M+ ≥ ua(δ2/2, s), ∀σ ∈ (0, δ2/4) and ∀s ∈ ∂Ω.

Thus, for this choice of M+, u∗σ becomes a supersolution of the problem ∆u+ au = b(x)f(u) in Nσ,

u = ua on ∂Nσ.
(44)

Since b > 0 on N σ, by [10, Lemma 3.2], ua is the unique positive solution of (44). From [10, Lemma 2.1], ua ≤ u∗σ
in Nσ, for every σ ∈ (0, δ2/4). If σ → 0 then

ua(x) ≤ u+(x) +M+ , ∀x ∈ Ω with 0 < d < δ2/2

which achieves the assertion of Step 2 (with δ+ ∈ (0, δ2/2) arbitrarily chosen).
Step 3. There exists M−, δ− > 0 such that

ua(x) ≥ u−(x)−M−, ∀x = (d, s) ∈ Ω with 0 < d < δ−. (45)
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For every r ∈ (0, δ), define Ωr = {x ∈ Ω : 0 < d(x) < r}.
Fix arbitrarily σ ∈ (0, δ2/4). For λ ∈ (0, 1) to be specified by (46), we define v∗σ(x) = λu−(d + σ, s), for

x = (d, s) ∈ Ωδ2/2. By (ii), (iii), (38) and (A1), we have

∆v∗σ(x) + av∗σ(x) = λ(∆u−(d+ σ, s) + au−(d+ σ, s))
≥ λ(1 + ε)k2(d+ σ)f(u−(d+ σ, s))
≥ (1 + ε)k2(d)f(λu−(d+ σ, s))
≥ b(x)f(v∗σ(x)), ∀x = (d, s) ∈ Ωδ2/4.

Thus, for each λ ∈ (0, 1), v∗σ is a subsolution of ∆u+ au = b(x)f(u) in Ωδ2/4.
Let λ ∈ (0, 1) be small enough such that

v∗σ(δ2/4, s) = λu−(δ2/4 + σ, s) ≤ ua(δ2/4, s), ∀σ ∈ (0, δ2/4), ∀s ∈ ∂Ω. (46)

Since lim supd↘0(v∗σ − ua)(x) = −∞ and b > 0 in Ωδ2/4, by [10, Lemma 2.1] we conclude that v∗σ ≤ ua in Ωδ2/4.
Passing to the limit σ ↘ 0 we obtain

λu−(x) ≤ ua(x), ∀x ∈ Ωδ2/4. (47)

On the other hand, by (40) and Lemma 2 (iii), limd↘0 k
2(d)f(λ2u−)/u− = ∞, which ensures the existence of

some δ̃ ∈ (0, δ2/4) with the property

k2(d)f(λ2u−)/u− ≥ λ2|a|, ∀x ∈ Ω with 0 < d ≤ δ̃. (48)

Choose δ∗ ∈ (0, δ̃), sufficiently close to δ̃, such that

h(δ∗)/h(δ̃) < 1 + λ. (49)

We claim that for each σ ∈ (0, δ̃ − δ∗), zσ(x) = u−(d+ σ, s)− (1− λ)u−(δ∗, s) is a positive subsolution of

∆u+ au = b(x)f(u) in Ωδ∗ . (50)

By (iv), u−(x) decreases with d when d < δ̃. This fact and (49) yield

zσ(x) ≥ u−(δ̃, s)− (1− λ)u−(δ∗, s) = ξ−
[
h(δ̃)− (1− λ)h(δ∗)

]
> ξ−

[
h(δ̃)− h(δ∗)/(1 + λ)

]
> 0, ∀x = (d, s) ∈ Ωδ∗

i.e., zσ > 0 in Ωδ∗ . By (38), (ii) and (iii), zσ is a subsolution of (50) provided that

(1 + ε)k2(d+ σ)
[
f(u−(d+ σ, s))− f(zσ(d, s))

]
≥ a(1− λ)u−(δ∗, s), ∀(d, s) ∈ Ωδ∗ . (51)

The Lagrange mean value theorem and (A1) show that (51) follows by

k2(d+ σ) f(zσ(d, s))
zσ(d, s)

≥ |a|, ∀(d, s) ∈ Ωδ∗ ,

which can be rewritten as

k2(d+ σ)f (u−(d+ σ, s) (1− (1− λ)u−(δ∗, s)/u−(d+ σ, s)))
u−(d+ σ, s) [1− (1− λ)u−(δ∗, s)/u−(d+ σ, s)]

≥ |a|, ∀(d, s) ∈ Ωδ∗ .

