
ON INTEGRAL FORMS OF GENERALISED MATHIEU SERIES

P. CERONE AND C.T. LENARD

Abstract. Integral representations for generalised Mathieu series are ob-

tained which recapture the Mathieu series as a special case. Bounds are ob-

tained through the use of the integral representations.

1. Introduction

The series

(1.1) S (r) =
∞∑

n=1

2n

(n2 + r2)2
, r > 0

is well known in the literature as Mathieu’s series. It has been extensively studied in
the past since its introduction by Mathieu [11] in 1890, where it arose in connection
with work on elasticity of solid bodies. The reader is directed to the references for
further illustration.

One of the main questions addressed in relation (1.1) is to obtain sharp bounds.
Alzer, Brenner and Ruehr [2] showed that the best constants a and b in

1
x2 + a

< S (x) <
1

x2 + b
, x 6= 0

are a = 1
2ζ(3) and b = 1

6 where ζ (·) denotes the Riemann zeta function defined by

(1.2) ζ (p) =
∞∑

n=1

1
np

.

An integral representation for S (r) as given in (1.1) was presented in [6] and [7]
as

(1.3) S (r) =
1
r

∫ ∞

0

x

ex − 1
sin (rx) dx.

Guo [9] utilised (1.3) and the following Lemma 1 to obtain bounds on S (r) .

Lemma 1. ([3, pp. 89–90]). If f ∈ L ([0,∞]) with limt→∞ f (t) = 0 then

∞∑
k=1

(−1)k
f (kπ) <

∫ ∞

0

f (t) cos tdt <

∞∑
k=0

(−1)k
f (kπ)
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and
∞∑

k=1

(−1)k
f

((
k +

1
2

)
π

)
<

∫ ∞

0

f (t) sin tdt(1.4)

< f (0) +
∞∑

k=0

(−1)k
f

((
k +

1
2

)
π

)
.

Namely, from (1.4) Guo obtained

(1.5)
π

r3

∞∑
k=0

(−1)k (
k + 1

2

)
e(k+ 1

2 )π
r − 1

< S (r) <
1
r2

(
1 +

π

r

∞∑
k=0

(−1)k (
k + 1

2

)
e(k+ 1

2 )π
r − 1

)
.

The following results were obtained by Qi and coworkers (see [13, 14, 15])

4
(
1 + r2

) (
e−

π
r + e−

π
2r

)
− 4r2 − 1(

e−
π
r − 1

)
(1 + r2) (1 + 4r2)

≤ S (r)(1.6)

≤
(
1 + 4r2

) (
e−

π
r − e−

π
2r

)
− 4

(
1 + r2

)(
e−

π
r − 1

)
(1 + r2) (1 + 4r2)

S (r) <
1
r

∫ π
r

0

x

ex − 1
sin (rx) dx <

1 + e−
π
2r

r2 + 1
4

,

and

S (r) ≥ 1
8r (1 + r2)3

[
16r

(
r2 − 3

)
+ π3

(
r2 + 1

)3
sech 2

(πr

2

)
tanh

(πr

2

)]
.

Guo in [9] poses the interesting problem as to whether there is an integral repre-
sentation of the generalised Mathieu series

(1.7) Sµ (r) =
∞∑

n=1

2n

(n2 + r2)1+µ , r > 0, µ > 0.

This is solved in Section 2.
Recently in [16] an integral representation was obtained for Sm (r) , where m ∈ N,

namely

(1.8) Sm (r) =
2

(2r)m
m!

∫ ∞

0

tm

et − 1
cos
(mπ

2
− rt

)
dt

− 2
m∑

k=1

[
(k − 1) (2r)k−2m−1

k! (m− k + 1)

(
− (m + 1)

m− k

)

×
∫ ∞

0

tk cos
[

π
2 (2m− k + 1)− rt

]
et − 1

dt

]
.

Bounds were obtained by Tomovski and Trenčevski [16] using (1.3) and (1.4).
It is the intention of the current paper to investigate further integral represen-

tations of the generalised Mathieu series (1.7).
Bounds are obtained in Section 3 for Sµ (r) . In Section 4 the open problem of

obtaining an integral representation for

S (r;µ, γ) =
∞∑

n=1

2nγ

(n2γ + r2)µ+1



MATHIEU SERIES 3

posed by Qi [13] is addressed.
We notice that

S (r; 1, 1) = S1 (r) = S (r) ,

the Mathieu series.

