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Abstract. In this paper we use integral calculus, complex vari-
able techniques and some classical inequalities to establish ra-
tional identities and inequalities involving Fibonacci and Lucas
numbers.

1. Introduction

The Fibonacci sequence is a source of many nice interesting identities
and inequalities. A similar interpretation exist for Lucas numbers.
Many of these identities have been documented in an extensive list that
appears in the work of Vajda [1] where they are proved by algebraic
means. Even though, combinatorial proofs of many of these interesting
algebraic identities are also given (see [2]). However, rational identities
and inequalities involving Fibonacci and Lucas numbers seldom have
appeared (see [3]). In this paper, integral calculus, complex variable
techniques and some classical inequalities are used to obtain several
rational Fibonacci and Lucas identities and inequalities.

2. Rational Identities

In what follows several rational identities are considered and proved
by using results on contour integrals. We begins with

Theorem 2.1. Let Fn denote the nth Fibonacci number. That is,
F0 = 0, F1 = 1 and for n ≥ 2, Fn = Fn−1 +Fn−2. Then, for all positive
integer r holds

(2.1)
n∑

k=1

1 + F `
r+k

Fr+k


n∏

j=1

j 6=k

1

Fr+k − Fr+j

 =
(−1)n+1

Fr+1Fr+2 · · ·+ Fr+n

with 0 ≤ ` ≤ n− 1.
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Proof. To prove the preceding identity we consider the integral

(2.2) I =
1

2πi

∮
γ

1 + z`

An(z)

dz

z

where An(z) =
n∏

j=1

(z − Fr+j).

Let γ be the curve defined by γ = {z ∈ C : |z| < Fr+1}. Evaluating
the preceding integral in the exterior of γ contour, we obtain

I1 =
1

2πi

∮
γ

{
1 + z`

z

n∏
j=1

1

(z − Fr+j)

}
dz =

n∑
k=1

Rk

where

Rk = lim
z→Fr+k

1 + z`

z

n∏
j=1

j 6=k

1

(z − Fr+j)

 =
1 + F `

r+k

Fr+k

n∏
j=1

j 6=k

1

(Fr+k − Fr+j)
.

Then, I1 becomes

I1 =
n∑

k=1

1 + F `
r+k

Fr+k

n∏
j=1

j 6=k

1

(Fr+k − Fr+j)

 .

Evaluating (2.2) in the interior of γ contour, we get

I2 =
1

2πi

∮
γ

{
1 + zl

z

n∏
j=1

1

(z − Fr+j)

}
dz = lim

z→0

{
1 + z`

An(z)

}

=
1

An(0)
=

(−1)n

Fr+1Fr+2 · · ·Fr+n

.

According to a result on contour integrals [5] we have that I1 + I2 = 0
and we are done. �

A similar identity also holds for Lucas numbers. It can be stated as

Corollary 2.2. Let Ln denote the nth Lucas number. That is, L0 =
2, L1 = 1 and for n ≥ 2, Ln = Ln−1 + Ln−2. Then, for all positive
integer r holds

(2.3)
n∑

k=1

1 + L`
r+k

Lr+k


∏
j=1

j 6=k

1

Lr+k − Lr+j

 =
(−1)n+1

Lr+1Lr+2 · · ·+ Lr+n
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with 0 ≤ ` ≤ n− 1.

In particular (2.1) and (2.3) can be used (see [3]) to obtain

Corollary 2.3. For n ≥ 2,

(F 2
n + 1)Fn+1Fn+2

(Fn+1 − Fn)(Fn+2 − Fn)
+

Fn(F 2
n+1 + 1)Fn+2

(Fn − Fn+1)(Fn+2 − Fn+1)

+
FnFn+1(F

2
n+2 + 1)

(Fn − Fn+2)(Fn+1 − Fn+2)
= 1

Corollary 2.4. For n ≥ 2,

Ln+1Ln+2

(Ln+1 − Ln)(Ln+2 − Ln)
+

Ln+2Ln

(Ln − Ln+1)(Ln+2 − Ln+1)

+
LnLn+1

(Ln − Ln+2)(Ln+1 − Ln+2)
= 1.

In the sequel Fn and Ln denote the nth Fibonacci and Lucas numbers,
respectively.

Theorem 2.5. If n ≥ 3, then holds

n∑
i=1

1

Ln−2
i

 n∏
j=1
j 6=i

(
1− Lj

Li

)−1

+ Ln−1
i

 = Ln+2 − 3.

Proof. First, we observe that the given statement can be written as

n∑
i=1

 1

Ln−2
i

n∏
j=1
j 6=i

(
1− Lj

Li

)−1

+
n∑

i=1

Li = Ln+2 − 3.

Since
∑n

i=1 Li = Ln+2−3, as can be easily established by mathematical
induction, then will be suffice to prove

(2.4)
n∑

i=1

 1

Ln−2
i

n∏
j=1
j 6=i

(
1− Lj

Li

)−1

 = 0.