Using (49) and the decreasing character of u− with d, this last inequality is a consequence of

k2(d+ σ)f(λ2u−(d+ σ, s))
λ2u−(d+ σ, s)

≥ |a|, ∀(d, s) ∈ Ωδ∗
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which is true, as we can see by (48). Consequently, zσ is a positive subsolution of (50), for each σ ∈ (0, δ̃ − δ∗).
This and (47) yield

zσ(x) = u−(δ∗ + σ, s)− (1− λ)u−(δ∗, s) ≤ λu−(δ∗, s) ≤ ua(x), ∀x = (δ∗, s) ∈ Ω.

But lim supd↘0(zσ−ua)(x) = −∞ and b > 0 in Ωδ∗ . Thus, by [10, Lemma 2.1] we have zσ ≤ ua in Ωδ∗ , for every
σ ∈ (0, δ̃ − δ∗). If σ → 0 then

u−(d, s)− (1− λ)u−(δ∗, s) ≤ ua(d, s), ∀(d, s) ∈ Ω with 0 < d < δ∗

which concludes the assertion of Step 3 (take, for instance, M− = (1− λ)u−(δ∗, s) and δ− = δ∗).
Thus, by virtue of Steps 2 and 3, for each ε ∈ (0, 1/2), we have

ξ− ≤ lim inf
d(x)↘0

ua(x)
h(d(x))

≤ lim sup
d(x)↘0

ua(x)
h(d(x))

≤ ξ+.

Taking ε→ 0, we obtain (9). This finishes the proof of Theorem 1.

8 Proof of Theorem 2

Note that f ∈ NRVρ+1 (ρ > 0) in each of the cases (i)–(iii). Let a ∈ (−∞, λ∞,1) and ua denote the unique large
solution of (1).

Fix ε ∈ (0, 1/2). We take δ > 0 to satisfy (i), (ii) and (iv) stated in the proof of Theorem 1. Using (B̃) and
Lemma 4, we can diminish δ > 0 such that 1 + (c̃− ε)dθ < b(x)/k2(d) < 1 + (c̃+ ε)dθ, ∀x ∈ Ω with d ∈ (0, δ)

k2(t)
[
1 + (c̃− ε)tθ

]
is increasing on (0, δ).

(52)

We define u±(x) = ξ0h(d)(1 + χ±ε d
$), for x ∈ Ω with d ∈ (0, δ), where

χ±ε = χ± ε

ρ
[1 + Heaviside (ζ − θ)].

We take δ > 0 small such that u±(x) > 0, for each x ∈ Ω with d ∈ (0, δ).
By the Lagrange mean value theorem, we find

f(u±(x)) = f(ξ0h(d)) + ξ0χ
±
ε d

$h(d)f ′(Υ±(d)) (53)

where Υ±(d) = ξ0h(d)(1 + λ±(d)χ±ε d
$) for some λ±(d) ∈ [0, 1]. We point out that

lim
d↘0

f(Υ±(d))
f(ξ0h(d))

= 1. (54)

Fix σ ∈ (0, 1) and M > 0 such that |χ±ε | < M . Choose µ? > 0 small enough so that

|(1±Mt)ρ+1 − 1| < σ/2, ∀t ∈ (0, 2µ?).

Let µ? ∈ (0, (µ?)1/$) be such that, for every x ∈ Ω with d ∈ (0, µ?)∣∣∣∣f(ξ0h(d)(1±Mµ?))
f(ξ0h(d))

− (1±Mµ?)ρ+1

∣∣∣∣ < σ/2.

Assertion (54) follows now since, for every x ∈ Ω with d ∈ (0, µ?), we have
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1− σ < (1−Mµ?)ρ+1 − σ/2 <
f(Υ±(d))
f(ξ0h(d))

< (1 +Mµ?)ρ+1 + σ/2 < 1 + σ.

We now divide our argument into three steps, as we did in the proof of Theorem 1. The assertion of Step 1,
even similar in the statement to the previous one, is far more complicated in the proof. Regarding the next two
steps, we follow the same pattern as before.

Step 1. There exists δ1 ∈ (0, δ) so that ∆u+ + au+ − k2(d)[1 + (c̃− ε)dθ]f(u+) ≤ 0, ∀x ∈ Ω with d ∈ (0, δ1)

∆u− + au− − k2(d)[1 + (c̃+ ε)dθ]f(u−) ≥ 0, ∀x ∈ Ω with d ∈ (0, δ1).
(55)

To do this, we see that, for every x ∈ Ω with d ∈ (0, δ), we have

∆u± + au± − k2(d)
[
1 + (c̃∓ ε)dθ

]
f(u±) (56)

= ξ0d
$h′′(d)

[
aχ±ε

h(d)
h′′(d)

+ χ±ε ∆d
h′(d)
h′′(d)

+ 2$χ±ε
h′(d)
dh′′(d)

+$χ±ε ∆d
h(d)
dh′′(d)

+$($ − 1)χ±ε
h(d)

d2h′′(d)
+ ∆d

h′(d)
d$h′′(d)

+
a h(d)
d$h′′(d)

+
4∑

j=1

S±j (d)


where, for any t ∈ (0, δ), we denote

S±1 (t) := (−c̃± ε)tθ−$ k2(t)f(ξ0h(t))
ξ0h′′(t)

, S±2 (t) := χ±ε

(
1− k2(t)h(t)f ′(Υ±(t))

h′′(t)

)
,

S±3 (t) := (−c̃± ε)χ±ε t
θ k

2(t)h(t)f ′(Υ±(t))
h′′(t)

, S±4 (t) :=
1
t$

(
1− k2(t)f(ξ0h(t))

ξ0h′′(t)

)
.

