INTEGRAL EXPRESSION AND INEQUALITIES OF MATHIEU TYPE SERIES

FENG QI

ABSTRACT. Let r > 0 be a positive real number and $a = (a_1, a_2, \ldots, a_k, \ldots)$ a positive sequence such that the series $g(x) = \sum_{k=1}^{\infty} e^{-a_k x}$ converges for x > 0, then $\sum_{k=1}^{\infty} a_k/(a_k^2 + r^2)^2 = \frac{1}{2r} \int_0^\infty xg(x) \sin(rx) \, dx$. If $a = (a_1, a_2, \ldots, a_k, \ldots)$ is a positive arithmetic sequence with difference d > 0, then several inequalities of Mathieu type series $\sum_{k=1}^{\infty} a_k/(a_k^2 + r^2)^2$ are obtained for n > 0 or means or multiplication of n > 0.

obtained for r > 0 under some conditions on a.

1. INTRODUCTION

In 1890, Mathieu defined S(r) in [12] as

$$S(r) = \sum_{k=1}^{\infty} \frac{2k}{(k^2 + r^2)^2}, \quad r > 0,$$
(1)

and conjectured that $S(r) < \frac{1}{r^2}$. We call formula (1) Mathieu's series.

In [2, 11], Berg and Makai proved

$$\frac{1}{r^2 + \frac{1}{2}} < S(r) < \frac{1}{r^2}.$$
(2)

H. Alzer, J. L. Brenner and O. G. Ruehr in [1] obtained

$$\frac{1}{r^2 + \frac{1}{2\zeta(3)}} < S(r) < \frac{1}{r^2 + \frac{1}{6}},\tag{3}$$

where ζ denotes the zeta function and the number $\zeta(3)$ is the best possible.

The integral form of Mathieu's series (1) was given in [6, 7] by

$$S(r) = \frac{1}{r} \int_0^\infty \frac{x}{e^x - 1} \sin(rx) \, \mathrm{d}x.$$
 (4)

Recently, the following results were obtained in [14, 15]:

(1) Let Φ_1 and Φ_2 be two integrable functions such that $\frac{x}{e^x-1} - \Phi_1(x)$ and $\Phi_2(x) - \frac{x}{e^x - 1}$ are increasing. Then, for any positive number r, we have

$$\frac{1}{r} \int_0^\infty \Phi_2(x) \sin(rx) \, \mathrm{d}x \leqslant S(r) \leqslant \frac{1}{r} \int_0^\infty \Phi_1(x) \sin(rx) \, \mathrm{d}x.$$
 (5)

²⁰⁰⁰ Mathematics Subject Classification. Primary 26D15, 33E20; Secondary 26A42, 40A30.

Key words and phrases. Integral expression, Mathieu type series, inequality, gamma function. The author was supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo Institute of Technology, CHINA.

This paper was typeset using $\mathcal{A}_{\mathcal{M}}S$ -IAT_EX.

(2) For any positive number r, we have

$$S(r) \ge \frac{1}{8r(1+r^2)^3} \left[16r(r^2-3) + \pi^3(r^2+1)^3 \operatorname{sech}^2\left(\frac{\pi r}{2}\right) \tanh\left(\frac{\pi r}{2}\right) \right].$$
(6)

(3) For positive number r > 0, we have

$$\frac{4\left(1+r^{2}\right)\left(e^{-\pi/r}+e^{-\pi/(2r)}\right)-4r^{2}-1}{\left(e^{-\pi/r}-1\right)\left(1+r^{2}\right)\left(1+4r^{2}\right)} \leqslant S(r) \\
\leqslant \frac{\left(1+4r^{2}\right)\left(e^{-\pi/r}-e^{-\pi/(2r)}\right)-4\left(1+r^{2}\right)}{\left(e^{-\pi/r}-1\right)\left(1+r^{2}\right)\left(1+4r^{2}\right)}.$$
(7)

(4) For any positive number r > 0, we have

$$\sum_{n=1}^{\infty} \frac{2n}{(n^2 + r^2)^2} < \frac{1}{r} \int_0^{\pi/r} \frac{x}{e^x - 1} \sin(rx) \, \mathrm{d}x < \frac{1 + \exp(-\frac{\pi}{2r})}{r^2 + \frac{1}{4}}.$$
 (8)