2. Integral Representation of the Generalised Mathieu Series Sµ (r)

Before proceeding to obtain an integral representation for Sµ (r) as given by
(1.7), it is instructive to present an alternative representation in terms of the zeta
function ζ (p) presented in (1.2). Namely, a straightforward series expansion gives

(2.1) Sµ (r) = 2
∞∑

k=0

r2k (−1)k

(
µ + k

k

)
ζ (2µ + 2k + 1)

on using the result
(

α
k

)
= (−1)k

(
k−α−1

k

)
with α = − (µ + 1) .

Theorem 1. The generalised Mathieu series Sµ (r) defined by (1.7) may be repre-
sented in the integral form

(2.2) Sµ (r) = Cµ (r)
∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx, µ > 0,

where

(2.3) Cµ (r) =
√

π

(2r)µ− 1
2 Γ (µ + 1)

and Jν (z) is the νth order Bessel function of the first kind.

Proof (A). Consider

(2.4) Tµ (r) =
∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx.

Then using the series definition for Jν (z) (Gradshtein and Ryzhik [8]),

Jν (z) =
∞∑

k=0

(−1)k ( z
2

)ν+2k

k!Γ (ν + k + 1)

in (2.4) produces after the permissible interchange of summation and integral,

(2.5) Tµ (r) =
∞∑

k=0

(−1)k ( r
2

)µ+2k− 1
2

k!Γ
(
µ + k + 1

2

) ∫ ∞

0

x2(µ+k)

ex − 1
dx.

Now, the well known representation [8]

(2.6)
∫ ∞

0

xp

ex − 1
dx = Γ (p + 1) ζ (p + 1)

gives from (2.5) with p = 2 (µ + k)

(2.7) Tµ (r) =
∞∑

k=0

(−1)k ( r
2

)µ+2k− 1
2 Γ (2µ + 2k + 1) ζ (2µ + 2k + 1)
k!Γ

(
µ + k + 1

2

) .

An application of the duplication identity for the gamma function
√

πΓ (2z) = 22z−1Γ (z) Γ
(

z +
1
2

)
,
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with z = µ + k + 1
2 simplifies the expression in (2.7) to

(2.8) Tµ (r) =
(2r)µ− 1

2 2√
π

∞∑
k=0

(−1)k
r2k Γ (µ + k + 1)

k!
ζ (2µ + 2k + 1) .

Repeated use of the identity Γ (z + 1) = zΓ (z) gives

Γ (µ + k + 1)
k!

=
(

µ + k

k

)
Γ (µ + 1)

and so from (2.8)

Tµ (r) =
(2r)µ− 1

2 Γ (µ + 1)√
π

2
∞∑

k=0

(−1)k
r2k

(
µ + k

k

)
ζ (2µ + 2k + 1)

produces the result (2.2) on reference to (2.1), (2.3) and (2.4).
The proof is now complete. �

Proof (B). ¿From (2.4) we have

Tµ (r) =
∫ ∞

0

e−x

1− e−x
xµ+ 1

2 Jµ− 1
2

(rx) dx(2.9)

=
∞∑

k=1

∫ ∞

0

e−nxxµ+ 1
2 Jµ− 1

2
(rx) dx.

Now Gradshtein and Ryzhik [8] on page 712 has the result∫ ∞

0

e−αxxν+1Jν (βx) dx =
2α (2β)ν Γ

(
ν + 3

2

)
√

π
[
α2 + β2

]ν+ 3
2

,(2.10)

Re (ν) > −1, Re (α) > |Im β| ,
which is referred to in Watson [18] whom in turn attributes the result to an 1875
result of Gegenbauer.

Taking α = n, ν = µ− 1
2 and β = r, all real, in (2.10) and substituting in (2.9)

readily produces

Tµ (r) =
(2r)µ− 1

2 Γ (µ + 1)√
π

∞∑
n=1

2n

[n2 + r2]µ+1 ,

giving from (1.7), (2.4) and (2.3) the result (2.2).
We note that the more restrictive condition of µ > 0 needs to be imposed for

the convergence of the series although (2.10) requires Re (ν) = µ− 1
2 > −1. �

Remark 1. If we take µ = 1 in (1.7) and (2.2) – (2.3) then S1 (r) ≡ S (r) , the
Mathieu series given by (1.1) and its integral representation (1.3). This is easily

seen to be the case since J 1
2

(z) =
√

2
πz sin z and taking µ = 1 in (2.2) – (2.3)

produces (1.3).