In what follows, we are going to show that

lim
t↘0

S±1 (t) = (−c̃± ε)Heaviside (ζ − θ), lim
t↘0

S±2 (t) = −ρχ±ε , lim
t↘0

S±3 (t) = 0.

Indeed, by Lemma 2 (ii), we obtain

lim
t↘0

k2(t)f(ξ0h(t))
ξ0h′′(t)

= lim
t↘0

f(ξ0h(t))
ξ0f(h(t))

k2(t)f(h(t))
h′′(t)

= ξρ
0

2 + ρ

2 + ρ`1
= 1, (57)

which yields limt↘0 S±1 (t) = (−c̃± ε)Heaviside (ζ − θ).
By Lemma 1, (54) and (57), it turns out that

lim
t↘0

k2(t)h(t)f ′(Υ±(t))
h′′(t)

= lim
t↘0

Υ±(t)f ′(Υ±(t))
f(Υ±(t))

f(Υ±(t))
f(ξ0h(t))

k2(t)f(ξ0h(t))
ξ0h′′(t)

= ρ+ 1.

Consequently, limt↘0 S±2 (t) = −ρχ±ε and limt↘0 S±3 (t) = 0.
Using (14), we derive S±4 (t) = k2(t)f(h(t))

h′′(t)

∑3
i=1 S4,i(t), for any t ∈ (0, δ), where

S4,1(t) =
2Ξ(h(t))
t$

(∫ t

0
k(s) ds
k(t)

)′
, S4,2(t) =

2T1,τ1(h(t))
[tζ lnh(t)]τ1

, S4,3(t) =
−T2,τ1(h(t))
[tζ lnh(t)]τ1

.

The definition of T1,τ1 (resp., T2,τ1) is obtained from (21), by replacing τ with τ1.
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Using Proposition 3 (i) and Corollary 1, we find

lim
t↘0

S4,1(t) =
−(1 + ζ)ρ`?
ζ(ρ+ 2)

Heaviside (θ − ζ). (58)

Case (i) (resp., (ii)). From (13) and Remark 3 (resp., Lemma 3 (ii)), we have

lim
t↘0

S4,2(t) = lim
t↘0

S4,3(t) = 0.

In view of Lemma 2 (ii) and (58), we derive that

lim
t↘0

S±4 (t) =
−(1 + ζ)ρ`?

2ζ
Heaviside (θ − ζ).

Case (iii). By (13) and Lemma 3 (i), we find

lim
t↘0

S4,2(t) =
−2`?

(ρ+ 2)2

(
−ρ`?

2

)τ1

and lim
t↘0

S4,3(t) =
−2`? ln ξ0
ρ+ 2

(
−ρ`?

2

)τ1

from which we derive

lim
t↘0

S±4 (t) =
−(1 + ζ)ρ`?

2ζ
Heaviside (θ − ζ)− `?

(
−ρ`?

2

)τ1
(

1
ρ+ 2

+ ln ξ0

)
.

Note that in each of the cases (i)–(iii), the definition of χ±ε gives

lim
t↘0

4∑
j=1

S+
j (t) = −ε < 0 and lim

t↘0

4∑
j=1

S−j (t) = ε > 0. (59)

By (13), limt↘0
h′(t)

t$h′′(t) = 0. But limt↘0
h(t)
h′(t) = 0, so that limt↘0

h(t)
t$h′′(t) = 0.

Thus, using (59) and Lemma 2 [(iii), (vi) and (vii)], relation (56) leads to (55).
Step 2. There exists M+, δ+ > 0 such that

ua(x) ≤ u+(x) +M+, ∀x ∈ Ω with 0 < d < δ+.

We follow the same line of reasoning as in the proof of the above Step 2. There are only slight changes in the
proof of (41) and (43), which will be stated below.

