INTEGRAL EXPRESSION AND INEQUALITIES OF MATHIEU TYPE SERIES

FENG QI

Abstract

Let $r>0$ be a positive real number and $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ a positive sequence such that the series $g(x)=\sum_{k=1}^{\infty} e^{-a_{k} x}$ converges for $x>0$, then $\sum_{k=1}^{\infty} a_{k} /\left(a_{k}^{2}+r^{2}\right)^{2}=\frac{1}{2 r} \int_{0}^{\infty} x g(x) \sin (r x) \mathrm{d} x$.

If $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ is a positive arithmetic sequence with difference $d>0$, then several inequalities of Mathieu type series $\sum_{k=1}^{\infty} a_{k} /\left(a_{k}^{2}+r^{2}\right)^{2}$ are obtained for $r>0$ under some conditions on a.

1. Introduction

In 1890, Mathieu defined $S(r)$ in [12] as

$$
\begin{equation*}
S(r)=\sum_{k=1}^{\infty} \frac{2 k}{\left(k^{2}+r^{2}\right)^{2}}, \quad r>0 \tag{1}
\end{equation*}
$$

and conjectured that $S(r)<\frac{1}{r^{2}}$. We call formula (1) Mathieu's series.
In [2, 11], Berg and Makai proved

$$
\begin{equation*}
\frac{1}{r^{2}+\frac{1}{2}}<S(r)<\frac{1}{r^{2}} \tag{2}
\end{equation*}
$$

H. Alzer, J. L. Brenner and O. G. Ruehr in [1] obtained

$$
\begin{equation*}
\frac{1}{r^{2}+\frac{1}{2 \zeta(3)}}<S(r)<\frac{1}{r^{2}+\frac{1}{6}}, \tag{3}
\end{equation*}
$$

where ζ denotes the zeta function and the number $\zeta(3)$ is the best possible.
The integral form of Mathieu's series (1) was given in $[6,7]$ by

$$
\begin{equation*}
S(r)=\frac{1}{r} \int_{0}^{\infty} \frac{x}{e^{x}-1} \sin (r x) \mathrm{d} x \tag{4}
\end{equation*}
$$

Recently, the following results were obtained in [14, 15]:
(1) Let Φ_{1} and Φ_{2} be two integrable functions sush that $\frac{x}{e^{x}-1}-\Phi_{1}(x)$ and $\Phi_{2}(x)-\frac{x}{e^{x}-1}$ are increasing. Then, for any positive number r, we have

$$
\begin{equation*}
\frac{1}{r} \int_{0}^{\infty} \Phi_{2}(x) \sin (r x) \mathrm{d} x \leqslant S(r) \leqslant \frac{1}{r} \int_{0}^{\infty} \Phi_{1}(x) \sin (r x) \mathrm{d} x \tag{5}
\end{equation*}
$$

[^0](2) For any positive number r, we have
\[

$$
\begin{equation*}
S(r) \geqslant \frac{1}{8 r\left(1+r^{2}\right)^{3}}\left[16 r\left(r^{2}-3\right)+\pi^{3}\left(r^{2}+1\right)^{3} \operatorname{sech}^{2}\left(\frac{\pi r}{2}\right) \tanh \left(\frac{\pi r}{2}\right)\right] \tag{6}
\end{equation*}
$$

\]

(3) For positive number $r>0$, we have

$$
\begin{align*}
& \frac{4\left(1+r^{2}\right)\left(e^{-\pi / r}+e^{-\pi /(2 r)}\right)-4 r^{2}-1}{\left(e^{-\pi / r}-1\right)\left(1+r^{2}\right)\left(1+4 r^{2}\right)} \leqslant S(r) \\
& \leqslant \frac{\left(1+4 r^{2}\right)\left(e^{-\pi / r}-e^{-\pi /(2 r)}\right)-4\left(1+r^{2}\right)}{\left(e^{-\pi / r}-1\right)\left(1+r^{2}\right)\left(1+4 r^{2}\right)} \tag{7}
\end{align*}
$$

(4) For any positive number $r>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}+r^{2}\right)^{2}}<\frac{1}{r} \int_{0}^{\pi / r} \frac{x}{e^{x}-1} \sin (r x) \mathrm{d} x<\frac{1+\exp \left(-\frac{\pi}{2 r}\right)}{r^{2}+\frac{1}{4}} \tag{8}
\end{equation*}
$$

