SIMULTANEOUS CONVERGENCE OF TWO SEQUENCES

Dorel I. DUCA
Babes-Bolyai University
Faculty of Mathematics and Computer Science
3400 Cluj-Napoca, Romania
dduca@math.ubbcluj.ro

Abstract

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions on \mathbb{R} and $\left(x_{n}\right)_{n \geq 1}$, $\left(y_{n}\right)_{n \geq 1}$ two sequences such that $$
y_{n}=x_{n}+f\left(x_{n-1}\right)+g\left(x_{n-2}\right), \text { for all } n \in \mathbb{N}, n \geq 3
$$

The purpose of this note is to give some conditions which guarantee the simultaneous convergence of the sequences $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$.

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions on \mathbb{R} and $\left(x_{n}\right)_{n \geq 1},\left(y_{n}\right)_{n \geq 1}$ two sequences such that

$$
y_{n}=x_{n}+f\left(x_{n-1}\right)+g\left(x_{n-2}\right), \text { for all } n \in \mathbb{N}, n \geq 3 .
$$

By continuity of the functions f and g, it results that if the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent, then the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent. Moreover, if

$$
x_{\infty}=\lim _{n \rightarrow \infty} x_{n},
$$

then

$$
\lim _{n \rightarrow \infty} y_{n}=x_{\infty}+f\left(x_{\infty}\right)+g\left(x_{\infty}\right) .
$$

Conversely, if the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent, is the sequence $\left(x_{n}\right)_{n \geq 1}$ convergent? Usually not. Indeed, if $f(x)=2 x, g(x)=x$, for all $x \in \mathbb{R}$ and
$x_{n}=(-1)^{n}, y_{n}=x_{n}+f\left(x_{n-1}\right)+g\left(x_{n-2}\right)=(-1)^{n}+2(-1)^{n-1}+(-1)^{n-2}=0$,
for all $n \in \mathbb{N}, n \geq 3$, then the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent, while the sequence $\left(x_{n}\right)_{n \geq 1}$ is not convergent.

The purpose of this note is to give some conditions which guarantee the convergence of the sequence $\left(x_{n}\right)_{n \geq 1}$, when the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent.

In what follows, we need the next lemma, which can be proved by mathematical induction.

Lemma 1 Let $a_{1}=\alpha, a_{2}=\alpha^{2}+\beta$ and $a_{n}=\alpha a_{n-1}+\beta a_{n-2}$, for all $n \in \mathbb{N}$, $n \geq 3$. Then

$$
\begin{aligned}
a_{n} & =\frac{\alpha\left(\alpha^{2}+4 \beta\right)-\left(\alpha^{2}+2 \beta\right) \sqrt{\alpha^{2}+4 \beta}}{2\left(\alpha^{2}+4 \beta\right)}\left(\frac{\alpha-\sqrt{\alpha^{2}+4 \beta}}{2}\right)^{n-1}+ \\
& +\frac{\alpha\left(\alpha^{2}+4 \beta\right)+\left(\alpha^{2}+2 \beta\right) \sqrt{\alpha^{2}+4 \beta}}{2\left(\alpha^{2}+4 \beta\right)}\left(\frac{\alpha+\sqrt{\alpha^{2}+4 \beta}}{2}\right)^{n-1},
\end{aligned}
$$

for all $n \in \mathbb{N}, n \geq 2$.
The main result of this paper is the following theorem.
Theorem 2 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions on \mathbb{R}, such that: (i) there exist two real numbers $\alpha, \beta \in] 0,1[$ with $\alpha+\beta<1$ such that

$$
\begin{equation*}
|f(x)-f(u)| \leq \alpha|x-u|, \quad|g(x)-g(u)| \leq \beta|x-u|, \text { for all } x, u \in \mathbb{R} \tag{1}
\end{equation*}
$$

(ii) the function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
\varphi(x)=x+f(x)+g(x), \text { for all } x \in \mathbb{R}
$$

is bijective.
Let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be two sequences such that

$$
\begin{equation*}
y_{n}=x_{n}+f\left(x_{n-1}\right)+g\left(x_{n-2}\right), \quad \text { for all } n \in \mathbb{N}, n \geq 3 \tag{2}
\end{equation*}
$$

Then the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent if and only if the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent.