We see that limd(x)↘0 u
+(x)/h(d) = ξ0. So, for δ̄ > 0 small enough, we have u+(x) ≥ ξ0h(d)/2 for every

x ∈ Ω with d(x) ∈ (0, δ̄). This and (A1) imply

b(x)f(u+(x))
u+(x)

≥ 2b(x)f(ξ0h(d)/2)
ξ0h(d)

, ∀x ∈ Ω with d(x) ∈ (0, δ̄). (60)

Using Lemma 2 [(ii) and (iii)], we find

lim
d(x)↘0

b(x)f(ξ0h(d)/2)
h(d)

= lim
d(x)↘0

k2(d)f(ξ0h(d)/2)
h′′(d)

h′′(d)
h(d)

= ∞

which, together with (60), proves that (41) holds.
Using (55), (52) and (42), we obtain

−∆u∗σ(x) ≥ au+(d− σ, s)− [1 + (c̃− ε)(d− σ)θ]k2(d− σ)f(u+(d− σ, s))
≥ au+(d− σ, s)− [1 + (c̃− ε)dθ]k2(d)f(u+(d− σ, s))
≥ au+(d− σ, s)− b(x)f(u+(d− σ, s))
≥ a(u+(d− σ, s) +M+)− b(x)f(u+(d− σ, s) +M+)
= au∗σ(x)− b(x)f(u∗σ(x)) in Nσ.
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Thus, relation (43) is recovered. This concludes the claim of Step 2.
Step 3. There exists M−, δ− > 0 such that

ua(x) ≥ u−(x)−M−, ∀x ∈ Ω with 0 < d < δ−.

We proceed in the same way as for proving (45). Further, we present the differences which appear owing to
the new meaning of u−.

To recover (47) (with λ given by (46)), we show that v∗σ is a subsolution of ∆u + au = b(x)f(u) in Ωδ2/4.
Indeed, using (52), (55) and (A1), we find

∆v∗σ(x) + av∗σ(x) = λ(∆u−(d+ σ, s) + au−(d+ σ, s))
≥ λk2(d+ σ)[1 + (c̃+ ε)(d+ σ)θ]f(u−(d+ σ, s))
≥ k2(d)[1 + (c̃+ ε)dθ]f(λu−(d+ σ, s))
≥ b(x)f(v∗σ(x)), ∀x = (d, s) ∈ Ωδ2/4.

Since limd↘0 u
−(x)/h(d) = ξ0, by (A1) we can assume that, for some δ0 > 0,

f(λ2u−(x))
u−(x)

≥ 2f(λ2ξ0h(d)/2)
ξ0h(d)

, ∀x ∈ Ω with d(x) ∈ (0, δ0).

This and Lemma 2 [(ii) and (iii)] yield limd↘0 k
2(d)f(λ2u−(x))/u−(x) = ∞. So, there exists δ̃ ∈ (0, δ2/4) such

that
k2(d)[1 + (c̃+ ε)dθ]f(λ2u−)/u− ≥ λ2|a|, ∀x ∈ Ω with 0 < d ≤ δ̃. (61)

By Lemma 2 [(i) and (viii)], we easily deduce that u−(x) decreases with d when d ∈ (0, δ̃) (if necessary, δ̃ > 0 is
diminished).

Choose δ∗ ∈ (0, δ̃), close enough to δ̃, such that

h(δ∗)(1 + χ−ε δ
$
∗ )

h(δ̃)(1 + χ−ε δ̃$)
< 1 + λ. (62)

We now prove that, for each σ ∈ (0, δ̃ − δ∗), zσ(x) = u−(d+ σ, s)− (1− λ)u−(δ∗, s) is a positive subsolution
of (50). Using (62), we arrive at

zσ(x) ≥ u−(δ̃, s)− (1− λ)u−(δ∗, s)

> ξ0

[
h(δ̃)(1 + χ−ε δ̃

$)− h(δ∗)(1 + χ−ε δ
$
∗ )/(1 + λ)

]
> 0, ∀x = (d, s) ∈ Ωδ∗ .

By (52) and (55), zσ is a subsolution of (50) provided that

k2(d+ σ)[1 + (c̃+ ε)(d+ σ)θ]
[
f(u−(d+ σ, s))− f(zσ(d, s))

]
≥ a(1− λ)u−(δ∗, s), ∀(d, s) ∈ Ωδ∗ . (63)

From Lagrange mean value theorem and (A1), we infer that (63) is a consequence of

k2(d+ σ)[1 + (c̃+ ε)(d+ σ)θ] f(zσ(d, s))
zσ(d, s)

≥ |a|, ∀(d, s) ∈ Ωδ∗ . (64)

By virtue of (61), (62) and the decreasing character of u− with d, (64) holds. From now on, the argument is the
same as before. This proves the claim of Step 3.

By Steps 2 and 3, it follows that

χ+
ε ≥

−1 + ua(x)/[ξ0h(d)]
d$

− M+

ξ0d$h(d)
, ∀x ∈ Ω with d ∈ (0, δ+),

χ−ε ≤
−1 + ua(x)/[ξ0h(d)]

d$
+

M−

ξ0d$h(d)
, ∀x ∈ Ω with d ∈ (0, δ−).

