SIMULTANEOUS CONVERGENCE OF TWO SEQUENCES

Dorel I. DUCA

Babes-Bolyai University
Faculty of Mathematics and Computer Science
3400 Cluj-Napoca, Romania
dduca@math.ubbcluj.ro

Abstract

Let $f, g : \mathbb{R} \to \mathbb{R}$ be two continuous functions on \mathbb{R} and $(x_n)_{n \ge 1}$, $(y_n)_{n \ge 1}$ two sequences such that

$$y_n = x_n + f(x_{n-1}) + g(x_{n-2}), \text{ for all } n \in \mathbb{N}, n \ge 3.$$

The purpose of this note is to give some conditions which guarantee the simultaneous convergence of the sequences $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$.

Let $f,g:\mathbb{R}\to\mathbb{R}$ be two continuous functions on \mathbb{R} and $(x_n)_{n\geq 1}$, $(y_n)_{n\geq 1}$ two sequences such that

$$y_n = x_n + f(x_{n-1}) + g(x_{n-2}), \text{ for all } n \in \mathbb{N}, n \ge 3.$$

By continuity of the functions f and g, it results that if the sequence $(x_n)_{n\geq 1}$ is convergent, then the sequence $(y_n)_{n\geq 1}$ is convergent. Moreover, if

$$x_{\infty} = \lim_{n \to \infty} x_n,$$

then

$$\lim_{n \to \infty} y_n = x_{\infty} + f(x_{\infty}) + g(x_{\infty}).$$

Conversely, if the sequence $(y_n)_{n\geq 1}$ is convergent, is the sequence $(x_n)_{n\geq 1}$ convergent? Usually not. Indeed, if f(x)=2x, g(x)=x, for all $x\in\mathbb{R}$ and

$$x_n = (-1)^n$$
, $y_n = x_n + f(x_{n-1}) + g(x_{n-2}) = (-1)^n + 2(-1)^{n-1} + (-1)^{n-2} = 0$,

for all $n \in \mathbb{N}$, $n \geq 3$, then the sequence $(y_n)_{n\geq 1}$ is convergent, while the sequence $(x_n)_{n\geq 1}$ is not convergent.

The purpose of this note is to give some conditions which guarantee the convergence of the sequence $(x_n)_{n\geq 1}$, when the sequence $(y_n)_{n\geq 1}$ is convergent.

In what follows, we need the next lemma, which can be proved by mathematical induction.

Lemma 1 Let $a_1 = \alpha$, $a_2 = \alpha^2 + \beta$ and $a_n = \alpha a_{n-1} + \beta a_{n-2}$, for all $n \in \mathbb{N}$, $n \geq 3$. Then

$$a_n = \frac{\alpha \left(\alpha^2 + 4\beta\right) - \left(\alpha^2 + 2\beta\right) \sqrt{\alpha^2 + 4\beta}}{2 \left(\alpha^2 + 4\beta\right)} \left(\frac{\alpha - \sqrt{\alpha^2 + 4\beta}}{2}\right)^{n-1} + \frac{\alpha \left(\alpha^2 + 4\beta\right) + \left(\alpha^2 + 2\beta\right) \sqrt{\alpha^2 + 4\beta}}{2 \left(\alpha^2 + 4\beta\right)} \left(\frac{\alpha + \sqrt{\alpha^2 + 4\beta}}{2}\right)^{n-1},$$

for all $n \in \mathbb{N}$, $n \geq 2$.

The main result of this paper is the following theorem.

Theorem 2 Let $f, g : \mathbb{R} \to \mathbb{R}$ be two continuous functions on \mathbb{R} , such that: (i) there exist two real numbers $\alpha, \beta \in]0,1[$ with $\alpha + \beta < 1$ such that

$$|f(x) - f(u)| \le \alpha |x - u|, \quad |g(x) - g(u)| \le \beta |x - u|, \text{ for all } x, u \in \mathbb{R},$$

$$(1)$$

(ii) the function $\varphi : \mathbb{R} \to \mathbb{R}$, defined by

$$\varphi(x) = x + f(x) + g(x)$$
, for all $x \in \mathbb{R}$

is bijective.

Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be two sequences such that

$$y_n = x_n + f(x_{n-1}) + g(x_{n-2}), \text{ for all } n \in \mathbb{N}, n \ge 3.$$
 (2)

Then the sequence $(x_n)_{n\geq 1}$ is convergent if and only if the sequence $(y_n)_{n\geq 1}$ is convergent.

Proof. If the sequence $(x_n)_{n\geq 1}$ is convergent, then by continuity of the functions f and g, we deduce that the sequence $(y_n)_{n\geq 1}$ is convergent. Moreover, if x_{∞} is the limit of $(x_n)_{n\geq 1}$, then $x_{\infty}+f(x_{\infty})+g(x_{\infty})$ is the limit of $(y_n)_{n\geq 1}$.

Assume now that the sequence $(y_n)_{n\geq 1}$ is convergent and let y_∞ be the limit of $(y_n)_{n\geq 1}$.

We begin by showing that the sequence $(x_{n+1} - x_n)_{n \ge 1}$ is convergent to 0. Let hence $\varepsilon > 0$. By convergence of $(y_n)_{n \ge 1}$, we deduce that there exists an integer number $m \ge 1$, such that

$$|y_{n+1} - y_n| < \frac{(1-q)\varepsilon}{2(1-q+r)}, \text{ for all } n \in \mathbb{N}, n \ge m,$$
(3)

where

$$q = \frac{\alpha + \sqrt{\alpha^2 + 4\beta}}{2}, \ r = \frac{\alpha \left(\alpha^2 + 4\beta\right) + \left(\alpha^2 + 2\beta\right) \sqrt{\alpha^2 + 4\beta}}{\alpha^2 + 4\beta}.$$
 (4)

On the other hand, from (1) and (2), for each $n \in \mathbb{N}$, $n \geq 3$, we have

$$|x_{n+1} - x_n| \le |y_{n+1} - y_n| + \alpha |x_n - x_{n-1}| + \beta |x_{n-1} - x_{n-2}|.$$

From this it follows that for each $p \in \mathbb{N}$, $p \geq 3$,

$$|x_{m+p+1} - x_{m+p}| \le |y_{m+p+1} - y_{m+p}| +$$

$$+\alpha |x_{m+p} - x_{m+p-1}| + \beta |x_{m+p-1} - x_{m+p-2}| \le$$

$$\le |y_{m+p+1} - y_{m+p}| + \alpha (|y_{m+p} - y_{m+p-1}| + \alpha |x_{m+p-1} - x_{m+p-2}| +$$

$$+\beta |x_{m+p-2} - x_{m+p-3}|) + \beta |x_{m+p-1} - x_{m+p-2}| =$$

$$= |y_{m+p+1} - y_{m+p}| + \alpha |y_{m+p} - y_{m+p-1}| +$$

$$+ (\alpha^2 + \beta) |x_{m+p-1} - x_{m+p-2}| + \alpha\beta |x_{m+p-2} - x_{m+p-3}| \le \dots$$

$$\le |y_{m+p+1} - y_{m+p}| + a_1 |y_{m+p} - y_{m+p-1}| + a_2 |y_{m+p-1} - y_{m+p-2}| + \dots$$

$$\dots + a_p |y_{m+1} - y_m| + a_{p+1} |x_m - x_{m-1}| + \beta a_p |x_{m-1} - x_{m-2}|,$$

where

$$a_1 = \alpha, \ a_2 = \beta + \alpha^2,$$

and

$$a_{k+1} = \alpha a_k + \beta a_{k-1}$$
, for all $k \in \mathbb{N}$, $k \ge 2$.