Proof. If the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent, then by continuity of the functions f and g, we deduce that the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent. Moreover, if x_{∞} is the limit of $\left(x_{n}\right)_{n \geq 1}$, then $x_{\infty}+f\left(x_{\infty}\right)+g\left(x_{\infty}\right)$ is the limit of $\left(y_{n}\right)_{n \geq 1}$.

Assume now that the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent and let y_{∞} be the limit of $\left(y_{n}\right)_{n \geq 1}$.

We begin by showing that the sequence $\left(x_{n+1}-x_{n}\right)_{n \geq 1}$ is convergent to 0 . Let hence $\varepsilon>0$. By convergence of $\left(y_{n}\right)_{n \geq 1}$, we deduce that there exists an integer number $m \geq 1$, such that

$$
\begin{equation*}
\left|y_{n+1}-y_{n}\right|<\frac{(1-q) \varepsilon}{2(1-q+r)}, \text { for all } n \in \mathbb{N}, n \geq m \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\frac{\alpha+\sqrt{\alpha^{2}+4 \beta}}{2}, r=\frac{\alpha\left(\alpha^{2}+4 \beta\right)+\left(\alpha^{2}+2 \beta\right) \sqrt{\alpha^{2}+4 \beta}}{\alpha^{2}+4 \beta} \tag{4}
\end{equation*}
$$

On the other hand, from (1) and (2), for each $n \in \mathbb{N}, n \geq 3$, we have

$$
\left|x_{n+1}-x_{n}\right| \leq\left|y_{n+1}-y_{n}\right|+\alpha\left|x_{n}-x_{n-1}\right|+\beta\left|x_{n-1}-x_{n-2}\right|
$$

From this it follows that for each $p \in \mathbb{N}, p \geq 3$,

$$
\begin{gathered}
\left|x_{m+p+1}-x_{m+p}\right| \leq\left|y_{m+p+1}-y_{m+p}\right|+ \\
+\alpha\left|x_{m+p}-x_{m+p-1}\right|+\beta\left|x_{m+p-1}-x_{m+p-2}\right| \leq \\
\leq\left|y_{m+p+1}-y_{m+p}\right|+\alpha\left(\left|y_{m+p}-y_{m+p-1}\right|+\alpha\left|x_{m+p-1}-x_{m+p-2}\right|+\right. \\
\left.+\beta\left|x_{m+p-2}-x_{m+p-3}\right|\right)+\beta\left|x_{m+p-1}-x_{m+p-2}\right|= \\
=\left|y_{m+p+1}-y_{m+p}\right|+\alpha\left|y_{m+p}-y_{m+p-1}\right|+ \\
\leq\left|y_{m+p+1}-y_{m+p}\right|+a_{1}\left|y_{m+p}-y_{m+p-1}\right|+a_{2}\left|y_{m+p-1}-y_{m+p-2}\right|+\ldots \\
\ldots+a_{p}\left|y_{m+1}-y_{m}\right|+a_{p+1}\left|x_{m}-x_{m-1}\right|+\beta a_{p}\left|x_{m-1}-x_{m-2}\right|
\end{gathered}
$$

where

$$
a_{1}=\alpha, a_{2}=\beta+\alpha^{2}
$$

and

$$
a_{k+1}=\alpha a_{k}+\beta a_{k-1}, \text { for all } k \in \mathbb{N}, k \geq 2
$$

Now, relation (3) implies

$$
\begin{align*}
\left|x_{m+p+1}-x_{m+p}\right| & \leq\left(1+a_{1}+a_{2}+\ldots+a_{p}\right) \frac{1-q}{2(1-q+r)} \varepsilon+ \tag{5}\\
& +a_{p+1}\left|x_{m}-x_{m-1}\right|+\beta a_{p}\left|x_{m-1}-x_{m-2}\right|
\end{align*}
$$