Passing to the limit d↘ 0 and using Lemma 2 (ix), we obtain

χ−ε ≤ lim inf
d↘0

−1 + ua(x)/[ξ0h(d)]
d$

≤ lim sup
d↘0

−1 + ua(x)/[ξ0h(d)]
d$

≤ χ+
ε .

By sending ε to 0, the proof of Theorem 2 is concluded.
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9 Proof of Theorem 3

The presentation is closely related to that in §8. To make easier the comparison, we use the same notation even
though its meaning is sometimes different.

We see that, in each of the cases (i) and (ii), f ∈ NRVρ+1 (ρ > 0) and α2 + `2] 6= 0.
Let a ∈ (−∞, λ∞,1) and ua be the corresponding unique large solution of (1).
Fix ε ∈ (0, 1/2). Let δ > 0 be such that (i), (ii), (iv) from §7 and (52) hold.
We define u±(x) = ξ0h(d) [1 + χ±ε (− ln d)−τ ], for x ∈ Ω with d ∈ (0, δ), where

χ±ε = χ̃± ε . (65)

We can assume u±(x) > 0 for every x ∈ Ω with d(x) ∈ (0, δ).
Relation (53) reads now as

f(u±(x)) = f(ξ0h(d)) + ξ0χ
±
ε

h(d)
(− ln d)τ

f ′(Υ±(d))

where Υ±(d) = ξ0h(d) [1 + χ±ε λ
±(d)(− ln d)−τ ] , for some λ±(d) ∈ [0, 1].

Relation (54) and its proof remain as before by choosing µ? > 0 such that (− lnµ?)−τ < µ? (instead of
µ? < (µ?)1/$).

Step 1. Proof of (55).
For every x ∈ Ω with d ∈ (0, δ), we have

∆u± + au± − k2(d)
[
1 + (c̃∓ ε)dθ

]
f(u±) (66)

= ξ0
h′′(d)

(− ln d)τ

[
aχ±ε

h(d)
h′′(d)

+ χ±ε ∆d
h′(d)
h′′(d)

+
h′(d)
h′′(d)

(− ln d)τ∆d

+a
h(d)
h′′(d)

(− ln d)τ − 2τχ±ε
h′(d)

dh′′(d) ln d
+ τχ±ε

h(d)
d2h′′(d) ln d

+τ(τ + 1)χ±ε
h(d)

d2h′′(d) ln2 d
− τχ±ε ∆d

h(d)
dh′′(d) ln d

+
4∑

j=1

S±j (d)


where, for each t ∈ (0, δ), S±2 (t) and S±3 (t) are defined as in §8, but

S±1 (t) := (−c̃± ε)tθ(− ln t)τ k
2(t)f(ξ0h(t))
ξ0h′′(t)

,

S±4 (t) := (− ln t)τ

(
1− k2(t)f(ξ0h(t))

ξ0h′′(t)

)
.

By (57), we have limt↘0 S
±
1 (t) = limt↘0 S

±
3 (t) = 0 and limt↘0 S

±
2 (t) = −ρχ±ε .

Using (14), we write S±4 (t) = k2(t)f(h(t))
h′′(t)

∑3
i=1 S4,i(t) for any t ∈ (0, δ), where

S4,1(t) = 2Ξ(h(t))(− ln t)τ

[(∫ t

0
k(s) ds
k(t)

)′
− `1

]
,

S4,2(t) = 2(1− `1)
(
− ln t
lnh(t)

)τ

T1,τ (h(t)), S4,3(t) = −
(
− ln t
lnh(t)

)τ

T2,τ (h(t)).

By Proposition 3 (ii) and Corollary 1, we arrive at

lim
t↘0

S4,1(t) =
ρ`]

(ρ+ 2)(α+ 1)2
.
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Case (i). By Lemmas 3 (ii) and 2 [(ii), (viii)], it turns out that

lim
t↘0

S4,2(t) = lim
t↘0

S4,3(t) = 0 and lim
t↘0

S±4 (t) =
ρ`]

(α+ 1)(ρ+ 2α+ 2)
.

Case (ii). By Lemmas 3 (i) and 2 [(ii), (viii)], we deduce

lim
t↘0

S4,2(t) =
−2α`?

(ρ+ 2)2(α+ 1)

(
ρ

2(α+ 1)

)τ

,

lim
t↘0

S4,3(t) =
−`?(ρ+ 2α+ 2)
(2 + ρ)(α+ 1)

(
ρ

2(α+ 1)

)τ

ln ξ0

from which we conclude that

lim
t↘0

S±4 (t) =
ρ`]

(α+ 1)(ρ+ 2α+ 2)
− `?

(
ρ

2(α+ 1)

)τ [ 2α
(ρ+ 2)(ρ+ 2α+ 2)

+ ln ξ0

]
.

Therefore, in both cases the definition (65) of χ±ε leads to

lim
t↘0

4∑
j=1

S+
j (t) = −ρε < 0 and lim

t↘0

4∑
j=1

S−j (t) = ρε > 0.

