A GENERALISATION OF AN OSTROWSKI INEQUALITY IN INNER PRODUCT SPACES

SEVER S. DRAGOMIR AND ANCA C. GÖŞA

Abstract. A generalisation of inner product spaces of an inequality due to Ostrowski and applications for sequences and integrals are given.

1. Introduction

In 1951, A.M. Ostrowski [2, p. 289] obtained the following result (see also [1, p. 92]).

Theorem 1. Suppose that \(\mathbf{a} = (a_1, \ldots, a_n) \), \(\mathbf{b} = (b_1, \ldots, b_n) \) and \(\mathbf{x} = (x_1, \ldots, x_n) \) are real \(n \)-tuples such that \(\mathbf{a} \neq 0 \) and

\[
\sum_{i=1}^{n} a_i x_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} b_i x_i = 1.
\]

Then

\[
\sum_{i=1}^{n} x_i^2 \geq \sum_{i=1}^{n} \frac{a_i^2}{\sum_{i=1}^{n} b_i^2} - \left(\sum_{i=1}^{n} a_i b_i \right)^2, \tag{1.2}
\]

with equality if and only if

\[
x_k = \frac{b_k \sum_{i=1}^{n} a_i^2 - a_k \sum_{i=1}^{n} a_i b_i}{\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 - \left(\sum_{i=1}^{n} a_i b_i \right)^2}, \quad k = 1, \ldots, n. \tag{1.3}
\]

Another similar result due to Ostrowski which is far less known and obtained in the same work [2, p. 130] (see also [1, p. 94]), is the following one.

Theorem 2. Let \(\mathbf{a}, \mathbf{b} \) and \(\mathbf{x} \) be \(n \)-tuples of real numbers with \(\mathbf{a} \neq 0 \) and

\[
\sum_{i=1}^{n} a_i x_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} x_i^2 = 1.
\]

Then

\[
\sum_{i=1}^{n} \frac{a_i^2}{b_i^2} \geq \left(\sum_{i=1}^{n} b_i x_i \right)^2. \tag{1.5}
\]

If \(\mathbf{a} \) and \(\mathbf{b} \) are not proportional, then the equality holds in (1.5) iff

\[
x_k = q \cdot \frac{b_k \sum_{i=1}^{n} a_i^2 - a_k \sum_{i=1}^{n} a_i b_i}{\left(\sum_{k=1}^{n} a_k^2 \right)^2 \left(\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 - \left(\sum_{i=1}^{n} a_i b_i \right)^2 \right)^2}, \quad k \in \{1, \ldots, n\}, \tag{1.6}
\]

Date: May 19, 2003.
1991 Mathematics Subject Classification. 26D15, 46C99.
Key words and phrases. Ostrowski’s inequality, Inner products.
The case of equality which was neither mentioned in [1] nor in [2] is considered in Remark 1.

In the present paper, by the use of an elementary argument based on Schwarz’s inequality, a natural generalisation in inner-product spaces of (1.5) is given. The case of equality is analyzed. Applications for sequences and integrals are also provided.

2. The Results

The following theorem holds.

Theorem 3. Let \((H, \langle \cdot, \cdot \rangle)\) be a real or complex inner product space and \(a, b \in H\) two linearly independent vectors. If \(x \in H\) is such that

\[(i) \quad \langle x, a \rangle = 0 \text{ and } \|x\| = 1,\]

then

\[
\frac{\|a\|^2 \|b\|^2 - |\langle a, b \rangle|^2}{\|a\|^2} \geq |\langle x, b \rangle|^2.
\]

The equality holds in (2.1) iff

\[
\begin{align*}
\langle x, a \rangle &= \nu \left(b - \frac{\langle a, b \rangle}{\|a\|^2} \cdot a \right), \\
\end{align*}
\]

where \(\nu \in K \ (C, \mathbb{R})\) is such that

\[
|\nu| = \frac{\|a\|}{\left[\|a\|^2 \|b\|^2 - |\langle a, b \rangle|^2 \right]^{\frac{1}{2}}}.
\]

Proof. We use Schwarz’s inequality in the inner product space \(H\), i.e.,

\[
\|u\|^2 \|v\|^2 \geq |\langle u, v \rangle|^2, \quad u, v \in H
\]

with equality iff there is a scalar \(\alpha \in K\) such that

\[
\begin{align*}
u &= \alpha v. \\
\end{align*}
\]

If we apply (2.4) for \(u = z - \frac{\langle z, c \rangle}{\|c\|^2} \cdot c, v = d - \frac{\langle d, c \rangle}{\|c\|^2} \cdot c\), where \(c \neq 0\) and \(c, d, z \in H\), and taking into account that

\[
\begin{align*}
\left\| z - \frac{\langle z, c \rangle}{\|c\|^2} \cdot c \right\|^2 &= \frac{\|z\|^2 \|c\|^2 - |\langle z, c \rangle|^2}{\|c\|^2}, \\
\left\| d - \frac{\langle d, c \rangle}{\|c\|^2} \cdot c \right\|^2 &= \frac{\|d\|^2 \|c\|^2 - |\langle d, c \rangle|^2}{\|c\|^2}
\end{align*}
\]