We will argue by using residue techniques. We consider the monic

complex polynomial A(z) =
n∏

k=1

(z − Lk) and we evaluate the integral

I =
1

2πi

∮
γ

z

A(z)
dz
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over the interior and exterior domains limited by γ, a circle centered
at the origin and radius Ln+1, i.e., γ = {z ∈ C : |z| < Ln+1} .
Integrating in the region inside the γ contour we have

I1 =
1

2πi

∮
γ

z

A(z)
dz =

n∑
i=1

Res

{
z

A(z)
, z = Li

}

=
n∑

i=1

 n∏
j=1
j 6=i

Li

Li − Lj

 =
n∑

i=1

 1

Ln−2
i

n∏
j=1
j 6=i

(
1− Lj

Li

)−1

 .

Integrating in the region outside of the γ contour we get

I2 =
1

2πi

∮
γ

z

A(z)
dz = 0.

According to a well known result on contour integrals [5] we have
I1 + I2 = 0. This completes the proof of (2.4) and we are done. �

Note that (2.4) can also be established by using routine algebra.

3. Inequalities

Next, several inequalities are considered and proved with the aid of in-
tegral calculus and the use of classical inequalities. First, we state and
prove two nice inequalities involving circular powers of Lucas numbers
similar to those obtained for Fibonacci numbers in [4].

Theorem 3.1. Let n be a positive integer, then hold the following
inequalities

(a) LLn+1
n + L

Ln+2

n+1 + LLn
n+2 < LLn

n + L
Ln+1

n+1 + L
Ln+2

n+2

(b) LLn+1
n L

Ln+2

n+1 LLn
n+2 < LLn

n L
Ln+1

n+1 L
Ln+2

n+2 .

Proof. Part (a) trivially holds if n = 1, 2. To prove the general state-
ment we observe that(

LLn
n + L

Ln+1

n+1 + L
Ln+2

n+2

)
−
(
LLn+1

n + L
Ln+2

n+1 + LLn
n+2

)
=
[(

LLn
n + L

Ln+1

n+1

)
−
(
LLn+1

n + LLn
n+1

)]
+
[(

L
Ln+2

n+2 − LLn
n+2

)
−
(
L

Ln+2

n+1 − LLn
n+1

)]
.

Therefore, our statement will be established if we prove that for n ≥ 3,

(3.1) LLn+1
n + LLn

n+1 < LLn
n + L

Ln+1

n+1

and

(3.2) L
Ln+2

n+1 − LLn
n+1 < L

Ln+2

n+2 − LLn
n+2.
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hold. In fact, we consider the integral

I1 =

∫ Ln+1

Ln

(
Lx

n+1 log Ln+1 − Lx
n log Ln

)
dx.

Since Ln < Ln+1 if n ≥ 3, then for Ln ≤ x ≤ Ln+1 we have

Lx
n log Ln < Lx

n+1 log Ln < Lx
n+1 log Ln+1

and I1 > 0.

By the other hand, evaluating the integral, we obtain

I1 =

∫ Ln+1

Ln

(
Lx

n+1 log Ln+1 − Lx
n log Ln

)
dx =

[
Lx

n+1 − Lx
n

]Ln+1

Ln

=
(
LLn

n + L
Ln+1

n+1

)
−
(
LLn+1

n + LLn
n+1

)
and (3.1) is proved.

To prove (3.2) we consider the integral

I2 =

∫ Ln+2

Ln

(
Lx

n+2 log Ln+2 − Lx
n+1 log Ln+1

)
dx.

Since Ln+1 < Ln+2, then for Ln ≤ x ≤ Ln+2 we have

Lx
n+1 log Ln+1 < Lx

n+2 log Ln+2

and I2 > 0.

On the other hand, evaluating I2, we get

I2 =

∫ Ln+2

Ln

(
Lx

n+2 log Ln+2 − Lx
n+1 log Ln+1

)
dx =

[
Lx

n+2 − Lx
n+1

]Ln+2

Ln

=
(
L

Ln+2

n+2 − LLn
n+2

)
−
(
L

Ln+2

n+1 − LLn
n+1

)
.

This completes the proof of part (a).

We will prove part (b) using the weighted AM-GM-HM inequality (see
[6]). The proof will be done in two steps. First, we will prove

(3.3) LLn+1
n L

Ln+2

n+1 LLn
n+2 <

(Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

.