Now, relation (3) implies

$$|x_{m+p+1} - x_{m+p}| \le (1 + a_1 + a_2 + \dots + a_p) \frac{1 - q}{2(1 - q + r)} \varepsilon + a_{p+1} |x_m - x_{m-1}| + \beta a_p |x_{m-1} - x_{m-2}|.$$
(5)

On the other hand, by lemma 1, we have

$$a_k = \frac{\alpha \left(\alpha^2 + 4\beta\right) - \left(\alpha^2 + 2\beta\right) \sqrt{\alpha^2 + 4\beta}}{2 \left(\alpha^2 + 4\beta\right)} \left(\frac{\alpha - \sqrt{\alpha^2 + 4\beta}}{2}\right)^{k-1} + \frac{\alpha \left(\alpha^2 + 4\beta\right) + \left(\alpha^2 + 2\beta\right) \sqrt{\alpha^2 + 4\beta}}{2 \left(\alpha^2 + 4\beta\right)} \left(\frac{\alpha + \sqrt{\alpha^2 + 4\beta}}{2}\right)^{k-1},$$

for all $k \in \mathbb{N}$, $k \geq 2$.

From this it follows that

$$0 \le a_k \le \frac{\alpha \left(\alpha^2 + 4\beta\right) + \left(\alpha^2 + 2\beta\right) \sqrt{\alpha^2 + 4\beta}}{2 \left(\alpha^2 + 4\beta\right)} \left(\frac{\alpha + \sqrt{\alpha^2 + 4\beta}}{2}\right)^{k-1},$$

for all $k \in \mathbb{N}$, $k \geq 2$. Then

$$1 + a_1 + a_2 + \dots + a_p \le 1 + \frac{1}{1 - q}r = \frac{1 - q + r}{1 - q},\tag{6}$$

where q and r are given by (4). From (5) and (6) we obtain

$$|x_{m+p+1} - x_{m+p}| \le \frac{\varepsilon}{2} + a_{p+1} |x_m - x_{m-1}| + \beta a_p |x_{m-1} - x_{m-2}|.$$
 (7)

Since the sequence $(a_n)_{n\geq 1}$ converges to zero, there is an integer number $p_0\geq 1$ such that, for each integer number $p\geq p_0$, we have

$$a_{p+1}|x_m - x_{m-1}| < \frac{\varepsilon}{4} \text{ and } \beta a_p |x_{m-1} - x_{m-2}| < \frac{\varepsilon}{4}.$$
 (8)

From (5), (7) and (8), it follows that

$$|x_{n+1} - x_n| < \varepsilon$$
, for all $n \ge m + p_0$.

Consequently, the sequence $(x_{n+1} - x_n)_{n \ge 1}$ converges to zero. Now, from

$$|g(x_{n+1}) - g(x_n)| \le \beta |x_{n+1} - x_n|$$
, for all $n \in \mathbb{N}$,

and by the fact that the sequence $(x_{n+1} - x_n)_{n \ge 1}$ converges to zero, we obtain

$$\lim_{n \to \infty} \left(g\left(x_{n+1}\right) - g\left(x_n\right) \right) = 0. \tag{9}$$

Let now $(t_n)_{n\geq 1}$ be the sequence with

$$t_n = x_n + f(x_n) + g(x_n)$$
, for all $n \in \mathbb{N}$.

Since for each $n \in \mathbb{N}$, $n \geq 2$, we have

$$t_n = x_n + y_{n+1} - x_{n+1} - g(x_{n-1}) + g(x_n),$$

by (9) and by the fact that the sequence $(x_{n+1} - x_n)_{n \geq 1}$ converges to zero, we deduce that the sequence $(t_n)_{n \geq 1}$ converges to y_{∞} . Then the sequence $(\varphi^{-1}(t_n))_{n \geq 1}$ is convergent to $\varphi^{-1}(y_{\infty})$. Since

$$\varphi^{-1}(t_n) = x_n$$
, for all $n \in \mathbb{N}$,

it results that the sequence $(x_n)_{n\geq 1}$ is convergent to $\varphi^{-1}(y_\infty)$. The theorem is proved. \blacksquare

Some examples are interesting.

