# ON GENERALIZATIONS OF HILBERT'S INEQUALITY 

BICHENG YANG<br>DEPARTMENT OF MATHEMATICS, GUANGDONG EDUCATION COLLEGE, GUANGZHOU, GUANGDONG 510303, PEOPLE'S REPUBLIC OF CHINA.<br>bcyang@pub.guangzhou.gd.cn


#### Abstract

In this paper, by introducing three parameters A, B and $\lambda$, and estimating the weight coefficient, we give a new generalization of Hilbert's inequality with a best constant factor. As applications, we consider its equivalent form and some particular results. Key words and phrases: Hilbert's inequality, weight coefficient, Holder's inequality. 2000 Mathematics Subject Classiffication. 26D15.


## 1. INTRODUCTION

If $a_{n}, b_{n} \geq 0, p>1, \frac{1}{p}+\frac{1}{q}=1$, such that $0<\sum_{n=1}^{\infty} a_{n}^{p}<\infty$ and $0<\sum_{n=1}^{\infty} b_{n}^{q}<\infty$, then the famous Hardy-Hilbert's inequality and its equivalent form are given by

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\frac{\pi}{\sin (\pi / p)}\left\{\sum_{n=1}^{\infty} a_{n}^{p}\right\}^{1 / p}\left\{\sum_{n=1}^{\infty} b_{n}^{q}\right\}^{1 / q} ;  \tag{1.1}\\
\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{m+n}\right)^{p}<\left[\frac{\pi}{\sin (\pi / p)}\right]^{p} \sum_{n=1}^{\infty} a_{n}^{p} \tag{1.2}
\end{gather*}
$$

where the constant factor $\pi / \sin (\pi / p)$ and $[\pi / \sin (\pi / p)]^{p}$ are the best possible(see[1]).
For $p=q=2$, inequality (1.1) reduces to the following Hilbert's inequality:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\pi\left(\sum_{n=1}^{\infty} a_{n}^{2} \sum_{n=1}^{\infty} b_{n}^{2}\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

Inequality (1.1),(1.2) and (1.3) are important in analysis and its applications(see [2]). In recent years, by obtaining the inequality of the weight coefficient as follows

$$
\begin{equation*}
\varpi_{1}(r, m)=m^{1-1 / r} \sum_{n=1}^{\infty} \frac{1}{(m+n) n^{1-1 / r}}<\frac{\pi}{\sin (\pi / p)}-\frac{1-\gamma}{n^{1 / r}}(r=p, q) \tag{1.4}
\end{equation*}
$$

( $1-\gamma=0.42278433^{+}, \gamma$ is Euler constant), inequality (1.1) had been strengthened by $[3,4]$ as:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\left\{\sum_{n=1}^{\infty}\left[\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}-\frac{1-\gamma}{n^{1 / p}}\right] a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left[\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}-\frac{1-\gamma}{n^{1 / q}}\right] b_{n}^{q}\right\}^{\frac{1}{q}} \tag{1.5}
\end{equation*}
$$

By introducing three parameters A, B and $\lambda$, Yang et al. [5] gave a generalization of (1.1) as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{(A m+B n)^{\lambda}}<\frac{B\left(\phi_{\lambda}(p), \phi_{\lambda}(q)\right)}{A^{\phi_{\lambda}(p)} B^{\phi_{\lambda}(q)}}\left\{\sum_{n=1}^{\infty} n^{1-\lambda} a_{n}^{p}\right\}^{1 / p}\left\{\sum_{n=1}^{\infty} n^{1-\lambda} b_{n}^{q}\right\}^{1 / q}, \tag{1.6}
\end{equation*}
$$

where the constant factor

$$
\frac{B\left(\phi_{\lambda}(p), \phi_{\lambda}(q)\right)}{A^{\phi_{\lambda}(p)} B^{\phi_{\lambda}(q)}}\left(\phi_{\lambda}(r)=\frac{r+\lambda-2}{r}, \lambda>2-r, r=p, q ; A, B>0\right)
$$

is the best possible ( $\mathrm{B}(\mathrm{u}, \mathrm{v})$ is the $\beta$ function). For $\mathrm{A}=\mathrm{B}=1$, inequality (1.6) reduces to