(5) Suppose r is a positive number, then, for any positive real number α, we have

$$
\begin{equation*}
\frac{1}{r^{2}+\frac{1}{2}}<\sum_{k=1}^{\infty} \frac{2 k^{\alpha}}{\left(k^{2 \alpha}+r^{2}\right)^{2}}<\frac{1}{r^{2}} \tag{9}
\end{equation*}
$$

In $[9,14,15]$, the following open problem was proposed by B.-N. Guo and F. Qi respectively: Let

$$
\begin{equation*}
S(r, t, \alpha)=\sum_{n=1}^{\infty} \frac{2 n^{\alpha / 2}}{\left(n^{\alpha}+r^{2}\right)^{t+1}} \tag{10}
\end{equation*}
$$

for $t>0, r>0$ and $\alpha>0$. Can one obtain an integral expression of $S(r, t, \alpha)$? Give some sharp inequalities for the series $S(r, t, \alpha)$.

In [17], the open problem stated above was considered and an integral expression of $S(r, t, 2)$ was obtained: Let $a>0$ and $p \in \mathbb{N}$, then

$$
\begin{align*}
& S(a, p, 2)=\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}+a^{2}\right)^{p+1}}=\frac{2}{(2 a)^{p} p!} \int_{0}^{\infty} \frac{t^{p} \cos \left(\frac{p \pi}{2}-a t\right)}{e^{t}-1} \mathrm{~d} t \\
& \quad-2 \sum_{k=1}^{p} \frac{(k-1)(2 a)^{k-2 p-1}}{k!(p-k+1)}\binom{-(p+1)}{p-k} \int_{0}^{\infty} \frac{t^{k} \cos \left[\frac{\pi}{2}(2 p-k+1)-a t\right]}{e^{t}-1} \mathrm{~d} t \tag{11}
\end{align*}
$$

Using the quadrature formulas, some new inequalities of Mathieu series (1) were established in [8]. By the help of Laplace transform, the open problem mentioned above was partially solved, for example, among other things, an integral expression for $S\left(r, \frac{1}{2}, 2\right)$ was given as follows:

$$
\begin{equation*}
S\left(r, \frac{1}{2}, 2\right)=\frac{2}{r} \int_{0}^{\infty} \frac{t J_{0}(r t)}{e^{t}-1} \mathrm{~d} t \tag{12}
\end{equation*}
$$

where J_{0} is Bessel function of order zero.
There has been a much rich literature on the study of Mathieu's series, for example, $[4,5,11,16,18,19,20]$, also see $[3,10,13]$

In this paper, we are about to investigate the following Mathieu type series

$$
\begin{equation*}
S(r, a)=\sum_{k=1}^{\infty} \frac{a_{k}}{\left(a_{k}^{2}+r^{2}\right)^{2}} \tag{13}
\end{equation*}
$$

where $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ is a positive sequence satisfying $\lim _{k \rightarrow \infty} a_{k}=\infty$, and obtain an integral expression and some inequalities of $S(r, a)$ under some suitable conditons. At last, two open problems are proposed.

2. Integral expression of Mathieu type series (13)

Let $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ be a positive sequence satisfying $\lim _{k \rightarrow \infty} a_{k}=\infty$, let

$$
\begin{equation*}
b_{k}(r, a)=\frac{a_{k}}{\left(a_{k}^{2}+r^{2}\right)^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
S(r, a)=\sum_{k=1}^{\infty} b_{k}(r, a) \tag{15}
\end{equation*}
$$

Theorem 1. Let $r>0$ and $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ be a positive sequence such that the series

$$
\begin{equation*}
g(x) \triangleq \sum_{k=1}^{\infty} e^{-a_{k} x} \tag{16}
\end{equation*}
$$

converges for $x>0$. Then we have

$$
\begin{equation*}
S(r, a)=\frac{1}{2 r} \int_{0}^{\infty} x g(x) \sin (r x) \mathrm{d} x . \tag{17}
\end{equation*}
$$

Proof. By direct computation, we have

$$
\begin{equation*}
b_{k}(r, a)=\frac{i}{4 r}\left[\frac{1}{\left(a_{k}+i r\right)^{2}}-\frac{1}{\left(a_{k}-i r\right)^{2}}\right], \tag{18}
\end{equation*}
$$

where $i^{2}=-1$.
From the definition of gamma function, it is easy to see that

$$
\begin{equation*}
\frac{\Gamma(t)}{u^{t}}=\int_{0}^{\infty} x^{t-1} e^{-u x} \mathrm{~d} x \tag{19}
\end{equation*}
$$