(5) Suppose r is a positive number, then, for any positive real number α , we have

$$\frac{1}{r^2 + \frac{1}{2}} < \sum_{k=1}^{\infty} \frac{2k^{\alpha}}{(k^{2\alpha} + r^2)^2} < \frac{1}{r^2}.$$
(9)

In [9, 14, 15], the following open problem was proposed by B.-N. Guo and F. Qi respectively: Let

$$S(r,t,\alpha) = \sum_{n=1}^{\infty} \frac{2n^{\alpha/2}}{(n^{\alpha} + r^2)^{t+1}}$$
(10)

for t > 0, r > 0 and $\alpha > 0$. Can one obtain an integral expression of $S(r, t, \alpha)$? Give some sharp inequalities for the series $S(r, t, \alpha)$.

In [17], the open problem stated above was considered and an integral expression of S(r, t, 2) was obtained: Let a > 0 and $p \in \mathbb{N}$, then

$$S(a, p, 2) = \sum_{n=1}^{\infty} \frac{2n}{(n^2 + a^2)^{p+1}} = \frac{2}{(2a)^p p!} \int_0^\infty \frac{t^p \cos(\frac{p\pi}{2} - at)}{e^t - 1} dt$$
$$-2\sum_{k=1}^p \frac{(k-1)(2a)^{k-2p-1}}{k!(p-k+1)} \binom{-(p+1)}{p-k} \int_0^\infty \frac{t^k \cos[\frac{\pi}{2}(2p-k+1) - at]}{e^t - 1} dt.$$
(11)

Using the quadrature formulas, some new inequalities of Mathieu series (1) were established in [8]. By the help of Laplace transform, the open problem mentioned above was partially solved, for example, among other things, an integral expression for $S(r, \frac{1}{2}, 2)$ was given as follows:

$$S\left(r,\frac{1}{2},2\right) = \frac{2}{r} \int_0^\infty \frac{t J_0(rt)}{e^t - 1} \,\mathrm{d}t,\tag{12}$$

where J_0 is Bessel function of order zero.

There has been a much rich literature on the study of Mathieu's series, for example, [4, 5, 11, 16, 18, 19, 20], also see [3, 10, 13]

In this paper, we are about to investigate the following Mathieu type series

$$S(r,a) = \sum_{k=1}^{\infty} \frac{a_k}{(a_k^2 + r^2)^2},$$
(13)

 $\mathbf{2}$

where $a = (a_1, a_2, \ldots, a_k, \ldots)$ is a positive sequence satisfying $\lim_{k\to\infty} a_k = \infty$, and obtain an integral expression and some inequalities of S(r, a) under some suitable conditions. At last, two open problems are proposed.

2. INTEGRAL EXPRESSION OF MATHIEU TYPE SERIES (13)

Let $a = (a_1, a_2, \ldots, a_k, \ldots)$ be a positive sequence satisfying $\lim_{k\to\infty} a_k = \infty$, let

$$b_k(r,a) = \frac{a_k}{(a_k^2 + r^2)^2} \tag{14}$$

and

$$S(r,a) = \sum_{k=1}^{\infty} b_k(r,a).$$
 (15)

Theorem 1. Let r > 0 and $a = (a_1, a_2, \ldots, a_k, \ldots)$ be a positive sequence such that the series

$$g(x) \triangleq \sum_{k=1}^{\infty} e^{-a_k x} \tag{16}$$

converges for x > 0. Then we have

$$S(r,a) = \frac{1}{2r} \int_0^\infty x g(x) \sin(rx) \, \mathrm{d}x.$$
 (17)

Proof. By direct computation, we have

$$b_k(r,a) = \frac{i}{4r} \left[\frac{1}{(a_k + ir)^2} - \frac{1}{(a_k - ir)^2} \right],$$
(18)

where $i^2 = -1$.