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{(m+n)^{\lambda}}<B\left(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\right)\left\{\sum_{n=1}^{\infty} n^{1-\lambda} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{1-\lambda} b_{n}^{q}\right\}^{\frac{1}{q}} . \tag{1.7}
\end{equation*}
$$

Both (1.6) and (1.7) are generalizations of (1.1) and (1.3). By introducing a single parameter $\lambda$, Yang [6] also gave a generalization of (1.1) as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m^{\lambda}+n^{\lambda}}<\frac{\pi}{\lambda \sin \left(\frac{\pi}{p}\right)}\left\{\sum_{n=1}^{\infty} n^{(p-1)(1-\lambda)} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{(q-1)(1-\lambda)} b_{n}^{q}\right\}^{\frac{1}{q}} . \tag{1.8}
\end{equation*}
$$

where the constant factor $\pi /[\lambda \sin (\pi / p)](0<\lambda \leq \min \{p, q\})$ is the best possible.
The main objective of this paper is to estimating the following weight coefficient

$$
\begin{gather*}
\omega_{\lambda}(A, B, q, m)=m^{\lambda(1-1 / q)} \sum_{n=1}^{\infty} \frac{1}{\left(A m^{\lambda}+B n^{\lambda}\right) n^{1-\lambda / q}} \\
(A, B>0,0<\lambda \leq q, m \in N), \tag{1.9}
\end{gather*}
$$

and then to obtain a new generalization of inequality (1.3) related to the double series $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} 1 /\left(A m^{\lambda}+B n^{\lambda}\right)$ with a best constant factor, which is not a generalization of (1.1). As a particular result, we obtain a new generalization of (1.3) with(p, q)-parameters form other than (1.1). We also consider some equivalent inequalities.

For this, we introduce some lemmas.

## 2. SOME LEMMAS

Lemma 2.1. If $p>1, \frac{1}{p}+\frac{1}{q}=1,0<\lambda \leq q$, and $A, B>0, \omega_{\lambda}(A, B, q, m)$ is defined by (1.9), then for any $m \in N$, we have

$$
\begin{equation*}
\omega_{\lambda}(A, B, q, m)<\frac{\pi}{A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)} \tag{2.1}
\end{equation*}
$$

Proof. Since $A, B>0$, and $0<\lambda \leq q$, we have

$$
\omega_{\lambda}(A, B, q, m)<m^{\lambda(1-1 / q)} \int_{0}^{\infty} \frac{1}{\left(A m^{\lambda}+B y^{\lambda}\right) y^{1-\lambda / q}} d y
$$

Putting $u=\left(B y^{\lambda}\right) /\left(A m^{\lambda}\right)$ in the above inequality, we obtain

$$
\omega_{\lambda}(A, B, q, m)<\frac{1}{A^{1 / p} B^{1 / q} \lambda} \int_{0}^{\infty} \frac{u^{-1 / p}}{1+u} d u
$$

Thus, we have (2.1). The lemma is proved.
Note. If $0<\lambda \leq p$, by (2.1), for $B, A>0$ and $n \in N$, we also have

$$
\begin{equation*}
\omega_{\lambda}(B, A, p, n)=n^{\lambda\left(1-\frac{1}{p}\right)} \sum_{n=1}^{\infty} \frac{1}{\left(B n^{\lambda}+A m^{\lambda}\right) m^{1-\frac{\lambda}{p}}}<\frac{\pi}{B^{1 / q} A^{1 / p} \lambda \sin \left(\frac{\pi}{p}\right)} . \tag{2.2}
\end{equation*}
$$

Lemma 2.2. If $p>1, \frac{1}{p}+\frac{1}{q}=1,0<\lambda \leq \min \{p, q\}$, and $0<\epsilon<\lambda$, then we have

$$
\begin{gather*}
I:=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{A m^{\lambda}+B n^{\lambda}} m^{\frac{\lambda-p-\epsilon}{p}} n^{\frac{\lambda-q-\epsilon}{q}} \\
>A^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} B^{-\frac{1}{q}+\frac{\epsilon}{q \lambda}} \frac{1}{\lambda}\left[\frac{1}{\epsilon} \int_{0}^{\infty} \frac{1}{1+u} u^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} d u-\left(\frac{B}{A}\right)^{\frac{\lambda-\epsilon}{q \lambda}} \lambda\left(\frac{q}{\lambda-\epsilon}\right)^{2}\right] . \tag{2.3}
\end{gather*}
$$