Set $u=a_{k} \pm i r$ in formula (19), then

$$
\begin{align*}
\frac{\Gamma(t)}{\left(a_{k} \pm i r\right)^{t}} & =\int_{0}^{\infty} x^{t-1} e^{-\left(a_{k} \pm i r\right) x} \mathrm{~d} x, \tag{20}\\
\Gamma(t)\left[\frac{1}{\left(a_{k}+i r\right)^{t}}-\frac{1}{\left(a_{k}-i r\right)^{t}}\right] & =-2 i \int_{0}^{\infty} x^{t-1} e^{-x a_{k}} \sin (r x) \mathrm{d} x, \tag{21}\\
\Gamma(t) \sum_{k=1}^{\infty}\left[\frac{1}{\left(a_{k}+i r\right)^{t}}-\frac{1}{\left(a_{k}-i r\right)^{t}}\right] & =-2 i \int_{0}^{\infty} g(x) x^{t-1} \sin (r x) \mathrm{d} x . \tag{22}
\end{align*}
$$

Since $\Gamma(2)=1$, we have

$$
\begin{equation*}
S(r ; f)=\frac{1}{2 r} \int_{0}^{\infty} g(x) x \sin (r x) \mathrm{d} x . \tag{23}
\end{equation*}
$$

The proof is complete.
Remark 1. If let $a_{k}=k$ in (17), then we can easily obtain the formula (4) in [7]. Note that the proof of Theorem 1 uses the technique which was used by O. E. Emersleben in [7].

Corollary 1. If $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ is a positive arithmetic sequence with difference $d>0$, then for any positive real number $r>0$, we have

$$
\begin{equation*}
S(r, a)=\frac{1}{2 r} \int_{0}^{\infty} \frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1} \sin (r x) \mathrm{d} x \tag{24}
\end{equation*}
$$

Proof. Since $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ is an arithmetic sequence with difference $d>$ 0 , then $\left\{e^{-x a_{k}}\right\}_{k=1}^{\infty}$ is a geometric sequence with constant ratio $e^{-d x}<1$, thus

$$
g(x)=\sum_{k=1}^{\infty} e^{-x a_{k}}=\frac{e^{\left(d-a_{1}\right) x}}{e^{d x}-1}
$$

Then formula (24) follows from (17).

3. Inequalities of Mathied type series (24)

Now we give a general estimate of Mathieu type series (24) as follows.
Theorem 2. Let $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ be a positive arithmetic sequence with difference $d>0$. Let Φ_{1} and Φ_{2} be two integrable functions such that $\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}-$ $\Phi_{1}(x)$ and $\Phi_{2}(x)-\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}$ are increasing. Then for any positive number r,

$$
\begin{equation*}
\frac{1}{2 r} \int_{0}^{\infty} \Phi_{2}(x) \sin (r x) \mathrm{d} x \leqslant S(r, a) \leqslant \frac{1}{2 r} \int_{0}^{\infty} \Phi_{1}(x) \sin (r x) \mathrm{d} x \tag{25}
\end{equation*}
$$

Proof. The function $\psi(x)=\sin (r x)$ has a period $\frac{2 \pi}{r}$, and $\psi(x)=-\psi\left(x+\frac{\pi}{r}\right)$.
Since $f(x)=\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}-\Phi_{1}(x)$ is increasing, for any $\alpha>0$, we have $f(x+\alpha) \geqslant$ $f(x)$. Therefore, from Lemma 1 or Corollary 1 in [14, 15], we obtain

$$
\begin{gather*}
\int_{2 k \pi / r}^{2(k+1) \pi / r}\left[\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}-\Phi_{1}(x)\right] \sin (r x) \mathrm{d} x \leqslant 0 \tag{26}\\
\int_{2 k \pi / r}^{2(k+1) \pi / r} \frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1} \sin (r x) \mathrm{d} x \leqslant \int_{2 k \pi / r}^{2(k+1) \pi / r} \Phi_{1}(x) \sin (r x) \mathrm{d} x . \tag{27}
\end{gather*}
$$