From the definition of gamma function, it is easy to see that

$$\frac{\Gamma(t)}{u^t} = \int_0^\infty x^{t-1} e^{-ux} \,\mathrm{d}x. \tag{19}$$

Set $u = a_k \pm ir$ in formula (19), then

$$\frac{\Gamma(t)}{(a_k \pm ir)^t} = \int_0^\infty x^{t-1} e^{-(a_k \pm ir)x} \,\mathrm{d}x,$$
 (20)

$$\Gamma(t) \left[\frac{1}{(a_k + ir)^t} - \frac{1}{(a_k - ir)^t} \right] = -2i \int_0^\infty x^{t-1} e^{-xa_k} \sin(rx) \, \mathrm{d}x, \qquad (21)$$

$$\Gamma(t)\sum_{k=1}^{\infty} \left[\frac{1}{(a_k + ir)^t} - \frac{1}{(a_k - ir)^t}\right] = -2i\int_0^\infty g(x)x^{t-1}\sin(rx)\,\mathrm{d}x.$$
 (22)

Since $\Gamma(2) = 1$, we have

$$S(r;f) = \frac{1}{2r} \int_0^\infty g(x) x \sin(rx) \,\mathrm{d}x.$$
(23)

The proof is complete.

Remark 1. If let $a_k = k$ in (17), then we can easily obtain the formula (4) in [7]. Note that the proof of Theorem 1 uses the technique which was used by O. E. Emersleben in [7].

Corollary 1. If $a = (a_1, a_2, \ldots, a_k, \ldots)$ is a positive arithmetic sequence with difference d > 0, then for any positive real number r > 0, we have

$$S(r,a) = \frac{1}{2r} \int_0^\infty \frac{x e^{(d-a_1)x}}{e^{dx} - 1} \sin(rx) \,\mathrm{d}x.$$
 (24)

Proof. Since $a = (a_1, a_2, \ldots, a_k, \ldots)$ is an arithmetic sequence with difference d > 0, then $\{e^{-xa_k}\}_{k=1}^{\infty}$ is a geometric sequence with constant ratio $e^{-dx} < 1$, thus

$$g(x) = \sum_{k=1}^{\infty} e^{-xa_k} = \frac{e^{(d-a_1)x}}{e^{dx} - 1}$$

Then formula (24) follows from (17).

3. Inequalities of Mathieu type series (24)

Now we give a general estimate of Mathieu type series (24) as follows.

Theorem 2. Let $a = (a_1, a_2, \ldots, a_k, \ldots)$ be a positive arithmetic sequence with difference d > 0. Let Φ_1 and Φ_2 be two integrable functions such that $\frac{xe^{(d-a_1)x}}{e^{dx}-1} - \frac{1}{2}$ $\Phi_1(x)$ and $\Phi_2(x) - \frac{xe^{(d-a_1)x}}{e^{dx}-1}$ are increasing. Then for any positive number r,

$$\frac{1}{2r} \int_0^\infty \Phi_2(x) \sin(rx) \, \mathrm{d}x \leqslant S(r,a) \leqslant \frac{1}{2r} \int_0^\infty \Phi_1(x) \sin(rx) \, \mathrm{d}x.$$
(25)

Proof. The function $\psi(x) = \sin(rx)$ has a period $\frac{2\pi}{r}$, and $\psi(x) = -\psi\left(x + \frac{\pi}{r}\right)$. Since $f(x) = \frac{xe^{(d-a_1)x}}{e^{dx}-1} - \Phi_1(x)$ is increasing, for any $\alpha > 0$, we have $f(x + \alpha) \ge 0$.

f(x). Therefore, from Lemma 1 or Corollary 1 in [14, 15], we obtain

$$\int_{2k\pi/r}^{2(k+1)\pi/r} \left[\frac{xe^{(d-a_1)x}}{e^{dx} - 1} - \Phi_1(x) \right] \sin(rx) \, \mathrm{d}x \leqslant 0, \tag{26}$$

$$\int_{2k\pi/r}^{2(k+1)\pi/r} \frac{xe^{(d-a_1)x}}{e^{dx} - 1} \sin(rx) \, \mathrm{d}x \leqslant \int_{2k\pi/r}^{2(k+1)\pi/r} \Phi_1(x) \sin(rx) \, \mathrm{d}x.$$
(27)

Then, from formula (13), we have

$$S(r,a) = \frac{1}{2r} \sum_{k=0}^{\infty} \int_{2k\pi/r}^{2(k+1)\pi/r} \frac{xe^{(d-a_1)x}}{e^{dx} - 1} \sin(rx) \, \mathrm{d}x$$

$$\leqslant \frac{1}{2r} \sum_{k=0}^{\infty} \int_{2k\pi/r}^{2(k+1)\pi/r} \Phi_1(x) \sin(rx) \, \mathrm{d}x$$

$$= \frac{1}{2r} \int_0^{\infty} \Phi_1(x) \sin(rx) \, \mathrm{d}x.$$
 (28)

The right hand side of inequality (25) follows.