Proof. We have

$$
\frac{\lambda-r-\epsilon}{r}<0(r=p, q), \text { and } \lambda-\epsilon>0
$$

Hence we find

$$
I>\int_{1}^{\infty} x^{\frac{\lambda-p-\epsilon}{p}}\left(\int_{1}^{\infty} \frac{1}{A x^{\lambda}+B y^{\lambda}} y^{\frac{\lambda-q-\epsilon}{q}} d y\right) d x
$$

Setting $u=\left(B y^{\lambda}\right) /\left(A x^{\lambda}\right)$ in the above integral, we obtain

$$
\begin{gathered}
I>A^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} B^{-\frac{1}{q}+\frac{\epsilon}{q \lambda}} \frac{1}{\lambda} \int_{1}^{\infty} x^{-1-\epsilon}\left[\int_{B /\left(A x^{\lambda}\right)}^{\infty} \frac{1}{1+u} u^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} d u\right] d x \\
=A^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} B^{-\frac{1}{q}+\frac{\epsilon}{q \lambda}} \frac{1}{\lambda}\left\{\int_{1}^{\infty} x^{-1-\epsilon}\left[\int_{0}^{\infty} \frac{1}{1+u} u^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} d u\right] d x\right. \\
\left.\quad-\int_{1}^{\infty} x^{-1-\epsilon}\left[\int_{0}^{B /\left(A x^{\lambda}\right)} \frac{1}{1+u} u^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} d u\right] d x\right\} \\
>A^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} B^{-\frac{1}{q}+\frac{\epsilon}{q \lambda}} \frac{1}{\lambda}\left\{\frac{1}{\epsilon} \int_{0}^{\infty} \frac{1}{1+u} u^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} d u\right. \\
\left.\quad-\int_{1}^{\infty} x^{-1}\left[\int_{0}^{B /\left(A x^{\lambda}\right)} u^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} d u\right] d x\right\} .
\end{gathered}
$$

By calculating the last integral, we have (2.3). The lemma is proved.

## 3. MAIN RESULTS AND APPLICATIONS

Theorem 3.1. If $a_{n}, b_{n} \geq 0, p>1, \frac{1}{p}+\frac{1}{q}=1$, and $0<\lambda \leq \min \{p, q\}$, such that $0<\sum_{n=1}^{\infty} n^{p-1-\lambda} a_{n}^{p}<\infty$ and $0<\sum_{n=1}^{\infty} n^{q-1-\lambda} b_{n}^{q}<\infty$, then for $A, B>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{A m^{\lambda}+B n^{\lambda}}<\frac{\pi}{A^{\frac{1}{p}} B^{\frac{1}{q}} \lambda \sin \left(\frac{\pi}{p}\right)}\left\{\sum_{n=1}^{\infty} n^{p-1-\lambda} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{q-1-\lambda} b_{n}^{q}\right\}^{\frac{1}{q}} \tag{3.1}
\end{equation*}
$$

where the constant factor $\pi /\left[A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)\right]$ is the best possible. In particular, for $\mathrm{A}=\mathrm{B}=1$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m^{\lambda}+n^{\lambda}}<\frac{\pi}{\lambda \sin (\pi / p)}\left\{\sum_{n=1}^{\infty} n^{p-1-\lambda} a_{n}^{p}\right\}^{1 / p}\left\{\sum_{n=1}^{\infty} n^{q-1-\lambda} b_{n}^{q}\right\}^{1 / q} \tag{3.2}
\end{equation*}
$$