Then, from formula (13), we have

$$
\begin{align*}
S(r, a) & =\frac{1}{2 r} \sum_{k=0}^{\infty} \int_{2 k \pi / r}^{2(k+1) \pi / r} \frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1} \sin (r x) \mathrm{d} x \\
& \leqslant \frac{1}{2 r} \sum_{k=0}^{\infty} \int_{2 k \pi / r}^{2(k+1) \pi / r} \Phi_{1}(x) \sin (r x) \mathrm{d} x \tag{28}\\
& =\frac{1}{2 r} \int_{0}^{\infty} \Phi_{1}(x) \sin (r x) \mathrm{d} x .
\end{align*}
$$

The right hand side of inequality (25) follows.
Similar arguments yield the left hand side of inequality (25).
For $x>0$, we have

$$
\begin{equation*}
\frac{1}{e^{x}}<\frac{x}{e^{x}-1}<\frac{1}{e^{x / 2}} \tag{29}
\end{equation*}
$$

Theorem 3. Let $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ be a positive arithmetic sequence with difference $d>0$ and $a_{1}>\frac{d}{2}$. For positive number $r>0$, we have

$$
\begin{align*}
& \frac{1}{d}\left\{\frac{\left(1+e^{-\pi a_{1} / r}\right)}{2\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2 \pi a_{1} / r}\right)}-\frac{2\left[e^{-\pi\left(2 a_{1}-d\right) / r}+e^{-\pi\left(2 a_{1}-d\right) /(2 r)}\right]}{\left[\left(2 a_{1}-d\right)^{2}+4 r^{2}\right]\left[1-e^{-\pi\left(2 a_{1}-d\right) / r}\right]}\right\} \leqslant S(r, a) \\
& \leqslant \frac{1}{d}\left\{\frac{2\left[1+e^{-\pi\left(2 a_{1}-d\right) /(2 r)}\right]}{\left[\left(2 a_{1}-d\right)^{2}+4 r^{2}\right]\left[1-e^{-\pi\left(2 a_{1}-d\right) / r}\right]}-\frac{\left(e^{-2 \pi a_{1} / r}+e^{-\pi a_{1} / r}\right)}{2\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2 \pi a_{1} / r}\right)}\right\} \tag{30}
\end{align*}
$$

Proof. For $r>0$, using (24), by direct calculation, we have

$$
\begin{equation*}
S(r, a)=\frac{1}{2 r} \sum_{k=0}^{\infty}\left[\int_{2 k \pi / r}^{(2 k+1) \pi / r}+\int_{(2 k+1) \pi / r}^{(2 k+2) \pi / r}\right] \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x \tag{31}
\end{equation*}
$$

The inequality (29) gives us

$$
\begin{align*}
& \frac{r\left(1+e^{-\pi a_{1} / r}\right)}{d\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2 \pi a_{1} / r}\right)}=\sum_{k=0}^{\infty} \int_{2 k \pi / r}^{(2 k+1) \pi / r} \frac{\sin (r x)}{d e^{a_{1} x}} \mathrm{~d} x \\
& \leqslant \sum_{k=0}^{\infty} \int_{2 k \pi / r}^{(2 k+1) \pi / r} \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x \\
& \leqslant \sum_{k=0}^{\infty} \int_{2 k \pi / r}^{(2 k+1) \pi / r} \frac{\sin (r x)}{d e^{\left(a_{1}-\frac{d}{2}\right) x}} \mathrm{~d} x=\frac{4 r\left[1+e^{-\pi\left(2 a_{1}-d\right) /(2 r)}\right]}{d\left[\left(2 a_{1}-d\right)^{2}+4 r^{2}\right]\left[1-e^{-\pi\left(2 a_{1}-d\right) / r}\right]} \tag{32}
\end{align*}
$$

and

$$
\begin{gather*}
-\frac{4 r\left[e^{-\pi\left(2 a_{1}-d\right) / r}+e^{-\pi\left(2 a_{1}-d\right) /(2 r)}\right]}{d\left[\left(2 a_{1}-d\right)^{2}+4 r^{2}\right]\left[1-e^{-\pi\left(2 a_{1}-d\right) / r}\right]}=\sum_{k=0}^{\infty} \int_{(2 k+1) \pi / r}^{2(k+1) \pi / r} \frac{\sin (r x)}{d e^{\left(a_{1}-\frac{d}{2}\right) x}} \mathrm{~d} x \\
\leqslant \sum_{k=0}^{\infty} \int_{(2 k+1) \pi / r}^{2(k+1) \pi / r} \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x \\
\leqslant \sum_{k=0}^{\infty} \int_{(2 k+1) \pi / r}^{2(k+1) \pi / r} \frac{\sin (r x)}{d e^{a_{1} x}} \mathrm{~d} x=-\frac{r\left(e^{-2 \pi a_{1} / r}+e^{-\pi a_{1} / r}\right)}{d\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2 \pi a_{1} / r}\right)} \tag{33}
\end{gather*}
$$

Substituting (32) and (33) into (31) yields (30). The proof is complete.