Similar arguments yield the left hand side of inequality (25).

For x > 0, we have

$$\frac{1}{e^x} < \frac{x}{e^x - 1} < \frac{1}{e^{x/2}}.$$
(29)

Theorem 3. Let $a = (a_1, a_2, \ldots, a_k, \ldots)$ be a positive arithmetic sequence with difference d > 0 and $a_1 > \frac{d}{2}$. For positive number r > 0, we have

$$\frac{1}{d} \left\{ \frac{\left(1+e^{-\pi a_{1}/r}\right)}{2\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2\pi a_{1}/r}\right)} - \frac{2\left[e^{-\pi(2a_{1}-d)/r}+e^{-\pi(2a_{1}-d)/(2r)}\right]}{\left[(2a_{1}-d)^{2}+4r^{2}\right]\left[1-e^{-\pi(2a_{1}-d)/r}\right]} \right\} \leqslant S(r,a) \\
\leqslant \frac{1}{d} \left\{ \frac{2\left[1+e^{-\pi(2a_{1}-d)/(2r)}\right]}{\left[(2a_{1}-d)^{2}+4r^{2}\right]\left[1-e^{-\pi(2a_{1}-d)/r}\right]} - \frac{\left(e^{-2\pi a_{1}/r}+e^{-\pi a_{1}/r}\right)}{2\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2\pi a_{1}/r}\right)} \right\}. \tag{30}$$

Proof. For r > 0, using (24), by direct calculation, we have

$$S(r,a) = \frac{1}{2r} \sum_{k=0}^{\infty} \left[\int_{2k\pi/r}^{(2k+1)\pi/r} + \int_{(2k+1)\pi/r}^{(2k+2)\pi/r} \right] \frac{xe^{(d-a_1)x} \sin(rx)}{e^{dx} - 1} \, \mathrm{d}x.$$
(31)

The inequality (29) gives us

$$\frac{r\left(1+e^{-\pi a_{1}/r}\right)}{d\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2\pi a_{1}/r}\right)} = \sum_{k=0}^{\infty} \int_{2k\pi/r}^{(2k+1)\pi/r} \frac{\sin(rx)}{de^{a_{1}x}} dx$$

$$\leqslant \sum_{k=0}^{\infty} \int_{2k\pi/r}^{(2k+1)\pi/r} \frac{xe^{(d-a_{1})x}\sin(rx)}{e^{dx}-1} dx$$

$$\leqslant \sum_{k=0}^{\infty} \int_{2k\pi/r}^{(2k+1)\pi/r} \frac{\sin(rx)}{de^{(a_{1}-\frac{d}{2})x}} dx = \frac{4r\left[1+e^{-\pi(2a_{1}-d)/(2r)}\right]}{d\left[(2a_{1}-d)^{2}+4r^{2}\right]\left[1-e^{-\pi(2a_{1}-d)/r}\right]} \quad (32)$$

and

$$-\frac{4r\left[e^{-\pi(2a_{1}-d)/r}+e^{-\pi(2a_{1}-d)/(2r)}\right]}{d\left[(2a_{1}-d)^{2}+4r^{2}\right]\left[1-e^{-\pi(2a_{1}-d)/r}\right]} = \sum_{k=0}^{\infty} \int_{(2k+1)\pi/r}^{2(k+1)\pi/r} \frac{\sin(rx)}{de^{(a_{1}-\frac{d}{2})x}} \,\mathrm{d}x$$
$$\leqslant \sum_{k=0}^{\infty} \int_{(2k+1)\pi/r}^{2(k+1)\pi/r} \frac{xe^{(d-a_{1})x}\sin(rx)}{e^{dx}-1} \,\mathrm{d}x$$
$$\leqslant \sum_{k=0}^{\infty} \int_{(2k+1)\pi/r}^{2(k+1)\pi/r} \frac{\sin(rx)}{de^{a_{1}x}} \,\mathrm{d}x = -\frac{r\left(e^{-2\pi a_{1}/r}+e^{-\pi a_{1}/r}\right)}{d\left(a_{1}^{2}+r^{2}\right)\left(1-e^{-2\pi a_{1}/r}\right)}.$$
(33)

Substituting (32) and (33) into (31) yields (30). The proof is complete.