Proof. By Holder's inequality, in view of (1.9) and (2.2), we have

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{A m^{\lambda}+B n^{\lambda}}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left[\frac{a_{m}}{\left(A m^{\lambda}+B n^{\lambda}\right)^{1 / p}}\left(\frac{m^{(1-\lambda) / q+\left(\lambda / q^{2}\right)}}{n^{(1-\lambda) / p+\left(\lambda / p^{2}\right)}}\right)\right] \\
\times\left[\frac { b _ { n } } { ( A m ^ { \lambda } + B n ^ { \lambda } ) ^ { 1 / q } } \left(\frac{n^{(1-\lambda) / p+\left(\lambda / p^{2}\right)}}{\left.\left.m^{(1-\lambda) / q+\left(\lambda / q^{2}\right)}\right)\right]}\right.\right. \\
\leq\left\{\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m}^{p}}{A m^{\lambda}+B n^{\lambda}}\left(\frac{m^{(p-1)(1-\lambda)+(\lambda p) / q^{2}}}{n^{1-\lambda / q}}\right)\right\}^{1 / p} \\
\times\left\{\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{b_{n}^{q}}{A m^{\lambda}+B n^{\lambda}}\left(\frac{n^{(q-1)(1-\lambda)+(\lambda q) / p^{2}}}{m^{1-\lambda / p}}\right)\right\}^{1 / q} \\
=\left\{\sum_{m=1}^{\infty} \omega_{\lambda}(A, B, q, m) m^{p-1-\lambda} a_{m}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} \omega_{\lambda}(B, A, p, n) n^{q-1-\lambda} b_{n}^{q}\right\}^{\frac{1}{q}} . \tag{3.3}
\end{gather*}
$$

Hence by (2.1) and (2.2), we have (3.1).
For $0<\epsilon<\lambda$, setting $\bar{a}_{m}$ and $\overline{b^{\prime}}{ }_{n}$ as:

$$
\bar{a}_{m}=m^{\frac{\lambda-p-\epsilon}{p}}, \bar{b}_{n}=n^{\frac{\lambda-q-\epsilon}{q}}(m, n \in N),
$$

then we have

$$
\begin{gather*}
\left\{\sum_{n=1}^{\infty} n^{p-1-\lambda} \bar{a}_{n}^{p}\right\}^{1 / p}\left\{\sum_{n=1}^{\infty} n^{q-1-\lambda} \bar{b}_{n}^{q}\right\}^{1 / q}=\sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}} \\
\quad=1+\sum_{n=2}^{\infty} \frac{1}{n^{1+\epsilon}}<1+\int_{2}^{\infty} \frac{1}{t^{1+\epsilon}} d t=1+\frac{1}{\epsilon} \tag{3.4}
\end{gather*}
$$

If there exists $A, B>0$ and $0<\lambda \leq \min \{p, q\}$, such that the constant factor $\pi /\left[A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)\right]$ in (3.1) is not the best possible, then, there exists a positive number $K<\pi /\left[A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)\right]$, such that (3.1) is valid if we replace $\pi /\left[A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)\right]$ by K. In particular, we have

$$
\epsilon I=\epsilon \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\bar{a}_{m} \bar{b}_{n}}{A m^{\lambda}+B n^{\lambda}}<\epsilon K\left\{\sum_{n=1}^{\infty} n^{p-1-\lambda} \bar{a}_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{q-1-\lambda} \bar{b}_{n}^{q}\right\}^{\frac{1}{q}},
$$

and by (2.3) and (3.4), we find

$$
A^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} B^{-\frac{1}{q}+\frac{\epsilon}{q \lambda}} \frac{1}{\lambda}\left[\int_{0}^{\infty} \frac{1}{1+u} u^{-\frac{1}{p}-\frac{\epsilon}{q \lambda}} d u-\epsilon\left(\frac{B}{A}\right)^{\frac{\lambda-\epsilon}{q \lambda}} \lambda\left(\frac{q}{\lambda-\epsilon}\right)^{2}\right]<K(\epsilon+1) .
$$