Example 3 Let α and β be two real numbers such that $\alpha, \beta \in [0, 1[$, with $\alpha + \beta < 1$ and let $(x_n)_{n \geq 1}$ and $(y_n)_{n \geq 1}$ be two sequences such that

$$y_n = x_n + \alpha \sin x_{n-1} + \beta \arctan x_{n-2}$$
, for all $n \in \mathbb{N}$, $n \ge 3$.

Then the sequence $(x_n)_{n\geq 1}$ is convergent if and only if the sequence $(y_n)_{n\geq 1}$ is convergent.

Moreover, if the sequence $(x_n)_{n\geq 1}$ converges to x_{∞} , then the sequence $(y_n)_{n\geq 1}$ converges to $x_{\infty} + \alpha \sin x_{\infty} + \beta \arctan x_{\infty}$, and conversely.

Proof. Apply theorem 2, with $f, g : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \alpha \sin x$$
 and $g(x) = \beta \arctan x$, for all $x \in \mathbb{R}$.

Example 4 Let α and β be two real numbers such that $\alpha, \beta \in [0, 1[$, with $\alpha + \beta < 1$ and let $(x_n)_{n \geq 1}$ and $(y_n)_{n \geq 1}$ be two sequences such that

$$y_n = x_n + \alpha \cos x_{n-1} + \beta \frac{1}{1 + (x_{n-2})^2}, \text{ for all } n \in \mathbb{N}, n \ge 3.$$

Then the sequence $(x_n)_{n\geq 1}$ is convergent if and only if the sequence $(y_n)_{n\geq 1}$ is convergent.

Moreover, if the sequence $(x_n)_{n\geq 1}$ converges to x_{∞} , then the sequence $(y_n)_{n\geq 1}$ converges to $x_{\infty} + \alpha \cos x_{\infty} + \beta \frac{1}{1+x_{\infty}^2}$, and conversely.

Proof. Apply theorem 2, with $f, g : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \alpha \cos x$$
 and $g(x) = \beta \frac{1}{1+x^2}$, for all $x \in \mathbb{R}$.

Example 5 Let $f : \mathbb{R} \to \mathbb{R}$ be a function which satisfies the following two properties:

(i) there is a real number $\alpha \in [0,1[$ such that

$$|f(x) - f(u)| \le \alpha |x - u|, \text{ for all } x, u \in \mathbb{R},$$

(ii) the function $\varphi : \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = x + f(x)$, for all $x \in \mathbb{R}$ is bijective.

Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be two sequences such that

$$y_n = x_n + f(x_{n-1}), \text{ for all } n \in \mathbb{N}, n \ge 2.$$

Then the sequence $(x_n)_{n\geq 1}$ is convergent if and only if the sequence $(y_n)_{n\geq 1}$ is convergent.

Proof. Apply theorem 2.

Example 6 Let $g : \mathbb{R} \to \mathbb{R}$ be a function which satisfies the following two properties:

(i) there is a real number $\beta \in [0,1]$ such that

$$|g(x) - g(u)| \le \beta |x - u|$$
, for all $x, u \in \mathbb{R}$,

(ii) the function $\varphi : \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = x + g(x)$, for all $x \in \mathbb{R}$ is bijective.

Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be two sequences such that

$$y_n = x_n + g(x_{n-2}), \text{ for all } n \in \mathbb{N}, n \ge 3.$$

Then the sequence $(x_n)_{n\geq 1}$ is convergent if and only if the sequence $(y_n)_{n\geq 1}$ is convergent.

Proof. Apply theorem 2.

References

- [1] Amann, Herbert and Escher, Joachim: *Analysis*, Birkhauser Verlag, Basel-Boston-Berlin, I(1998), II(1999), III(2001)
- [2] Folland, G.B.: Real Analysis, J. Wiley, New York, 1999
- [3] Lieb, Elliott H. and Loss, Michael: *Analysis*, American Mathematical Society, 1997
- [4] Rudin, W.: Real and Complex Analysis, third edition, McGraw Hill, New York, 1987