Theorem 4. Let $a = (a_1, a_2, \ldots, a_k, \ldots)$ be a positive arithmetic sequence with difference d > 0 and $a_1 > \frac{d}{2}$. For any positive number r > 0, we have

$$S(r,a) < \frac{1}{2r} \int_0^{\pi/r} \frac{x e^{(d-a_1)x} \sin(rx)}{e^{dx} - 1} \, \mathrm{d}x < \frac{2\left[1 + e^{\pi(d-2a_1)/(2r)}\right]}{d\left[(d-2a_1)^2 + 4r^2\right]}.$$
 (34)

Proof. Straightforward computation yields

$$\int_{0}^{\infty} \frac{xe^{(d-a_{1})x}\sin(rx)}{e^{dx}-1} dx - \int_{0}^{\pi/r} \frac{xe^{(d-a_{1})x}\sin(rx)}{e^{dx}-1} dx$$

$$= \sum_{k=1}^{\infty} \int_{k\pi/r}^{(k+1)\pi/r} \frac{xe^{(d-a_{1})x}\sin(rx)}{e^{dx}-1} dx$$

$$= \sum_{i=1}^{\infty} \left(\int_{2i\pi/r}^{(2i+1)\pi/r} + \int_{(2i-1)\pi/r}^{2i\pi/r} \right) \frac{xe^{(d-a_{1})x}\sin(rx)}{e^{dx}-1} dx$$

$$= \frac{1}{r^{2}} \sum_{i=1}^{\infty} \left(\int_{0}^{\pi} + \int_{-\pi}^{0} \right) \frac{(2i\pi+x)\exp\left(\frac{(d-a_{1})(2i\pi+x)}{r}\right)}{\exp\left(\frac{d(2i\pi+x)}{r}-1\right)} \sin(2i\pi+x) dx$$

$$= \frac{1}{r^{2}} \sum_{i=1}^{\infty} \int_{0}^{\pi} \left[\frac{(2i\pi+x)\exp\left(\frac{(d-a_{1})(2i\pi+x)}{r}\right)}{\exp\left(\frac{d(2i\pi+x)}{r}-1\right)} - \frac{[(2i-1)\pi+x]\exp\left(\frac{(d-a_{1})[(2i-1)\pi+x]}{r}\right)}{\exp\left(\frac{d(2i\pi+x)}{r}-1\right)} \right] \sin x dx. \quad (35)$$

For x > 0, we have

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x e^{(d-a_1)x}}{e^{dx} - 1} \right) = -\frac{x \left[a_1 + \frac{1}{x} \left(\frac{dx}{e^{dx} - 1} - 1 \right) \right] e^{(d-a_1)x}}{e^{dx} - 1},\tag{36}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{1}{x} \left(\frac{dx}{e^{dx} - 1} - 1 \right) \right] = \frac{1 - 2e^{dx} + e^{2dx} - d^2 x^2 e^{dx}}{x^2 (e^{dx} - 1)^2},\tag{37}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[1 - 2e^{dx} + e^{2dx} - d^2 x^2 e^{dx} \right] = 2d^2 x e^{dx} \left[\frac{e^{dx} - 1}{dx} - 1 - \frac{dx}{2} \right] > 0, \qquad (38)$$

$$\lim_{x \to 0} \left[\frac{1}{x} \left(\frac{dx}{e^{dx} - 1} - 1 \right) \right] = -\frac{d}{2},\tag{39}$$

then $\frac{d}{dx} \left[\frac{1}{x} \left(\frac{dx}{e^{dx} - 1} - 1 \right) \right] > 0$ and $\frac{1}{x} \left(\frac{dx}{e^{dx} - 1} - 1 \right) > -\frac{d}{2}$. From $a_1 > \frac{d}{2}$, it follows that $\frac{d}{dx} \left(\frac{xe^{(d-a_1)x}}{e^{dx} - 1} \right) < 0$, the function $\frac{xe^{(d-a_1)x}}{e^{dx} - 1}$ decreases, and then for x > 0 and $i \in \mathbb{N}$

