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ABSTRACT. In this paper, by introducing three parameters A, B and A, and
estimating the weight coefficient, we give a new generalization of Hilbert’s inequality with
a best constant factor. As applications, we consider its equivalent form and some
particular results.
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1. INTRODUCTION

If ap,b, >0,p>1, zl) + é =1, such that 0 < >°° , a? < oo and 0 < ) 2 b < oo, then
the famous Hardy-Hilbert’s inequality and its equivalent form are given by
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where the constant factor ﬂ'/SZTL(T(/p) and [r/sin(w/p)]P are the best possible(see[1]).
For p=q=2, inequality (1.1) reduces to the following Hilbert’s inequality:

Z Z m+n (Zlaizlbi)l/? (1.3)

n=1m=1

Inequality (1.1),(1.2) and (1.3) are important in analysis and its applications(see [2]). In
recent years, by obtaining the inequality of the weight coefficient as follows
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(1 —~ =0.42278433%, v is Euler constant), inequality (1.1) had been strengthened by [3,4]
as:

o0

= - ambn > s — 1 e
SN e (3 [ - Y s - S )

By introducing three parameters A, B and A, Yang et al. [5] gave a generalization of (1.1)
as

Shy @b Bloa(p 1-\ 1/p 1—x 1/q
Z Am+Bn < A¢>\(P)B¢>\(Q) {Z p} {Z bq (1.6)

n=1 :1



where the constant factor
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is the best possible (B(u,v) is the § function). For A=B=1, inequality (1.6) reduces to
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Both (1.6) and (1.7) are generalizations of (1.1) and (1.3). By introducing a single parameter
A, Yang [6] also gave a generalization of (1.1) as
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where the constant factor 7/[Asin(7/p)] (0 < A < min{p, ¢}) is the best possible.
The main objective of this paper is to estimating the following weight coefficient
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(A,B>0,0<A<gq,méeN), (1.9)

and then to obtain a new generalization of inequality (1.3) related to the double series
S > 1/(Am* + Bn?) with a best constant factor, which is not a generalization of
(1.1). As a particular result, we obtain a new generalization of (1.3) with(p, q)-parameters
form other than (1.1). We also consider some equivalent inequalities.

For this, we introduce some lemmas.

2. SOME LEMMAS

Lemma 2.1. Ifp>1, % + % =1,0< A <gq,and A, B > 0,wx(A, B, q,m) is defined by
(1.9), then for any m € N, we have
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Proof. Since A,B > 0,and 0 < X < ¢, we have
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Putting u = (By*)/(Am?) in the above inequality, we obtain
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Thus, we have (2.1). The lemma is proved.
Note. If0< A <p, by (2.1), for B;A >0 and n € N, we also have
wa(B, A,p,n) =n*1=%) Z < (22
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Lemma 2.2. Ifp>1, zl) + % =1,0 < A <min{p,q}, and 0 < € < A, then we have
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Hence we find
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Setting u = (By*)/(Az?) in the above integral, we obtain
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By calculating the last integral, we have (2.3). The lemma is proved.
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3. MAIN RESULTS AND APPLICATIONS

Theorem 3.1. Ifa,,b, >0,p>1, % + % =1,and0 < A < min{p, ¢}, such that
0< > P 172aE < oo and 0 < Y07 n97172be < oo, then for A, B > 0, we have
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where the constant factor W/[Al/pBl/q)\sm(w/p)] is the best possible. In particular, for
A=B=1, we have
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Proof. By Holder’s inequality, in view of (1.9) and (2.2), we have
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Hence by (2.1) and (2.2), we have (3.1).
For 0 < € < A, setting @,and b/, as:
Ty, = mxigie,gn = nkigie (m,n € N),

then we have
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If there exists A, B > 0and 0 < A < min{p, ¢}, such that the constant factor 7 /[AY/? B/ \sin(r /p)]
in (3.1) is not the best possible, then, there exists a positive number K < 7/[AY? B9 \sin(r /p)],
such that (3.1) is valid if we replace m/[A'/? BY\sin(7/p)] by K. In particular, we have
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and by (2.3) and (3.4), we find
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Setting € — 0% in the above inequality, we conclude that 7 /[A'/? BY 4 )\sin(n/p)] < K. This
contradicts the fact that K < 7/[A'/? B9 sin(n/p)]. Thus, the constant factor 7/[A'/? B9 \sin(r /p)]
in (3.1) is the best possible. The theorem is proved.

Theorem 3.2. Ifa, >0,p>1,1 5+ l =1, and 0 < A < min{p, q}, such that

0< Y nP 172l <0, thenforA B>O we have
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where the constant factor ﬁ [m]p is the best pos&ble; Inequality (3.5) is equiva-
lent to (3.1). In particular, for A=B=1, we have the equivalent form of (3.2) as:
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Proof. Since 0 <) nP~17AaP < oo, there exists kg > 1, such for any k > ko, that
0< Yh_ nP~Rap < 0o, We set by (k) = nAP=D=1 (08 || )" (> ko), and
use (3.1) to obtain
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Thus we find
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It follows that 0 < Y2 n9=17*p% (c0) < oo. Hence (3.7) is valid as k — oo by (3.1). So is
(3.8). Thus, inequality (3.5) holds.

For the equivalence, we need show that (3.5) implies (3.1). By Holder’s inequality, we
have
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Hence by (3.5), we have (3.1). It follows that inequality (3.5) is equivalent to (3.1) .
If the constant factor in (3.5) is not the best possible, we may get a contradiction that
the constant factor in (3.1) is not the best possible by using (3.9). The theorem is proved.
For A = 1, reducing (3.2) and (3.6), we have

Corollary 3.3.  If a,b, >0,p> 1,5 + ¢ =1, such that 0 < 302, n?~?al < oo and
0< fozl n9=2b% < oo ,then we have the following two equivalent inequalities:
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where both the constant factors in (3.10) and (3.11) are the best possible.
Since for A= B =X =1,wi(1,1,7,n) = wi(r,n), by (3.3) and (1.4), we have

Corollary 3.4. Ifay,,b,>0,p>1,1 + L'=1, such that 0 < 77, n?~2a®, < co and

0 <>, n%2b1 < oo ,then we have a strengthened version of (3.10) as:
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where 1 — v = 0.422784337" (v is Euler constant).

Remark 3.5. (a) For p=q=2, both (3.2) and (1.6) reduce to the same inequality as:
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and inequality (3.10) reduces to (1.3). It follows that (3.2) and (1.6) are different generaliza-
tions of (3.13) and (1.3), and (3.10) is a new generalization of (1.3) with (p, q)-parameters
form, but other than (1.1).

(b) Inequality (3.1) is also a generalization of (1.3), (3.10) and (3.2), but not (1.1)

(c) Since all the given inequalities and equivalent form are with best constant factors,
we obtain some new results.
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