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Abstract

Let f, g : R → R be two continuous functions on R and (xn)n≥1 ,
(yn)n≥1 two sequences such that

yn = xn + f (xn−1) + g (xn−2) , for all n ∈ N, n ≥ 3.

The purpose of this note is to give some conditions which guarantee
the simultaneous convergence of the sequences (xn)n≥1 and (yn)n≥1.

Let f, g : R → R be two continuous functions on R and (xn)n≥1 , (yn)n≥1

two sequences such that

yn = xn + f (xn−1) + g (xn−2) , for all n ∈ N, n ≥ 3.

By continuity of the functions f and g, it results that if the sequence
(xn)n≥1 is convergent, then the sequence (yn)n≥1 is convergent. Moreover,
if

x∞ = lim
n→∞

xn,

then
lim

n→∞
yn = x∞ + f (x∞) + g (x∞) .

Conversely, if the sequence (yn)n≥1 is convergent, is the sequence (xn)n≥1

convergent? Usually not. Indeed, if f(x) = 2x, g(x) = x, for all x ∈ R and

xn = (−1)n, yn = xn+f(xn−1)+g(xn−2) = (−1)n+2(−1)n−1+(−1)n−2 = 0,
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for all n ∈ N, n ≥ 3, then the sequence (yn)n≥1 is convergent, while the
sequence (xn)n≥1 is not convergent.

The purpose of this note is to give some conditions which guarantee the
convergence of the sequence (xn)n≥1 , when the sequence (yn)n≥1 is conver-
gent.

In what follows, we need the next lemma, which can be proved by math-
ematical induction.

Lemma 1 Let a1 = α, a2 = α2 +β and an = αan−1 +βan−2, for all n ∈ N,
n ≥ 3. Then

an =
α
(
α2 + 4β

)
−
(
α2 + 2β

)√
α2 + 4β

2 (α2 + 4β)

(
α−

√
α2 + 4β

2

)n−1

+

+
α
(
α2 + 4β

)
+
(
α2 + 2β

)√
α2 + 4β

2 (α2 + 4β)

(
α +

√
α2 + 4β

2

)n−1

,

for all n ∈ N, n ≥ 2.

The main result of this paper is the following theorem.

Theorem 2 Let f, g : R → R be two continuous functions on R, such that:
(i) there exist two real numbers α, β ∈]0, 1[ with α + β < 1 such that

|f (x)− f (u)| ≤ α |x− u| , |g (x)− g (u)| ≤ β |x− u| , for all x, u ∈ R,
(1)

(ii) the function ϕ : R → R, defined by

ϕ (x) = x + f (x) + g (x) , for all x ∈ R

is bijective.
Let (xn)n≥1 and (yn)n≥1 be two sequences such that

yn = xn + f (xn−1) + g (xn−2) , for all n ∈ N, n ≥ 3. (2)

Then the sequence (xn)n≥1 is convergent if and only if the sequence
(yn)n≥1 is convergent.

Proof. If the sequence (xn)n≥1 is convergent, then by continuity of
the functions f and g, we deduce that the sequence (yn)n≥1 is convergent.
Moreover, if x∞ is the limit of (xn)n≥1 , then x∞ + f (x∞) + g (x∞) is the
limit of (yn)n≥1 .
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Assume now that the sequence (yn)n≥1 is convergent and let y∞ be the
limit of (yn)n≥1 .

We begin by showing that the sequence (xn+1 − xn)n≥1 is convergent to
0. Let hence ε > 0. By convergence of (yn)n≥1 , we deduce that there exists
an integer number m ≥ 1, such that

|yn+1 − yn| <
(1− q) ε

2 (1− q + r)
, for all n ∈ N, n ≥ m, (3)

where

q =
α +

√
α2 + 4β

2
, r =

α
(
α2 + 4β

)
+
(
α2 + 2β

)√
α2 + 4β

α2 + 4β
. (4)

On the other hand, from (1) and (2) , for each n ∈ N, n ≥ 3, we have

|xn+1 − xn| ≤ |yn+1 − yn|+ α |xn − xn−1|+ β |xn−1 − xn−2| .

From this it follows that for each p ∈ N, p ≥ 3,

|xm+p+1 − xm+p| ≤ |ym+p+1 − ym+p|+

+α |xm+p − xm+p−1|+ β |xm+p−1 − xm+p−2| ≤

≤ |ym+p+1 − ym+p|+ α(|ym+p − ym+p−1|+ α |xm+p−1 − xm+p−2|+

+β |xm+p−2 − xm+p−3|) + β |xm+p−1 − xm+p−2| =

= |ym+p+1 − ym+p|+ α |ym+p − ym+p−1|+

+
(
α2 + β

)
|xm+p−1 − xm+p−2|+ αβ |xm+p−2 − xm+p−3| ≤ ...

≤ |ym+p+1 − ym+p|+ a1 |ym+p − ym+p−1|+ a2 |ym+p−1 − ym+p−2|+ ...

... + ap |ym+1 − ym|+ ap+1 |xm − xm−1|+ βap |xm−1 − xm−2| ,

where
a1 = α, a2 = β + α2,

and
ak+1 = αak + βak−1, for all k ∈ N, k ≥ 2.