Theorem 4. Let $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ be a positive arithmetic sequence with difference $d>0$ and $a_{1}>\frac{d}{2}$. For any positive number $r>0$, we have

$$
\begin{equation*}
S(r, a)<\frac{1}{2 r} \int_{0}^{\pi / r} \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x<\frac{2\left[1+e^{\pi\left(d-2 a_{1}\right) /(2 r)}\right]}{d\left[\left(d-2 a_{1}\right)^{2}+4 r^{2}\right]} \tag{34}
\end{equation*}
$$

Proof. Straightforward computation yields

$$
\begin{align*}
& \int_{0}^{\infty} \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x-\int_{0}^{\pi / r} \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x \\
& \quad=\sum_{k=1}^{\infty} \int_{k \pi / r}^{(k+1) \pi / r} \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x \\
& \quad=\sum_{i=1}^{\infty}\left(\int_{2 i \pi / r}^{(2 i+1) \pi / r}+\int_{(2 i-1) \pi / r}^{2 i \pi / r}\right) \frac{x e^{\left(d-a_{1}\right) x} \sin (r x)}{e^{d x}-1} \mathrm{~d} x \\
& \quad=\frac{1}{r^{2}} \sum_{i=1}^{\infty}\left(\int_{0}^{\pi}+\int_{-\pi}^{0}\right) \frac{(2 i \pi+x) \exp \frac{\left(d-a_{1}\right)(2 i \pi+x)}{r}}{\exp \frac{d(2 i \pi+x)}{r}-1} \sin (2 i \pi+x) \mathrm{d} x \\
& =\frac{1}{r^{2}} \sum_{i=1}^{\infty} \int_{0}^{\pi}\left[\frac{(2 i \pi+x) \exp \frac{\left(d-a_{1}\right)(2 i \pi+x)}{r}}{\exp \frac{d(2 i \pi+x)}{r}-1}\right. \\
& \left.\quad-\frac{[(2 i-1) \pi+x] \exp \frac{\left(d-a_{1}\right)[(2 i-1) \pi+x]}{r}}{\exp \frac{d[(2 i-1) \pi+x]}{r}-1}\right] \sin x \mathrm{~d} x . \tag{35}
\end{align*}
$$

For $x>0$, we have

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}\right)=-\frac{x\left[a_{1}+\frac{1}{x}\left(\frac{d x}{e^{d x}-1}-1\right)\right] e^{\left(d-a_{1}\right) x}}{e^{d x}-1}, \tag{36}\\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left[\frac{1}{x}\left(\frac{d x}{e^{d x}-1}-1\right)\right]=\frac{1-2 e^{d x}+e^{2 d x}-d^{2} x^{2} e^{d x}}{x^{2}\left(e^{d x}-1\right)^{2}}, \tag{37}\\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left[1-2 e^{d x}+e^{2 d x}-d^{2} x^{2} e^{d x}\right]=2 d^{2} x e^{d x}\left[\frac{e^{d x}-1}{d x}-1-\frac{d x}{2}\right]>0, \tag{38}\\
\lim _{x \rightarrow 0}\left[\frac{1}{x}\left(\frac{d x}{e^{d x}-1}-1\right)\right]=-\frac{d}{2} \tag{39}
\end{gather*}
$$

then $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{1}{x}\left(\frac{d x}{e^{d x}-1}-1\right)\right]>0$ and $\frac{1}{x}\left(\frac{d x}{e^{d x}-1}-1\right)>-\frac{d}{2}$. From $a_{1}>\frac{d}{2}$, it follows that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}\right)<0$, the function $\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}$ decreases, and then for $x>0$ and $i \in \mathbb{N}$