Remark 2. Gradshtein and Ryzhik [8] on page 712 also quote the result∫ ∞

0

e−αxxνJν (βx) dx =
(2β)ν Γ

(
ν + 1

2

)
√

π
(
α2 + β2

)ν+ 1
2

(2.11)

Re (ν) > −1
2
, Re (α) > |Im (β)| ,
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which Watson [18] again attributes to an 1875 result by Gegenbauer.
We note that formal differentiation of (2.11) with respect to α produces the result

(2.10).
Following a similar process as in Proof B above, we may show that

(2.12)
∫ ∞

0

xµ− 1
2

ex − 1
Jµ− 1

2
(rx) dx =

(2r)µ− 1
2 Γ (µ)√
π

∞∑
n=1

1
(n2 + r2)µ .

Gradshtein and Ryzhik [8] have an explicit expression which can be transformed by
a simple change of variables to (2.12). Namely,

(2.13)
∫ ∞

0

xνJν (bx)
eπx − 1

dx =
(2b)ν Γ

(
ν + 1

2

)
√

π

∞∑
n=1

1

(n2π2 + b2)ν+ 1
2
,

Re (ν) > 0, |Im (b)| < π, which is attributed by Watson [18] to a 1906 result by
Kapteyn.

An explicit integral expression for Sµ (r) of the current form does not seem to
have been available previously.

Finally, we note that (2.10) or (2.11) may be looked upon as an integral transform
such as the Laplace or Hankel transform and the results may be found in tables of
such.

Remark 3. Sµ (r) as given in (2.2) – (2.3) may be written in the alternate form

(2.14) Sµ (r) =
√

π

2µ− 1
2 r2µ−1Γ (µ + 1)

∫ ∞

0

x

ex − 1

[
(rx)µ− 1

2 Jµ− 1
2

(rx)
]
dx,

which, for µ = m, a positive integer

(2.15) Sm (r) =
1

2m−1r2m−1m!

√
π

2

∫ ∞

0

x

ex − 1
Rm (rx) dx,

where

(2.16)
√

π

2
Rm (z) =

√
π

2
zm− 1

2 Jm− 1
2

(z) .

For m = 1, 2, 3, 4 we have√
π

2
Rm (z) = sin z, sin z − z cos z, 3 sin z − 3z cos z − z2 sin z,

and
15 sin z − 15z cos z − 6z2 sin z + z3 cos z,

respectively.
Thus, for example,

S1 (r) =
1
r

∫ ∞

0

x

ex − 1
sin (rx) dx,

S2 (r) =
1

4r3

∫ ∞

0

x

ex − 1
[sin (rx)− (rx) cos (rx)] dx,

S3 (r) =
1

24r5

∫ ∞

0

x

ex − 1

[
3 sin (rx)− 3 (rx) cos (rx)− (rx)2 sin (rx)

]
dx,
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and

S4 (r) =
1

192r7

∫ ∞

0

x

ex − 1
[15 sin (rx)− 15 (rx) cos (rx)

−6 (rx)2 sin (rx) + (rx) cos (rx)
]
dx.

The above results for integer m can also be obtained using the relationship from
(1.1) and (1.3)

(2.17) S1 (r) = S (r) =
∞∑

n=1

2n

(n2 + r2)2
=

1
r

∫ ∞

0

x

ex − 1
sin (rx) dx.

Formal differentiation with respect to r of (2.17) gives

(−4r) S2 (r) =
∫ ∞

0

x

ex − 1

[
x cos rx

r
− sin rx

r2

]
dx

= − 1
r2

∫ ∞

0

x

ex − 1
(sin rx− rx cos rx) dx

producing the result above. Continuing in this manner would produce further
representations for Sm (r) .

The following theorem gives an explicit representation for Sm (r) , m ∈ N.