and

\[
\begin{align*}
\langle z - \frac{\langle z, c \rangle}{\|c\|^2} \cdot c, d - \frac{\langle d, c \rangle}{\|c\|^2} \cdot c \rangle &= \frac{\langle z, d \rangle \|c\|^2 - \langle z, c \rangle \langle c, d \rangle}{\|c\|^2},
\end{align*}
\]

we deduce the inequality

\[
\begin{align*}
\left[\|z\|^2 \|c\|^2 - |\langle z, c \rangle|^2 \right] \left[\|d\|^2 \|c\|^2 - |\langle d, c \rangle|^2 \right] \geq \left[\langle z, d \rangle \|c\|^2 - \langle z, c \rangle \langle c, d \rangle \right]^2.
\end{align*}
\]
with equality iff there is a $\beta \in K$ such that

$$z = \frac{\langle z, c \rangle}{\|c\|^2} \cdot c + \beta \left(d - \frac{\langle d, c \rangle}{\|c\|^2} \cdot c \right).$$

If in (2.6) we choose $z = x$, $c = a$ and $d = b$, where a and x satisfy (i), then we deduce

$$\|a\|^2 \left[\|a\|^2 \|b\|^2 - |\langle a, b \rangle|^2 \right] \geq \left[\langle x, b \rangle \|a\|^2 \right]^2$$

which is clearly equivalent to (2.1).

The equality holds in (2.1) iff

$$x = \nu \left(b - \frac{\langle a, b \rangle}{\|a\|^2} \cdot a \right),$$

where $\nu \in K$ satisfies the condition

$$1 = \|x\| = |\nu| \left\| b - \frac{\langle a, b \rangle}{\|a\|^2} \cdot a \right\| = |\nu| \left[\frac{\|a\|^2 \|b\|^2 - |\langle a, b \rangle|^2}{\|a\|^2} \right]^{\frac{1}{2}},$$

and the theorem is thus proved. \qed

The following particular cases hold.

1. If $a, b, x \in \ell^2 (K)$, $K = \mathbb{C}, \mathbb{R}$, where

$$\ell^2 (K) := \left\{ x = (x_i)_{i \in \mathbb{N}} : \sum_{i=1}^{\infty} |x_i|^2 < \infty \right\}$$

with a, b linearly independent and

$$\sum_{i=1}^{\infty} x_i a_i = 0, \quad \sum_{i=1}^{\infty} |x_i|^2 = 1,$$

then

$$\sum_{i=1}^{\infty} |a_i|^2 \sum_{i=1}^{\infty} |b_i|^2 - |\sum_{i=1}^{\infty} a_i b_i|^2 \geq \left| \sum_{i=1}^{\infty} x_i b_i \right|^2.$$

The equality holds in (2.9) iff

$$x_i = \nu \left[b_i - \frac{\sum_{k=1}^{\infty} a_k b_k}{\sum_{k=1}^{\infty} |a_k|^2} \cdot a_i \right], \quad i \in \{1, 2, \ldots \}$$

with $\nu \in K$ is such that

$$|\nu| = \left(\frac{\sum_{k=1}^{\infty} |a_k|^2}{\sum_{k=1}^{\infty} |a_k|^2 \sum_{k=1}^{\infty} |b_k|^2 - |\sum_{k=1}^{\infty} a_k b_k|^2} \right)^{\frac{1}{2}}.$$
2. If \(f, g, h \in L^2(\Omega, m) \), where \(\Omega \) is an \(m \)-measurable space and
\[
L^2(\Omega, m) := \left\{ f : \Omega \rightarrow \mathbb{K}, \int_\Omega |f(x)|^2 \, dm(x) < \infty \right\},
\]
with \(f, g \) being linearly independent and
\[
\int_\Omega h(x) \frac{f(x)}{\overline{f(x)}} \, dm(x) = 0, \quad \int_\Omega |h(x)|^2 \, dm(x) = 1,
\]
then
\[
\frac{\int_\Omega |f(x)|^2 \, dm(x) \int_\Omega |g(x)|^2 \, dm(x) - \left| \int_\Omega f(x) \overline{g(x)} \, dm(x) \right|^2}{\int_\Omega |f(x)|^2 \, dm(x)} \geq \left| \int_\Omega h(x) \overline{g(x)} \, dm(x) \right|^2.
\]
The equality holds in (2.13) iff
\[
h(x) = \nu \left[g(x) - \frac{\int_\Omega g(x) \overline{f(x)} \, dm(x)}{\int_\Omega |f(x)|^2 \, dm(x)} \, f(x) \right]
\]
for a.e. \(x \in \Omega \)
and \(\nu \in \mathbb{K} \) with
\[
|\nu| = \left(\frac{\left(\int_\Omega |f(x)|^2 \, dm(x) \right)}{\left(\int_\Omega |f(x)|^2 \, dm(x) \int_\Omega |g(x)|^2 \, dm(x) - \left| \int_\Omega f(x) \overline{g(x)} \, dm(x) \right|^2 \right)^{1/2}} \right)^{1/2}.
\]

References

School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, MCMC 8001, Victoria, Australia.
E-mail address: sever@matilda.vu.edu.au

College No. 12, Reșița, Jud. Caraș-Severin, RO-1700, Reșița, Romania.
E-mail address: ancagosa@hotmail.com