By virtue of (66) and Lemma 2 [(iii), (vi), (vii)], relation (55) is deduced.
Step 2. See Step 2 in the proof of Theorem 2 for the same claim and proof apply here.
Step 3. The assertion is exactly the same as in §8. The proof goes as before with only one exception. We

choose δ∗ ∈ (0, δ̃), sufficiently close to δ̃, such that

h(δ∗)(1 + χ−ε (− ln δ∗)−τ )
h(δ̃)(1 + χ−ε (− ln δ̃)−τ )

< 1 + λ. (67)

In the rest of our reasoning, (67) takes place of (62).
By Steps 2 and 3, it follows that

χ+
ε ≥

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ − M+(− ln d)τ

ξ0h(d)
, ∀x ∈ Ω with d ∈ (0, δ+),

(68)
χ−ε ≤

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ +

M−(− ln d)τ

ξ0h(d)
, ∀x ∈ Ω with d ∈ (0, δ−).

Using Lemma 2 (viii), we have

lim
t↘0

(− ln t)τ

h(t)
= lim

t↘0

(
− ln t
lnh(t)

)τ (lnh(t))τ

h(t)
=
(
ρ`1
2

)τ

lim
u→∞

(lnu)τ

u
= 0.

Passing to the limit d↘ 0 in (68), we obtain

χ−ε ≤ lim inf
d↘0

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ ≤ lim sup

d↘0

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ ≤ χ+

ε .

By sending ε to 0, the proof of Theorem 3 is finished.

10 About Theorem 1

Recall that, assuming (A1), the existence of large solutions of (1) takes place only if (A0) holds and a ∈
(−∞, λ∞,1). Furthermore, if f ∈ NRVρ+1 with ρ 6= 0 and b(x) ∼ k2(d) as d(x) ↘ 0 for some k ∈ K, then
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the same asymptotic behavior (9) is shown by any large solution ua, irrespectiv of a ∈ (−∞, λ∞,1). As a
consequence, the uniqueness of a large solution ua is concluded.

From now on, when we refer to ua, we understand that a is arbitrary within the above range. By f1(x) ∼ f2(x)
as d(x) ↘ 0 we mean that limd(x)↘0 f1(x)/f2(x) = 1.

The aim of this section is to show that, for a wide class of functions f and k, the behavior of the unique large
solution ua may be illustrated.

10.1 Case f(u) = uρ+1, ρ > 0

Consider first the logistic equation (1) for a superlinear power in nonlinearity f . This is because of its significance
in Riemannian Geometry and population dynamics, as shown in §1.

By virtue of (9) and (10), we have

ua(x) ∼
[
2(2 + `1ρ)

ρ2

]1/ρ
{∫ d(x)

0

k(s) ds

}−2/ρ

= ξ0h(d(x)) as d(x) ↘ 0. (69)

The explosion rate of ua(x) when x→ ∂Ω can be estimated from that of ξ0h(t), t↘ 0.

Example 1 Let k(t) = −1/ ln t be defined in a small neighborhood on the right of the origin. By Proposition 1,
k ∈ K with `1 = 1 and ∫ t

0

k(s) ds =
∫ t

0

− ds

ln s
= Ei (1,− ln t) =

∫ ∞

1

ts

s
ds,

where Ei (1, z) denotes the exponential integral defined for z > 0 as follows

Ei (1, z) =
∫ ∞

1

exp (−zs)
s

ds.

Hence, relation (69) yields

ua(x) ∼
[
2(2 + ρ)
ρ2

]1/ρ(∫ ∞

1

[d(x)]s

s
ds

)−2/ρ

as d(x) ↘ 0.

Figure 1 illustrates ξ0h(t) when t ∈ (10−5, 1.2× 10−5), for each ρ ∈ (0.4, 0.405).

Figure 1: Graph of ξ0h(t), when k(t) = −1/ ln t, t ∈ (10−5, 1.2× 10−5) and ρ ∈ (0.4, 0.405)
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Example 2 Let k(t) = exp (−1/t), for t > 0. It can be seen that k ∈ K0 and∫ t

0

k(s) ds =
∫ t

0

exp (−1/s) ds = t exp (−1/t)− Ei (1, 1/t).

In view of (69), we find

ua(x) ∼
(

4
ρ2

)1/ρ

[d(x) exp (−1/d(x))− Ei (1, 1/d(x))]−2/ρ as d(x) ↘ 0.

The graph of ξ0h(t) when t ∈ (0.1, 0.1005) and ρ ∈ (0.4, 0.4002) is given by Figure 2.

Figure 2: Graph of ξ0h(t), when k(t) = exp (−1/t), t ∈ (0.1, 0.1005) and ρ ∈ (0.4, 0.4002)

Example 3 Let k(t) = exp (−1/t2), for t > 0. We have k ∈ K0 and∫ t

0

k(s) ds =
∫ t

0

exp (−1/s2) ds =
t

exp (1/t2)
+
√
π erf (1/t)−

√
π,

where erf (z) denotes the error function defined by erf (z) = 2√
π

∫ z

0
exp (−t2) dt.