Setting $\epsilon \rightarrow 0^{+}$in the above inequality, we conclude that $\pi /\left[A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)\right] \leq K$. This contradicts the fact that $K<\pi /\left[A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)\right]$. Thus, the constant factor $\pi /\left[A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)\right]$ in (3.1) is the best possible. The theorem is proved.
Theorem 3.2. If $a_{n} \geq 0, p>1, \frac{1}{p}+\frac{1}{q}=1$, and $0<\lambda \leq \min \{p, q\}$, such that $0<\sum_{n=1}^{\infty} n^{p-1-\lambda} a_{n}^{p}<\infty$, then for $A, B>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\lambda(p-1)-1}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{A m^{\lambda}+B n^{\lambda}}\right)^{p}<\frac{1}{A B^{p-1}}\left[\frac{\pi}{\lambda \sin \left(\frac{\pi}{p}\right)}\right]^{p} \sum_{n=1}^{\infty} n^{p-1-\lambda} a_{n}^{p} \tag{3.5}
\end{equation*}
$$

where the constant factor $\frac{1}{A B^{p-1}}\left[\frac{\pi}{\lambda \sin (\pi / p)}\right]^{p}$ is the best possible; Inequality (3.5) is equivalent to (3.1). In particular, for $\mathrm{A}=\mathrm{B}=1$, we have the equivalent form of (3.2) as:

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\lambda(p-1)-1}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{m^{\lambda}+n^{\lambda}}\right)^{p}<\left[\frac{\pi}{\lambda \sin (\pi / p)}\right]^{p} \sum_{n=1}^{\infty} n^{p-1-\lambda} a_{n}^{p} \tag{3.6}
\end{equation*}
$$

Proof. Since $0<\sum_{n=1}^{\infty} n^{p-1-\lambda} a_{n}^{p}<\infty$, there exists $k_{0} \geq 1$, such for any $k \geq k_{0}$, that $0<\sum_{n=1}^{k} n^{p-1-\lambda} a_{n}^{p}<\infty$. We set $b_{n}(k)=n^{\lambda(p-1)-1}\left(\sum_{m=1}^{k} \frac{a_{m}}{A m^{\lambda}+B n^{\lambda}}\right)^{p-1}\left(k \geq k_{0}\right)$, and use (3.1) to obtain

$$
\begin{gather*}
0<\sum_{n=1}^{k} n^{q-1-\lambda} b_{n}^{q}(k)=\sum_{n=1}^{k} n^{\lambda(p-1)-1}\left(\sum_{m=1}^{k} \frac{a_{m}}{A m^{\lambda}+B n^{\lambda}}\right)^{p} \\
=\sum_{n=1}^{k} \sum_{m=1}^{k} \frac{a_{m} b_{n}(k)}{A m^{\lambda}+B n^{\lambda}}<\frac{\pi}{A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)} \\
\quad \times\left\{\sum_{n=1}^{k} n^{p-1-\lambda} a_{n}^{p}\right\}^{1 / p}\left\{\sum_{n=1}^{k} n^{q-1-\lambda} b_{n}^{q}(k)\right\}^{1 / q} . \tag{3.7}
\end{gather*}
$$

Thus we find

$$
\begin{equation*}
\left\{\sum_{n=1}^{k} n^{q-1-\lambda} b_{n}^{q}(k)\right\}^{1 / p}<\frac{\pi}{A^{1 / p} B^{1 / q} \lambda \sin (\pi / p)}\left\{\sum_{n=1}^{k} n^{p-1-\lambda} a_{n}^{p}\right\}^{1 / p} \tag{3.8}
\end{equation*}
$$

It follows that $0<\sum_{n=1}^{\infty} n^{q-1-\lambda} b_{n}^{q}(\infty)<\infty$. Hence (3.7) is valid as $k \rightarrow \infty$ by (3.1). So is (3.8). Thus, inequality (3.5) holds.

For the equivalence, we need show that (3.5) implies (3.1). By Holder's inequality, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{A m^{\lambda}+B n^{\lambda}}=\sum_{n=1}^{\infty}\left[n^{(\lambda+1-q) / q} \sum_{m=1}^{\infty} \frac{a_{m}}{A m^{\lambda}+B n^{\lambda}}\right]\left[n^{(q-1-\lambda) / q} b_{n}\right] \\
& \quad \leq\left\{\sum_{n=1}^{\infty} n^{\lambda(p-1)-1}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{A m^{\lambda}+B n^{\lambda}}\right)^{p}\right\}^{1 / p}\left\{\sum_{n=1}^{\infty} n^{q-1-\lambda} b_{n}^{q}\right\}^{1 / q} . \tag{3.9}
\end{align*}
$$

Hence by (3.5), we have (3.1). It follows that inequality (3.5) is equivalent to (3.1) .
If the constant factor in (3.5) is not the best possible, we may get a contradiction that the constant factor in (3.1) is not the best possible by using (3.9). The theorem is proved.