$$
\begin{equation*}
\frac{(2 i \pi+x) \exp \frac{\left(d-a_{1}\right)(2 i \pi+x)}{r}}{\exp \frac{d(2 i \pi+x)}{r}-1}<\frac{[(2 i-1) \pi+x] \exp \frac{\left(d-a_{1}\right)[(2 i-1) \pi+x]}{r}}{\exp \frac{d[(2 i-1) \pi+x]}{r}-1} \tag{40}
\end{equation*}
$$

thus, from inequality (29), we have

$$
\begin{align*}
\int_{0}^{\infty} \frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1} \sin (r x) \mathrm{d} x & <\int_{0}^{\pi / r} \frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1} \sin (r x) \mathrm{d} x \\
& <\int_{0}^{\pi / r} \frac{\sin (r x)}{d e^{\left(a_{1}-\frac{d}{2}\right) x}} \mathrm{~d} x=\frac{4 r\left[1+e^{\pi\left(d-2 a_{1}\right) /(2 r)}\right]}{d\left[\left(d-2 a_{1}\right)^{2}+4 r^{2}\right]} \tag{41}
\end{align*}
$$

Inequality (34) follows from combination of (41) with (24).
Remark 2. The proof of Theorem 4 can be shortened by observing that

$$
\begin{equation*}
\frac{x e^{\left(d-a_{1}\right) x}}{e^{d x}-1}=\frac{x \exp \left[\left(\frac{d}{2}-a_{1}\right) x\right]}{2 \sinh \left(\frac{d x}{2}\right)} \tag{42}
\end{equation*}
$$

and $\frac{\sinh x}{x}$ and $\exp \left[\left(a_{1}-\frac{d}{2}\right) x\right]$ are both increasing with $x>0$ for $a_{1}>\frac{d}{2}$.

This observation was given by Professor Lothar Berg at FB Mathematik der Universität, Universitätspl. 1, D-18055 Rostock, Germany, through an e-mail to the author on May 19, 2003.

By exploiting a technique presented by E. Makai in [11] and used by the author in [14], we obtain the following inequalities of Mathieu type series (13).

Theorem 5. Suppose r is a positive number, then for a positive sequence $a=$ $\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ and a positive real number $\alpha>0$ satisfying $a_{k+1}^{\alpha / 2}-a_{k}^{\alpha / 2}=1$, we have

$$
\begin{equation*}
\frac{1}{2 r^{2}+1}<\sum_{k=1}^{\infty} \frac{a_{k}^{\alpha / 2}}{\left(a_{k}^{\alpha}+r^{2}\right)^{2}}<\frac{1}{2 r^{2}} \tag{43}
\end{equation*}
$$

Proof. By standard argument, we obtain

$$
\begin{aligned}
& \frac{1}{\left(a_{k}^{\alpha / 2}-\frac{1}{2}\right)^{2}+r^{2}-\frac{1}{4}}-\frac{1}{\left(a_{k}^{\alpha / 2}+\frac{1}{2}\right)^{2}+r^{2}-\frac{1}{4}} \\
= & \frac{2 a_{k}^{\alpha / 2}}{\left(a_{k}^{\alpha}+r^{2}-a_{k}^{\alpha / 2}\right)\left(a_{k}^{\alpha}+r^{2}+a_{k}^{\alpha / 2}\right)} \\
> & \frac{2 a_{k}^{\alpha / 2}}{\left(a_{k}^{\alpha}+r^{2}\right)^{2}} \\
> & \frac{2 a_{k}^{\alpha / 2}}{\left(a_{k}^{\alpha}+r^{2}\right)^{2}+r^{2}+\frac{1}{4}} \\
= & \frac{1}{\left(a_{k}^{\alpha / 2}-\frac{1}{2}\right)^{2}+r^{2}+\frac{1}{4}}-\frac{1}{\left(a_{k}^{\alpha / 2}+\frac{1}{2}\right)^{2}+r^{2}+\frac{1}{4}}
\end{aligned}
$$

summing for $k=1,2, \ldots$ yields inequalities in (43).

4. Two open problems

Now we will propose two open problems for interesting readers to discuss.
Open Problem 1. Let $r>0, t>0, \alpha>0, \beta>0$ and $a=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots\right)$ be a positive sequence, define

$$
\begin{equation*}
S(r, t, \alpha, \beta, a)=\sum_{k=1}^{\infty} \frac{a_{k}^{\beta}}{\left(a_{k}^{\alpha}+r^{2}\right)^{t}} . \tag{44}
\end{equation*}
$$

(1) Under what conditions does the sequence $S(r, t, \alpha, \beta, a)$ converge?
(2) Can one obtain an integral expression for the series $S(r, t, \alpha, \beta, a)$?
(3) Can one establish a sharp double inequality for the series $S(r, t, \alpha, \beta, a)$?