Now, relation (3) implies

|xm+p+1 − xm+p| ≤ (1 + a1 + a2 + ... + ap)
1− q

2 (1− q + r)
ε+ (5)

+ ap+1 |xm − xm−1|+ βap |xm−1 − xm−2| .
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On the other hand, by lemma 1, we have

ak =
α
(
α2 + 4β

)
−
(
α2 + 2β

)√
α2 + 4β

2 (α2 + 4β)

(
α−

√
α2 + 4β

2

)k−1

+

+
α
(
α2 + 4β

)
+
(
α2 + 2β

)√
α2 + 4β

2 (α2 + 4β)

(
α +

√
α2 + 4β

2

)k−1

,

for all k ∈ N, k ≥ 2.
From this it follows that

0 ≤ ak ≤
α
(
α2 + 4β

)
+
(
α2 + 2β

)√
α2 + 4β

2 (α2 + 4β)

(
α +

√
α2 + 4β

2

)k−1

,

for all k ∈ N, k ≥ 2. Then

1 + a1 + a2 + ... + ap ≤ 1 +
1

1− q
r =

1− q + r

1− q
, (6)

where q and r are given by (4) . From (5) and (6) we obtain

|xm+p+1 − xm+p| ≤
ε

2
+ ap+1 |xm − xm−1|+ βap |xm−1 − xm−2| . (7)

Since the sequence (an)n≥1 converges to zero, there is an integer number
p0 ≥ 1 such that, for each integer number p ≥ p0, we have

ap+1 |xm − xm−1| <
ε

4
and βap |xm−1 − xm−2| <

ε

4
. (8)

From (5) , (7) and (8) , it follows that

|xn+1 − xn| < ε, for all n ≥ m + p0.

Consequently, the sequence (xn+1 − xn)n≥1 converges to zero.
Now, from

|g (xn+1)− g (xn)| ≤ β |xn+1 − xn| , for all n ∈ N,

and by the fact that the sequence (xn+1 − xn)n≥1 converges to zero, we
obtain

lim
n→∞

(g (xn+1)− g (xn)) = 0. (9)

Let now (tn)n≥1 be the sequence with

tn = xn + f (xn) + g (xn) , for all n ∈ N.
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Since for each n ∈ N, n ≥ 2, we have

tn = xn + yn+1 − xn+1 − g (xn−1) + g (xn) ,

by (9) and by the fact that the sequence (xn+1 − xn)n≥1 converges to zero,
we deduce that the sequence (tn)n≥1 converges to y∞. Then the sequence(
ϕ−1 (tn)

)
n≥1

is convergent to ϕ−1 (y∞) . Since

ϕ−1 (tn) = xn, for all n ∈ N,

it results that the sequence (xn)n≥1 is convergent to ϕ−1 (y∞) . The theorem
is proved.

Some examples are interesting.

Example 3 Let α and β be two real numbers such that α, β ∈ [0, 1[, with
α + β < 1 and let (xn)n≥1 and (yn)n≥1 be two sequences such that

yn = xn + α sinxn−1 + β arctanxn−2, for all n ∈ N, n ≥ 3.

Then the sequence (xn)n≥1 is convergent if and only if the sequence
(yn)n≥1 is convergent.

Moreover, if the sequence (xn)n≥1 converges to x∞, then the sequence
(yn)n≥1 converges to x∞ + α sinx∞ + β arctanx∞, and conversely.

Proof. Apply theorem 2, with f, g : R → R defined by

f (x) = α sinx and g (x) = β arctanx, for all x ∈ R.

Example 4 Let α and β be two real numbers such that α, β ∈ [0, 1[, with
α + β < 1 and let (xn)n≥1 and (yn)n≥1 be two sequences such that

yn = xn + α cos xn−1 + β
1

1 + (xn−2)
2 , for all n ∈ N, n ≥ 3.

Then the sequence (xn)n≥1 is convergent if and only if the sequence
(yn)n≥1 is convergent.

Moreover, if the sequence (xn)n≥1 converges to x∞, then the sequence
(yn)n≥1 converges to x∞ + α cos x∞ + β 1

1+x2
∞

, and conversely.
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Proof. Apply theorem 2, with f, g : R → R defined by

f (x) = α cos x and g (x) = β
1

1 + x2
, for all x ∈ R.

Example 5 Let f : R → R be a function which satisfies the following two
properties:

(i) there is a real number α ∈ [0, 1[ such that

|f (x)− f (u)| ≤ α |x− u| , for all x, u ∈ R,

(ii) the function ϕ : R → R defined by ϕ (x) = x + f (x) , for all x ∈ R
is bijective.

Let (xn)n≥1 and (yn)n≥1 be two sequences such that

yn = xn + f (xn−1) , for all n ∈ N, n ≥ 2.

Then the sequence (xn)n≥1 is convergent if and only if the sequence
(yn)n≥1 is convergent.

Proof. Apply theorem 2.

Example 6 Let g : R → R be a function which satisfies the following two
properties:

(i) there is a real number β ∈ [0, 1[ such that

|g (x)− g (u)| ≤ β |x− u| , for all x, u ∈ R,

(ii) the function ϕ : R → R defined by ϕ (x) = x+ g (x) , for all x ∈ R is
bijective.

Let (xn)n≥1 and (yn)n≥1 be two sequences such that

yn = xn + g (xn−2) , for all n ∈ N, n ≥ 3.

Then the sequence (xn)n≥1 is convergent if and only if the sequence
(yn)n≥1 is convergent.

Proof. Apply theorem 2.
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