For $\lambda=1$, reducing (3.2) and (3.6), we have
Corollary 3.3. If $a_{n}, b_{n} \geq 0, p>1, \frac{1}{p}+\frac{1}{q}=1$, such that $0<\sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}<\infty$ and $0<\sum_{n=1}^{\infty} n^{q-2} b_{n}^{q}<\infty$, then we have the following two equivalent inequalities:

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\frac{\pi}{\sin (\pi / p)}\left\{\sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}\right\}^{1 / p}\left\{\sum_{n=1}^{\infty} n^{q-2} b_{n}^{q}\right\}^{1 / q}  \tag{3.10}\\
\sum_{n=1}^{\infty} n^{p-2}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{m+n}\right)^{p}<\left[\frac{\pi}{\sin (\pi / p)}\right]^{p} \sum_{n=1}^{\infty} n^{p-2} a_{n}^{p} \tag{3.11}
\end{gather*}
$$

where both the constant factors in (3.10) and (3.11) are the best possible.
Since for $A=B=\lambda=1, \omega_{1}(1,1, r, n)=\varpi_{1}(r, n)$, by (3.3) and (1.4), we have
Corollary 3.4. If $a_{n}, b_{n} \geq 0, p>1, \frac{1}{p}+\frac{1}{q}=1$, such that $0<\sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}<\infty$ and $0<\sum_{n=1}^{\infty} n^{q-2} b_{n}^{q}<\infty$, then we have a strengthened version of (3.10) as:

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\left\{\sum_{n=1}^{\infty}\left[\frac{\pi}{\sin (\pi / p)}-\frac{1-\gamma}{n^{1 / q}}\right] n^{p-2} a_{n}^{p}\right\}^{1 / p} \\
\times\left\{\sum_{n=1}^{\infty}\left[\frac{\pi}{\sin (\pi / p)}-\frac{1-\gamma}{n^{1 / p}}\right] n^{q-2} b_{n}^{q}\right\}^{1 / q} \tag{3.12}
\end{gather*}
$$

where $1-\gamma=0.42278433^{+}(\gamma$ is Euler constant $)$.
Remark 3.5. (a) For $\mathrm{p}=\mathrm{q}=2$, both (3.2) and (1.6) reduce to the same inequality as:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m^{\lambda}+n^{\lambda}}<\frac{\pi}{\lambda}\left\{\sum_{n=1}^{\infty} n^{1-\lambda} a_{n}^{2} \sum_{n=1}^{\infty} n^{1-\lambda} b_{n}^{2}\right\}^{1 / 2}(0<\lambda \leq 2) \tag{3.13}
\end{equation*}
$$

and inequality (3.10) reduces to (1.3). It follows that (3.2) and (1.6) are different generalizations of (3.13) and (1.3), and (3.10) is a new generalization of (1.3) with (p, q)-parameters form, but other than (1.1).
(b) Inequality (3.1) is also a generalization of (1.3), (3.10) and (3.2), but not (1.1)
(c) Since all the given inequalities and equivalent form are with best constant factors, we obtain some new results.

## References

[1] G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities. Cambridge Univ. Press, London,1952.
[2] D. S. MITRINOVIC, J. E. PECARIC AND A. M. FINK, Inequalities involving functions and their integrals and derivatives. Kluwer Academic, Boston, 1991.
[3] B. YANG AND M. GAO, On a best value of Hardy-Hilbert's inequality, Advances in Math., 26(1997),159-164.
[4] M. GAO AND B. YANG, On the extended Hilbert's inequality, Proc. Amer. Math. Soc., 126(1998),751-759.
[5] B. YANG AND L. DEBNATH, On the extended Hardy-Hilbert's inequality, J. Math. Anal. Appl., 272(2002),187-199.
[6] B. YANG, On an extension of Hardy-Hilbert's inequality, Chin. Annal. Math., 23(2002),247-254.