In this case, relation (69) reads as

ua(x) ∼
(

4
ρ2

)1/ρ [
d(x)

exp (1/d2(x))
+
√
π erf (1/d(x))−

√
π

]−2/ρ

as d(x) ↘ 0.

Figure 3 illustrates ξ0h(t) when t ∈ (0.11, 0.1101), for each ρ ∈ (2, 2.01).

10.2 Other cases

Let k ∈ K be arbitrary and b(x) ∼ k2(d) as d(x) ↘ 0. We apply here Theorem 1 for other nonlinearities
f ∈ NRVρ+1, ρ > 0 in order to express the asymptotic behavior of the unique large solution ua(x) when x→ ∂Ω.

Example 4 The following assertions take place:
(i) If f(u) = 4u(u2 + 1) arctan2 u + 2(u2 + 1) arctanu for u ≥ 0, then (A1) holds, ρ = 2 and F (u) =

(u2 + 1)2 arctan2 u. Consequently,

ua(x) ∼
√

1 + `1
2

tan

[
π

2 exp (
√

2
∫ d(x)

0
k(s) ds)

]
as d(x) ↘ 0.
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Figure 3: Graph of ξ0h(t), when k(t) = exp (−1/t2), t ∈ (0.11, 0.1101) and ρ ∈ (2, 2.01)

(ii) If f(u) = 4u3 + 2u for u ≥ 0, then

ua(x) ∼
√

1 + `1
2

1

sinh(
√

2
∫ d(x)

0
k(s) ds)

as d(x) ↘ 0.

(iii) If f(u) = 8u7 + 12u5 + 4u3 for u ≥ 0, then

ua(x) ∼
(

1 + 3`1
4

)1/6

h̃−1

(
√

2
∫ d(x)

0

k(s) ds

)
as d(x) ↘ 0,

where h̃−1 denotes the inverse of h̃(t) = 1/t+ arctan t− π/2, t > 0.
(iv) If f(u) = (4u7 + 6u5)/(u2 + 1)2 for u ≥ 0, then F (u) = u6/(u2 + 1) and

ua(x) ∼
√

1 + `1
2

h̃−1

(
2
√

2
∫ d(x)

0

k(s) ds

)
as d(x) ↘ 0,

where h̃−1 is the inverse of h̃(t) =
√
t2 + 1/t2 + arctanh (1/

√
t2 + 1), t > 0. Here, arctanhu denotes the inverse

of the hyperbolic function tanhu.

(v) If f(u) =
4u3

ln2(u+ 1)
− 2u4

(u+ 1) ln3(u+ 1)
for u > 0 and f(0) = 0, then f ∈ C1[0,∞), (A1) holds, ρ = 2

and F (u) = u4/ ln2(u+ 1). It follows that

ua(x) ∼
√

1 + `1
2

h̃−1

(
√

2
∫ d(x)

0

k(s) ds

)
as d(x) ↘ 0,

where h̃−1 is the inverse of h̃(t) = (1 + 1/t) ln(t+ 1)− ln t, t > 0.

(vi) If f(u) =
4u3

arctan2 u
− 2u4

(u2 + 1) arctan3 u
for u > 0 and f(0) = 0, then f ∈ C1[0,∞), ρ = 2, (A1) holds

and F (u) = u4/ arctan2 u. Hence,

ua(x) ∼
√

1 + `1
2

h̃−1

(
√

2
∫ d(x)

0

k(s) ds

)
as d(x) ↘ 0,
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where h̃−1 is the inverse of h̃(t) = (arctan t)/t− ln(t/
√
t2 + 1), t > 0.

(vii) If f(u) =
4u3

ln2(u+
√
u2 + 1)

− 2u4

√
u2 + 1 ln3(u+

√
u2 + 1)

for u > 0 and f(0) = 0, then f ∈ C1[0,∞),

ρ = 2, (A1) holds and F (u) = u4/ ln2(u+
√
u2 + 1). So,

ua(x) ∼
√

1 + `1
2

h̃−1

(
√

2
∫ d(x)

0

k(s) ds

)
as d(x) ↘ 0,

where h̃−1 is the inverse of h̃(t) = [ln(t+
√
t2 + 1)]/t+ arctanh (1/

√
t2 + 1), t > 0.

11 Appendix

We give here a brief account of the definitions and properties of regularly varying functions involved in our paper
(see [6] or [41] for details).

Definition 1 A positive measurable function Z defined on [A,∞), for some A > 0, is called regularly varying
(at infinity) with index ρ ∈ R, written Z ∈ RVρ, provided that

lim
u→∞

Z(ξu)
Z(u)

= ξρ, for all ξ > 0.