Theorem 2. For m a positive integer we have

(2.18) Sm (r) =
1

2m−1
· 1
r2m−1

· 1
m

m−1∑
k=0

(−1)b
3k
2 c

k!
rk [δk evenAk (r) + δk oddBk (r)] ,

where

(2.19) Ak (r) =
∫ ∞

0

xk+1

ex − 1
sin (rx) dx, Bk (r) =

∫ ∞

0

xk+1

ex − 1
cos (rx) dx,

with δcondition = 1 if condition holds and zero otherwise and bxc is the smallest
integer part of x.

Proof. ¿From (2.17) we may differentiate m− 1 times with respect to r to produce

S
(m−1)
1 (r) = (−1)m−1

m! (2r)m−1
Sm (r)(2.20)

=
∫ ∞

0

x

ex − 1
· dm−1

drm−1

(
sin rx

r

)
dx.

Now,

(2.21)
dm−1

drm−1

(
sin rx

r

)
=

m−1∑
k=0

(
m− 1

k

)
dm−1−k

drm−1−k

(
r−1
)
· dk

drk
(sin rx)

and

dl

drl

(
r−1
)

= (−1)l
l!r−(l+1),

dk

drk
(sin rx) = (−1)b

k
2 c xk [δk even sin (rx) + δk odd cos (rx)]

where δcondition = 1 if condition is true and zero otherwise.
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Thus from (2.21)

dm−1

drm−1

(
sin (rx)

r

)
(2.22)

=
1

rm

m−1∑
k=0

(
m− 1

k

)
(−1)m−1−k+b k

2 c

× (m− 1− k)!rkxk [δk even sin (rx) + δk odd cos (rx)]

=
(−1)m−1

rm
(m− 1)!

m−1∑
k=0

(−1)b
3k
2 c

k!
rkxk [δk even sin (rx) + δk odd cos (rx)] .

Substitution of (2.22) into (2.20) and simplifying produces the stated result (2.18).
�

Remark 4. The integral representation for Sm (r) given in Theorem 2 is simpler
than that obtained in [16] as given by (1.8). Further, the derivation here is much
more straight forward.

3. Bounds for Sµ (r)

It was stated in the introduction that considerable effort has been expended in
determining bounds for the generalised Mathieu series. More recently, bounds for
the generalised Mathieu series (1.7) has been investigated in particular by Qi and
coworkers and by Tomovski and Trenčevski [16].

In a recent article Landau [10] obtained the best possible uniform bounds for
Bessel functions using monotonicity arguments. Of particular interest to us here is
that he showed that

(3.1) |Jν (x)| < bL

ν
1
3

uniformly in the argument x and is best possible in the exponent 1
3 and constant

(3.2) bL = 2
1
3 sup

x
Ai (x) = 0.674885 · · · ,

where Ai (x) is the Airy function satisfying

w′′ − xw = 0.

Landau also showed that

(3.3) |Jν (x)| ≤ cL

x
1
3

uniformly in the order ν > 0 and the exponent 1
3 is best possible with

cL = sup
x

x
1
3 J0 (x)(3.4)

= 0.78574687 . . . .

The following theorem is based on the Landau bounds (3.1) – (3.4).

Theorem 3. The generalised Mathieu series Sµ (r) satisfies the bounds for µ > 1
2

and r > 0

(3.5) Sµ (r) ≤ bL

√
π

(2r)µ− 1
2
· 1(

µ− 1
2

) 1
3
·
Γ
(
µ + 3

2

)
Γ (µ + 1)

ζ

(
µ +

3
2

)
,
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and

(3.6) Sµ (r) ≤ cL ·
√

π

2µ− 1
2 rµ− 1

6
· Γ
(

µ +
7
6

)
ζ

(
µ +

7
6

)
,

where bL and cL are given by (4.2) and (4.4) respectively.

Proof. ¿From (2.2) and (2.3) we have

(3.7) Sµ (r) ≤ Cµ (r)
∫ ∞

0

xµ+ 1
2

ex − 1

∣∣∣Jµ− 1
2

(rx)
∣∣∣ dx, r > 0

and so from (3.1) we obtain, on utilising (2.6)

Sµ (r) ≤ Cµ (r) · bL(
µ− 1

2

) 1
3
Γ
(

µ +
3
2

)
ζ

(
µ +

3
2

)
,

which simplifies down to (3.5).
Further, using (3.3) into (3.7) gives

Sµ (r) ≤ Cµ (r) · cL ·
∫ ∞

0

xµ+ 1
2

ex − 1
· 1

|rx|
1
3
dx

= Cµ (r) · cL

r
1
3

∫ ∞

0

xµ+ 1
6

ex − 1
dx

which upon using (2.6) produces

(3.8) Sµ (r) ≤ Cµ (r) · cL

r
1
3
· Γ
(

µ +
7
6

)
ζ

(
µ +

7
6

)
.