$$\frac{(2i\pi+x)\exp\frac{(d-a_1)(2i\pi+x)}{r}}{\exp\frac{d(2i\pi+x)}{r}-1} < \frac{[(2i-1)\pi+x]\exp\frac{(d-a_1)[(2i-1)\pi+x]}{r}}{\exp\frac{d[(2i-1)\pi+x]}{r}-1}, \quad (40)$$

thus, from inequality (29), we have

$$\int_{0}^{\infty} \frac{xe^{(d-a_{1})x}}{e^{dx} - 1} \sin(rx) \, \mathrm{d}x < \int_{0}^{\pi/r} \frac{xe^{(d-a_{1})x}}{e^{dx} - 1} \sin(rx) \, \mathrm{d}x < \int_{0}^{\pi/r} \frac{\sin(rx)}{de^{(a_{1} - \frac{d}{2})x}} \, \mathrm{d}x = \frac{4r\left[1 + e^{\pi(d-2a_{1})/(2r)}\right]}{d\left[(d-2a_{1})^{2} + 4r^{2}\right]}.$$
 (41)

Inequality (34) follows from combination of (41) with (24).

Remark 2. The proof of Theorem 4 can be shortened by observing that

$$\frac{xe^{(d-a_1)x}}{e^{dx}-1} = \frac{x\exp\left[\left(\frac{d}{2}-a_1\right)x\right]}{2\sinh\left(\frac{dx}{2}\right)}$$
(42)

and $\frac{\sinh x}{x}$ and $\exp\left[\left(a_1 - \frac{d}{2}\right)x\right]$ are both increasing with x > 0 for $a_1 > \frac{d}{2}$.

This observation was given by Professor Lothar Berg at FB Mathematik der Universität, Universitätspl. 1, D-18055 Rostock, Germany, through an e-mail to the author on May 19, 2003.

By exploiting a technique presented by E. Makai in [11] and used by the author in [14], we obtain the following inequalities of Mathieu type series (13).

Theorem 5. Suppose r is a positive number, then for a positive sequence $a = (a_1, a_2, \ldots, a_k, \ldots)$ and a positive real number $\alpha > 0$ satisfying $a_{k+1}^{\alpha/2} - a_k^{\alpha/2} = 1$, we have

$$\frac{1}{2r^2+1} < \sum_{k=1}^{\infty} \frac{a_k^{\alpha/2}}{\left(a_k^{\alpha} + r^2\right)^2} < \frac{1}{2r^2}.$$
(43)

Proof. By standard argument, we obtain

$$\begin{split} & \frac{1}{\left(a_{k}^{\alpha/2}-\frac{1}{2}\right)^{2}+r^{2}-\frac{1}{4}}-\frac{1}{\left(a_{k}^{\alpha/2}+\frac{1}{2}\right)^{2}+r^{2}-\frac{1}{4}}\\ &=\frac{2a_{k}^{\alpha/2}}{\left(a_{k}^{\alpha}+r^{2}-a_{k}^{\alpha/2}\right)\left(a_{k}^{\alpha}+r^{2}+a_{k}^{\alpha/2}\right)}\\ &>\frac{2a_{k}^{\alpha/2}}{\left(a_{k}^{\alpha}+r^{2}\right)^{2}}\\ &>\frac{2a_{k}^{\alpha/2}}{\left(a_{k}^{\alpha}+r^{2}\right)^{2}+r^{2}+\frac{1}{4}}\\ &=\frac{1}{\left(a_{k}^{\alpha/2}-\frac{1}{2}\right)^{2}+r^{2}+\frac{1}{4}}-\frac{1}{\left(a_{k}^{\alpha/2}+\frac{1}{2}\right)^{2}+r^{2}+\frac{1}{4}}, \end{split}$$

summing for $k = 1, 2, \ldots$ yields inequalities in (43).

4. Two open problems

Now we will propose two open problems for interesting readers to discuss.