Open Problem 2. For $r>0$, we have

$$
\begin{equation*}
\left[\int_{0}^{\infty} \frac{x \sin (r x)}{e^{x}-1} \mathrm{~d} x\right]^{2}>2 r^{2} \int_{0}^{\infty} \frac{x^{2} f(x)}{e^{r^{2} x}} \mathrm{~d} x \tag{45}
\end{equation*}
$$

where $f(x)=\sum_{k=1}^{\infty} k e^{-k^{2} x}$.

References

[1] H. Alzer, J. L. Brenner, and O. G. Ruehr, On Mathieu's inequality, J. Math. Anal. Appl. 218 (1998), 607-610.
[2] L. Berg, Über eine abschätzung von Mathieu, Math. Nachr. 7 (1952), 257-259.
[3] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison Wesley Longman Limited, 1998.
[4] P. H. Diananda, On some inequalities related to Mathieu's, Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. No. 544-576 (1976), 77-80.
[5] P. H. Diananda, Some inequalities related to an inequality of Mathieu, Math. Ann. 250 (1980), 95-98.
[6] A. Elbert, Asymptotic expansion and continued fraction for Mathieu's series, Period. Math. Hungar. 13 (1982), no. 1, 1-8.
[7] O. E. Emersleben, Über die Reihe $\sum_{k=1}^{\infty} \frac{k}{\left(k^{2}+c^{2}\right)^{2}}$, Math. Ann. 125 (1952), 165-171.
[8] I. Gavrea, Some remarks on Mathieu's series, Mathematical Analysis and Approximation Theory, Proc. of RoGer-2002, 113-117, Editura Burg, 2002.
[9] B.-N. Guo, Note on Mathieu's inequality, RGMIA Res. Rep. Coll. 3 (2000), no. 3, Art. 5. Available online at http://rgmia.vu.edu.au/v3n3.html.
[10] J.-Ch. Kuang, Chángyòng Bùděngshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
[11] E. Makai, On the inequality of Mathieu, Publ. Math. Debrecen 5 (1957), 204-205.
[12] E. Mathieu, Traité de physique mathématique, VI-VII: Théorie de l'élasticité des corps solides, Gauthier-Villars, Paris, 1890.
[13] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Chapter XXII, 629-634. Kluwer Academic Publishers, Dordrecht, 1993.
[14] F. Qi, Inequalities for Mathieu's series, RGMIA Res. Rep. Coll. 4 (2001), no. 2, Art. 3, 187-193. Available online at http://rgmia.vu.edu.au/v4n2.html.
[15] F. Qi and Ch.-P. Chen, Notes on double inequalities of Mathieu's series, Internat. J. Pure Appl. Math. (2003), in press.
[16] D. C. Russell, A note on Mathieu's inequality, Æquationes Math., 36 (1988), 294-302.
[17] Z̆. Tomovski and K. Trenčevski, On an open problem of Bai-Ni Guo and Feng Qi, J. Inequal. Pure Appl. Math. 4 (2003), no. 2, in press. Available online at http://jipam.vu.edu.au/ v4n2/101_02.html.
[18] Ch.-L. Wang and X.-H. Wang, Refinements of Matheiu's inequality, Kēxué Tōngbào (Chinese Sci. Bull.) 26 (1981), no. 5, 315. (Chinese)
[19] Ch.-L. Wang and X.-H. Wang, Refinements of Matheiu's inequality, Shùxué Yánjiū yù Pínglùn (J. Math. Res. Exposition) 1 (1981), no. 1, 315. (Chinese)
[20] Ch.-L. Wang and X.-H. Wang, A refinement of the Mathieu inequality, Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. No. 716-734 (1981), 22-24.
(F. Qi) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHinA

E-mail address: qifeng@jzit.edu.cn
URL: http://rgmia.vu.edu.au/qi.html

[^0]: 2000 Mathematics Subject Classification. Primary 26D15, 33E20; Secondary 26A42, 40A30.
 Key words and phrases. Integral expression, Mathieu type series, inequality, gamma function.
 The author was supported in part by NNSF (\#10001016) of China, SF for the Prominent Youth of Henan Province (\#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo Institute of Technology, CHINA.

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX.