On the other hand, by lemma 1 , we have

$$
\begin{aligned}
a_{k} & =\frac{\alpha\left(\alpha^{2}+4 \beta\right)-\left(\alpha^{2}+2 \beta\right) \sqrt{\alpha^{2}+4 \beta}}{2\left(\alpha^{2}+4 \beta\right)}\left(\frac{\alpha-\sqrt{\alpha^{2}+4 \beta}}{2}\right)^{k-1}+ \\
& +\frac{\alpha\left(\alpha^{2}+4 \beta\right)+\left(\alpha^{2}+2 \beta\right) \sqrt{\alpha^{2}+4 \beta}}{2\left(\alpha^{2}+4 \beta\right)}\left(\frac{\alpha+\sqrt{\alpha^{2}+4 \beta}}{2}\right)^{k-1},
\end{aligned}
$$

for all $k \in \mathbb{N}, k \geq 2$.
From this it follows that

$$
0 \leq a_{k} \leq \frac{\alpha\left(\alpha^{2}+4 \beta\right)+\left(\alpha^{2}+2 \beta\right) \sqrt{\alpha^{2}+4 \beta}}{2\left(\alpha^{2}+4 \beta\right)}\left(\frac{\alpha+\sqrt{\alpha^{2}+4 \beta}}{2}\right)^{k-1}
$$

for all $k \in \mathbb{N}, k \geq 2$. Then

$$
\begin{equation*}
1+a_{1}+a_{2}+\ldots+a_{p} \leq 1+\frac{1}{1-q} r=\frac{1-q+r}{1-q} \tag{6}
\end{equation*}
$$

where q and r are given by (4). From (5) and (6) we obtain

$$
\begin{equation*}
\left|x_{m+p+1}-x_{m+p}\right| \leq \frac{\varepsilon}{2}+a_{p+1}\left|x_{m}-x_{m-1}\right|+\beta a_{p}\left|x_{m-1}-x_{m-2}\right| . \tag{7}
\end{equation*}
$$

Since the sequence $\left(a_{n}\right)_{n \geq 1}$ converges to zero, there is an integer number $p_{0} \geq 1$ such that, for each integer number $p \geq p_{0}$, we have

$$
\begin{equation*}
a_{p+1}\left|x_{m}-x_{m-1}\right|<\frac{\varepsilon}{4} \text { and } \beta a_{p}\left|x_{m-1}-x_{m-2}\right|<\frac{\varepsilon}{4} . \tag{8}
\end{equation*}
$$

From (5), (7) and (8), it follows that

$$
\left|x_{n+1}-x_{n}\right|<\varepsilon, \text { for all } n \geq m+p_{0} .
$$

Consequently, the sequence $\left(x_{n+1}-x_{n}\right)_{n \geq 1}$ converges to zero.
Now, from

$$
\left|g\left(x_{n+1}\right)-g\left(x_{n}\right)\right| \leq \beta\left|x_{n+1}-x_{n}\right|, \text { for all } n \in \mathbb{N},
$$

and by the fact that the sequence $\left(x_{n+1}-x_{n}\right)_{n \geq 1}$ converges to zero, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(g\left(x_{n+1}\right)-g\left(x_{n}\right)\right)=0 . \tag{9}
\end{equation*}
$$

Let now $\left(t_{n}\right)_{n \geq 1}$ be the sequence with

$$
t_{n}=x_{n}+f\left(x_{n}\right)+g\left(x_{n}\right), \text { for all } n \in \mathbb{N} .
$$

Since for each $n \in \mathbb{N}, n \geq 2$, we have

$$
t_{n}=x_{n}+y_{n+1}-x_{n+1}-g\left(x_{n-1}\right)+g\left(x_{n}\right),
$$

by (9) and by the fact that the sequence $\left(x_{n+1}-x_{n}\right)_{n \geq 1}$ converges to zero, we deduce that the sequence $\left(t_{n}\right)_{n>1}$ converges to y_{∞}. Then the sequence $\left(\varphi^{-1}\left(t_{n}\right)\right)_{n \geq 1}$ is convergent to $\varphi^{-1}\left(y_{\infty}\right)$. Since

$$
\varphi^{-1}\left(t_{n}\right)=x_{n}, \text { for all } n \in \mathbb{N},
$$

it results that the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent to $\varphi^{-1}\left(y_{\infty}\right)$. The theorem is proved.