Simplifying (3.8) and using (2.3) gives the stated result (3.6). �

Corollary 1. The Mathieu series S (r) satisfies the following bounds

(3.9) S (r) ≤ 3π

2
11
12

bLζ

(
5
2

)
and

(3.10) S (r) ≤ 7cL

36
·
√

π

2
· Γ
(

1
6

)
ζ

(
13
6

)
· r− 5

6 ,

where bL and cL are given by (3.2) and (3.4) respectively.

Proof. Taking µ = 1 in (3.5) and (3.6), noting that S (r) = S1 (r) gives the stated
results after some simplification. �

The following corollary gives coarser bounds than Theorem 3 without the pres-
ence of the zeta function.

Corollary 2. The generalised Mathieu series Sµ (r) satisfies the bounds for µ > 1
2

and r > 0

(3.11) Sµ (r) ≤ 2
√

π · bL(
µ− 1

2

) 1
3
· 1
rµ− 1

2
·
Γ
(
µ + 1

2

)
Γ (µ + 1)

and

(3.12) Sµ (r) ≤ 2
2
3
√

π · cL

rµ− 1
6
·
Γ
(
µ + 1

6

)
Γ (µ + 1)

with bL and cL given by (3.2) and (3.4).
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Proof. We use the well known inequality

e−x <
x

ex − 1
< e−

x
2

to produce from (3.7)

(3.13) Sµ (r) ≤ Cµ (r)
∫ ∞

0

e−
x
2 xµ− 1

2

∣∣∣Jµ− 1
2

(rx)
∣∣∣ dx.

We know from Laplace transforms or the definition of the gamma function that

(3.14)
∫ ∞

0

e−αxxsdx =
Γ (s + 1)

αs+1
.

Hence, placing (3.1) into (3.13) and utilising (3.14) we obtain (3.11) after simplifica-
tion. A similar approach produces (3.12) starting from (3.3) rather than (3.1). �

4. Further Integral Expressions for Generalised Mathieu Series

In [16], Tomovski and Trenčevski gave the integral representation

(4.1) Sµ (r) =
2

Γ (µ + 1)

∫ ∞

0

xµe−r2xf (x) dx,

where

(4.2) f (x) =
∞∑

n=1

ne−n2x, convergent for finite x > 0,

by effectively utilising the result (3.14).
They leave the summation of the series in (4.2) as an open problem.
If we place ν = µ− 1

2 and β = r, all real in (2.9) then we obtain the identity

(4.3) Cµ (r)
∫ ∞

0

e−αxxµ+ 1
2 Jµ− 1

2
(rx) dx =

2α

[α2 + r2]µ+1 ,

where Cµ (r) is as given by (2.3).
Proof B of Theorem 1 takes α = n and sums to produce the identity (2.1) –

(2.2).
If we take α = nγ then we have from (4.3) on summing

S (r;µ, γ) =
∞∑

n=1

2nγ

(n2γ + r2)µ+1(4.4)

= Cµ (r)
∫ ∞

0

( ∞∑
n=1

e−nγx

)
xµ+ 1

2 Jµ− 1
2

(rx) dx,

giving an integral representation that was left as an open problem by Qi [13].
As a matter of fact, if we take α = an where a = (a1, a2, . . . , an, . . . ) is a positive

sequence, then

S (r;µ;a) =
∞∑

n=1

2an

(a2
n + r2)µ+1(4.5)

= Cµ (r)
∫ ∞

0

( ∞∑
n=1

e−anx

)
xµ+ 1

2 Jµ− 1
2

(rx) dx.
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We note that for a+ = (1γ , 2γ , . . . ) then

S
(
r;µ;a+

)
= S (r;µ, γ) .

The series
∞∑

n=1

2an

(a2
n + r2)2

has been investigated in [14].
A closed form expression for

F (a) =
∞∑

n=1

e−anx, x > 0

where an is a positive sequence, remains an open problem.
If a∗ = (1, 2, 3, . . . , n, . . . ), then

F (a∗) =
1

ex − 1
.
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