In fact, setting x1 = Ln, x2 = Ln+1, x3 = Ln+2 and

w1 =
Ln+1

Ln + Ln+1 + Ln+2

, w2 =
Ln+2

Ln + Ln+1 + Ln+2

, w3 =
Ln

Ln + Ln+1 + Ln+2

and applying the AM-GM inequality, we have

LLn+1/(Ln+Ln+1+Ln+2)
n L

Ln+2/(Ln+Ln+1+Ln+2)
n+1 L

Ln/(Ln+Ln+1+Ln+2)
n+2
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<
LnLn+1

Ln + Ln+1 + Ln+2

+
Ln+1Ln+2

Ln + Ln+1 + Ln+2

+
Ln+2Ln

Ln + Ln+1 + Ln+2
or

LLn+1
n L

Ln+2

n+1 LLn
n+2 <

(LnLn+1 + Ln+1Ln+2 + Ln+2Ln

Ln + Ln+1 + Ln+2

)Ln+Ln+1+Ln+2

.

Inequality (3.3) will be established if we prove that(LnLn+1 + Ln+1Ln+2 + Ln+2Ln

Ln + Ln+1 + Ln+2

)Ln+Ln+1+Ln+2

<

(
Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

or equivalently

LnLn+1 + Ln+1Ln+2 + Ln+2Ln

Ln + Ln+1 + Ln+2

<
Ln + Ln+1 + Ln+2

3
.

That is,

L2
n + L2

n+1 + L2
n+2 > LnLn+1 + Ln+1Ln+2 + Ln+2Ln.

The last inequality immediately follws by adding up the inequalities
L2

n+L2
n+1 ≥ 2LnLn+1, L

2
n+1+L2

n+2 > 2Ln+1Ln+2, L
2
n+2+L2

n > 2Ln+2Ln

and the result is proved.

Finally, we will prove

(3.4)

(
Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

< LLn
n L

Ln+1

n+1 L
Ln+2

n+2 .

In fact, setting x1 = Ln, x2 = Ln+1, x3 = Ln+2, w1 = Ln/(Ln + Ln+1 +
Ln+2), w2 = Ln+1/(Ln + Ln+1 + Ln+2), and w3 = Ln+2/(Ln + Ln+1 +
Ln+2) and using GM-HM inequality, we haven

Ln + Ln+1 + Ln+2

3
=

(
3

Ln + Ln+1 + Ln+2

)−1

=
1

1

Ln + Ln+1 + Ln+2

+
1

Ln + Ln+1 + Ln+2

+
1

Ln + Ln+1 + Ln+2

< LLn/(Ln+Ln+1+Ln+2)
n L

Ln+1/(Ln+Ln+1+Ln+2)
n+1 .

Hence, (
Ln + Ln+1 + Ln+2

3

)Ln+Ln+1+Ln+2

< LLn
n L

Ln+1

n+1 L
Ln+2

n+2

and (3.4) is proved. This completes the proof of part (b) and we are
done. �
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Stronger inequalities for second order recurrence sequences, generaliz-
ing the ones given in [4] have been obtained by Stanica in [7].

Finally, we state and prove an inequality involving Fibonacci and Lu-
cas numbers.

Theorem 3.2. Let n be a positive integer, then the following inequality

n∑
k=1

Fk+2

F2k+2

≥ nn+1

(n + 1)n

n∏
k=1

F
−n+1

n
k+1 − L

−n+1
n

k+1

F−1
k+1 − L−1

k+1


holds.

Proof. From the AM-GM inequality, namely,

1

n

n∑
k=1

xk ≥
n∏

k=1

x
1
n
k , where xk > 0, k = 1, 2, . . . , n,

and taking into account that for all j ≥ 2, is 0 < L−1
j < F−1

j , we get∫ F−1
2

L−1
2

∫ F−1
3

L−1
3

. . .

∫ F−1
n+1

L−1
n+1

(
1

n

n+1∑
`=2

x`

)
dx2dx3 . . . dxn+1

(3.5) ≥
∫ F−1

2

L−1
2

∫ F−1
3

L−1
3

. . .

∫ F−1
n+1

L−1
n+1

(
n+1∏
`=1

x
1
n
`

)
dx2dx3 . . . dxn+1.

Evaluating the preceding integrals (3.5) becomes

n+1∑
`=2

(F−1
2 −L−1

2 ) . . . (F−1
`−1−L−1

`−1)(F
−2
` −L−2

` )(F−1
`+1−L−1

`+1) . . . (F−1
n+1−L−1

n+1)

(3.6) ≥ 2nn+1

(n + 1)n

n+1∏
`=2

(
F
−n+1

n
` − L

−n+1
n

`

)
or equivalently

n+1∏
`=2

(F−1
` − L−1

` )
n+1∑
`=2

(F−1
` + L−1

` ) ≥ 2nn+1

(n + 1)n

n+1∏
`=2

(
F
−n+1

n
` − L

−n+1
n

`

)
.

Setting k = `− 1 in the preceding inequality, taking into account that
Fk + Lk = 2Fk+1, FkLk = F2k and after simplification, we obtain

n∑
k=1

Fk+2

F2k+2

≥ nn+1

(n + 1)n

n∏
k=1

F
−n+1

n
k+1 − L

−n+1
n

k+1

F−1
k+1 − L−1

k+1


and the proof is completed. �
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