Some examples are interesting.
Example 3 Let α and β be two real numbers such that $\alpha, \beta \in[0,1[$, with $\alpha+\beta<1$ and let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be two sequences such that

$$
y_{n}=x_{n}+\alpha \sin x_{n-1}+\beta \arctan x_{n-2}, \text { for all } n \in \mathbb{N}, n \geq 3 .
$$

Then the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent if and only if the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent.

Moreover, if the sequence $\left(x_{n}\right)_{n \geq 1}$ converges to x_{∞}, then the sequence $\left(y_{n}\right)_{n \geq 1}$ converges to $x_{\infty}+\alpha \sin x_{\infty}+\beta \arctan x_{\infty}$, and conversely.

Proof. Apply theorem 2, with $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\alpha \sin x \text { and } g(x)=\beta \arctan x, \text { for all } x \in \mathbb{R} .
$$

Example 4 Let α and β be two real numbers such that $\alpha, \beta \in[0,1[$, with $\alpha+\beta<1$ and let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be two sequences such that

$$
y_{n}=x_{n}+\alpha \cos x_{n-1}+\beta \frac{1}{1+\left(x_{n-2}\right)^{2}}, \text { for all } n \in \mathbb{N}, n \geq 3 .
$$

Then the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent if and only if the sequence $\left(y_{n}\right)_{n>1}$ is convergent.

Moreover, if the sequence $\left(x_{n}\right)_{n \geq 1}$ converges to x_{∞}, then the sequence $\left(y_{n}\right)_{n \geq 1}$ converges to $x_{\infty}+\alpha \cos x_{\infty}+\beta \frac{1}{1+x_{\infty}^{2}}$, and conversely.

Proof. Apply theorem 2, with $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\alpha \cos x \text { and } g(x)=\beta \frac{1}{1+x^{2}}, \text { for all } x \in \mathbb{R}
$$

Example 5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which satisfies the following two properties:
(i) there is a real number $\alpha \in[0,1[$ such that

$$
|f(x)-f(u)| \leq \alpha|x-u|, \text { for all } x, u \in \mathbb{R},
$$

(ii) the function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\varphi(x)=x+f(x)$, for all $x \in \mathbb{R}$ is bijective.

Let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be two sequences such that

$$
y_{n}=x_{n}+f\left(x_{n-1}\right), \text { for all } n \in \mathbb{N}, n \geq 2 .
$$

Then the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent if and only if the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent.

Proof. Apply theorem 2.
Example 6 Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function which satisfies the following two properties:
(i) there is a real number $\beta \in[0,1[$ such that

$$
|g(x)-g(u)| \leq \beta|x-u|, \text { for all } x, u \in \mathbb{R}
$$

(ii) the function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\varphi(x)=x+g(x)$, for all $x \in \mathbb{R}$ is bijective.

Let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be two sequences such that

$$
y_{n}=x_{n}+g\left(x_{n-2}\right), \quad \text { for all } n \in \mathbb{N}, n \geq 3 .
$$

Then the sequence $\left(x_{n}\right)_{n \geq 1}$ is convergent if and only if the sequence $\left(y_{n}\right)_{n \geq 1}$ is convergent.

Proof. Apply theorem 2.

References

[1] Amann, Herbert and Escher, Joachim: Analysis, Birkhauser Verlag, Basel-Boston-Berlin, I(1998), II(1999), III(2001)
[2] Folland, G.B.: Real Analysis, J. Wiley, New York, 1999
[3] Lieb, Elliott H. and Loss, Michael: Analysis, American Mathematical Society, 1997
[4] Rudin, W.: Real and Complex Analysis, third edition, McGraw Hill, New York, 1987