When the index ρ is zero, we say that the function is slowly varying.

Remark 4 Let Z : [A,∞) → (0,∞) be a measurable function. Then
(i) Z is regularly varying if and only if limu→∞ Z(ξu)/Z(u) is finite and positive for each ξ in a set S ⊂ (0,∞)

of positive measure (see [41, Lemma 1.6 and Theorem 1.3]).
(ii) Set

Z(u) = uρL(u). (70)

Then limu→∞ Z(ξu)/Z(u) = uρ if and only if limu→∞ L(ξu)/L(u) = 1, for every ξ > 0. Thus the transformation
(70) reduces regular variation to slow variation.

Example 5 Any measurable function on [A,∞) which has a positive limit at infinity is slowly varying. The
logarithm log u, its iterates log log u (= log2 u), logm u (= log logm−1 u) and powers of logm u are nontrivial exam-
ples of slowly varying functions. Nonlogarithmic examples are given by exp {(log u)α1(log2 u)α2 . . . (logm u)αm},
where αi ∈ (0, 1) and exp {(log u)/ log log u}.

In what follows L denotes a slowly varying function defined on [A,∞). For details on Propositions 4–8, we
refer to [6] (pp. 6, 12, 14, 16, 28, 30).

Proposition 4 (Uniform Convergence Theorem). The convergence L(ξu)
L(u) → 1 as u → ∞ holds uniformly on

each compact ξ-set in (0,∞).

Proposition 5 (Representation Theorem). The function L(u) is slowly varying if and only if it can be written
in the form

L(u) = M(u)exp
{∫ u

B

y(t)
t
dt

}
(u ≥ B) (71)

for some B > A, where y ∈ C[B,∞) satisfies limu→∞ y(u) = 0 and M(u) is measurable on [B,∞) such that
limu→∞M(u) := M ∈ (0,∞).
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The Karamata representation (71) is non-unique because we can adjust one ofM(u), y(u) and modify properly
the other one. Thus, the function y may be assumed arbitrarily smooth, but the smothness properties of M(u)
can ultimately reach those of L(u). If M(u) is replaced by its limit at infinity M > 0, we obtain a slowly varying
function L0 ∈ C1[B,∞) of the form

L0(u) = Mexp
{∫ u

B

y(t)
t
dt

}
(u ≥ B),

where y ∈ C[B,∞) vanishes at infinity. Such a function L0(u) is called normalised slowly varying function.
As an important subclass of RVρ, we distinguish NRVρ defined as

NRVρ =
{
Z ∈ RVρ : Z(u)u−ρ is a normalised slowly varying function

}
. (72)

Notice that L(u) given by (71) is asymptotic equivalent to L0(u), which has much enhanced properties. For
instance, we see that

y(u) =
uL′0(u)
L0(u)

, ∀u ≥ B.

Conversely, any function L0 ∈ C1[B,∞) which is positive and satisfies

lim
u→∞

uL′0(u)
L0(u)

= 0 (73)

is a normalised slowly varying. Moreover, if the right hand side of (73) is ρ ∈ R, then L0 ∈ NRVρ.

Proposition 6 (Elementary properties of slowly varying functions).
(i) For any α > 0, uαL(u) →∞, u−αL(u) → 0 as u→∞.
(ii) (L(u))α varies slowly for every α ∈ R.
(iii) If L1, L2 vary slowly, so do L1(u)L2(u) and L1(u) + L2(u).

From Proposition 6 (i) and Remark 4 (ii), limu→∞ Z(u) = ∞ (resp., 0) for any function Z ∈ RVρ with ρ > 0
(resp., ρ < 0).

We point out that the behavior at infinity for a slowly varying function cannot be predicted. For instance,
L(u) = exp

{
(log u)1/2 cos((log u)1/2)

}
exhibits infinite oscillation in the sense that lim infu→∞ L(u) = 0 and

lim supu→∞ L(u) = ∞.

Proposition 7 (Karamata’s Theorem; direct half). Let Z ∈ RVρ be locally bounded in [A,∞). Then
(i) for any j ≥ −(ρ+ 1),

lim
u→∞

uj+1Z(u)∫ u

A
xjZ(x) dx

= j + ρ+ 1. (74)

(ii) for any j < −(ρ+ 1) (and for j = −(ρ+ 1) if
∫∞

x−(ρ+1)Z(x) dx <∞)

lim
u→∞

uj+1Z(u)∫∞
u
xjZ(x) dx

= −(j + ρ+ 1). (75)

Proposition 8 (Karamata’s Theorem; converse half). Let Z be positive and locally integrable in [A,∞).
(i) If (74) holds for some j > −(ρ+ 1), then Z ∈ RVρ.
(ii) If (75) is satisfied for some j < −(ρ+ 1), then Z ∈ RVρ.
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