Open Problem 1. Let r > 0, t > 0, $\alpha > 0$, $\beta > 0$ and $a = (a_1, a_2, \ldots, a_k, \ldots)$ be a positive sequence, define

$$S(r,t,\alpha,\beta,a) = \sum_{k=1}^{\infty} \frac{a_k^{\beta}}{(a_k^{\alpha} + r^2)^t}.$$
(44)

- (1) Under what conditions does the sequence $S(r, t, \alpha, \beta, a)$ converge?
- (2) Can one obtain an integral expression for the series $S(r, t, \alpha, \beta, a)$?
- (3) Can one establish a sharp double inequality for the series $S(r, t, \alpha, \beta, a)$?

Open Problem 2. For r > 0, we have

$$\left[\int_0^\infty \frac{x\sin(rx)}{e^x - 1} \,\mathrm{d}x\right]^2 > 2r^2 \int_0^\infty \frac{x^2 f(x)}{e^{r^2 x}} \,\mathrm{d}x,\tag{45}$$

where $f(x) = \sum_{k=1}^{\infty} k e^{-k^2 x}$.

F. QI

References

- H. Alzer, J. L. Brenner, and O. G. Ruehr, On Mathieu's inequality, J. Math. Anal. Appl. 218 (1998), 607–610.
- [2] L. Berg, Über eine abschätzung von Mathieu, Math. Nachr. 7 (1952), 257–259.
- [3] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison Wesley Longman Limited, 1998.
- [4] P. H. Diananda, On some inequalities related to Mathieu's, Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. No. 544-576 (1976), 77-80.
- [5] P. H. Diananda, Some inequalities related to an inequality of Mathieu, Math. Ann. 250 (1980), 95–98.
- [6] A. Elbert, Asymptotic expansion and continued fraction for Mathieu's series, Period. Math. Hungar. 13 (1982), no. 1, 1–8.
- [7] O. E. Emersleben, Über die Reihe $\sum_{k=1}^{\infty} \frac{k}{(k^2+c^2)^2}$, Math. Ann. **125** (1952), 165–171.
- [8] I. Gavrea, Some remarks on Mathieu's series, Mathematical Analysis and Approximation Theory, Proc. of RoGer-2002, 113–117, Editura Burg, 2002.
- B.-N. Guo, Note on Mathieu's inequality, RGMIA Res. Rep. Coll. 3 (2000), no. 3, Art. 5. Available online at http://rgmia.vu.edu.au/v3n3.html.
- [10] J.-Ch. Kuang, Chángyòng Bùděngshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
- [11] E. Makai, On the inequality of Mathieu, Publ. Math. Debrecen 5 (1957), 204–205.
- [12] E. Mathieu, Traité de physique mathématique, VI-VII: Théorie de l'élasticité des corps solides, Gauthier-Villars, Paris, 1890.
- [13] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Chapter XXII, 629–634. Kluwer Academic Publishers, Dordrecht, 1993.
- [14] F. Qi, Inequalities for Mathieu's series, RGMIA Res. Rep. Coll. 4 (2001), no. 2, Art. 3, 187–193. Available online at http://rgmia.vu.edu.au/v4n2.html.
- [15] F. Qi and Ch.-P. Chen, Notes on double inequalities of Mathieu's series, Internat. J. Pure Appl. Math. (2003), in press.
- [16] D. C. Russell, A note on Mathieu's inequality, Æquationes Math., 36 (1988), 294–302.
- [17] Ž. Tomovski and K. Trenčevski, On an open problem of Bai-Ni Guo and Feng Qi, J. Inequal. Pure Appl. Math. 4 (2003), no. 2, in press. Available online at http://jipam.vu.edu.au/ v4n2/101_02.html.
- [18] Ch.-L. Wang and X.-H. Wang, *Refinements of Matheiu's inequality*, Kēxué Tongbào (Chinese Sci. Bull.) 26 (1981), no. 5, 315. (Chinese)
- [19] Ch.-L. Wang and X.-H. Wang, *Refinements of Matheiu's inequality*, Shùxué Yánjiū yù Pínglùn (J. Math. Res. Exposition) 1 (1981), no. 1, 315. (Chinese)
- [20] Ch.-L. Wang and X.-H. Wang, A refinement of the Mathieu inequality, Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. No. 716-734 (1981), 22-24.

(F. Qi) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: qifeng@jzit.edu.cn

URL: http://rgmia.vu.edu.au/qi.html