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ABSTRACT. In this paper, by introducing three parameters A, B and λ, and
estimating the weight coefficient, we give a new generalization of Hilbert’s inequality with
a best constant factor. As applications, we consider its equivalent form and some
particular results.
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1. INTRODUCTION

If an, bn ≥ 0, p > 1, 1
p + 1

q = 1, such that 0 <
∑∞

n=1 ap
n < ∞ and 0 <

∑∞
n=1 bq

n < ∞, then
the famous Hardy-Hilbert’s inequality and its equivalent form are given by

∞∑
n=1

∞∑
m=1

ambn

m + n
<

π

sin(π/p)
{ ∞∑

n=1

ap
n

}1/p{ ∞∑
n=1

bq
n

}1/q; (1.1)

∞∑
n=1

( ∞∑
m=1

am

m + n

)p
<

[ π

sin(π/p)
]p

∞∑
n=1

ap
n, (1.2)

where the constant factor π/sin(π/p) and [π/sin(π/p)]p are the best possible(see[1]).
For p=q=2, inequality (1.1) reduces to the following Hilbert’s inequality:

∞∑
n=1

∞∑
m=1

ambn

m + n
< π

( ∞∑
n=1

a2
n

∞∑
n=1

b2
n

)1/2
. (1.3)

Inequality (1.1),(1.2) and (1.3) are important in analysis and its applications(see [2]). In
recent years, by obtaining the inequality of the weight coefficient as follows

$1(r, m) = m1−1/r
∞∑

n=1

1
(m + n)n1−1/r

<
π

sin(π/p)
− 1− γ

n1/r
(r = p, q) (1.4)

(1− γ = 0.42278433+, γ is Euler constant), inequality (1.1) had been strengthened by [3,4]
as:

∞∑
n=1

∞∑
m=1

ambn

m + n
<

{ ∞∑
n=1

[ π

sin(π
p )
− 1− γ

n1/p

]
ap

n

} 1
p
{ ∞∑

n=1

[ π

sin(π
p )
− 1− γ

n1/q

]
bq
n

} 1
q . (1.5)

By introducing three parameters A, B and λ, Yang et al. [5] gave a generalization of (1.1)
as

∞∑
n=1

∞∑
m=1

ambn

(Am + Bn)λ
<

B(φλ(p), φλ(q))
Aφλ(p)Bφλ(q)

{ ∞∑
n=1

n1−λap
n

}1/p{ ∞∑
n=1

n1−λbq
n

}1/q
, (1.6)
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where the constant factor

B(φλ(p), φλ(q))
Aφλ(p)Bφλ(q)

(φλ(r) =
r + λ− 2

r
, λ > 2− r, r = p, q;A,B > 0)

is the best possible (B(u,v) is the β function). For A=B=1, inequality (1.6) reduces to

∞∑
n=1

∞∑
m=1

ambn

(m + n)λ
< B

(p + λ− 2
p

,
q + λ− 2

q

){ ∞∑
n=1

n1−λap
n

} 1
p
{ ∞∑

n=1

n1−λbq
n

} 1
q . (1.7)

Both (1.6) and (1.7) are generalizations of (1.1) and (1.3). By introducing a single parameter
λ, Yang [6] also gave a generalization of (1.1) as

∞∑
n=1

∞∑
m=1

ambn

mλ + nλ
<

π

λsin(π
p )

{ ∞∑
n=1

n(p−1)(1−λ)ap
n

} 1
p
{ ∞∑

n=1

n(q−1)(1−λ)bq
n

} 1
q . (1.8)

where the constant factor π/[λsin(π/p)] (0 < λ ≤ min{p, q}) is the best possible.
The main objective of this paper is to estimating the following weight coefficient

ωλ(A,B, q,m) = mλ(1−1/q)
∞∑

n=1

1
(Amλ + Bnλ)n1−λ/q

(A,B > 0, 0 < λ ≤ q, m ∈ N), (1.9)

and then to obtain a new generalization of inequality (1.3) related to the double series∑∞
n=1

∑∞
m=1 1/(Amλ + Bnλ) with a best constant factor, which is not a generalization of

(1.1). As a particular result, we obtain a new generalization of (1.3) with(p, q)-parameters
form other than (1.1). We also consider some equivalent inequalities.

For this, we introduce some lemmas.

2. SOME LEMMAS

Lemma 2.1. If p > 1, 1
p + 1

q = 1, 0 < λ ≤ q, and A,B > 0, ωλ(A,B, q,m) is defined by
(1.9), then for any m ∈ N , we have

ωλ(A,B, q,m) <
π

A1/pB1/qλsin(π/p)
. (2.1)

Proof. Since A,B > 0, and 0 < λ ≤ q, we have

ωλ(A,B, q,m) < mλ(1−1/q)

∫ ∞

0

1
(Amλ + Byλ)y1−λ/q

dy.

Putting u = (Byλ)/(Amλ) in the above inequality, we obtain

ωλ(A,B, q,m) <
1

A1/pB1/qλ

∫ ∞

0

u−1/p

1 + u
du.

Thus, we have (2.1). The lemma is proved.
Note. If 0 < λ ≤ p, by (2.1), for B,A > 0 and n ∈ N, we also have

ωλ(B,A, p, n) = nλ(1− 1
p )

∞∑
n=1

1

(Bnλ + Amλ)m1−λ
p

<
π

B1/qA1/pλsin(π
p )

. (2.2)
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Lemma 2.2. If p > 1, 1
p + 1

q = 1, 0 < λ ≤ min{p, q}, and 0 < ε < λ, then we have

I :=
∞∑

n=1

∞∑
m=1

1
Amλ + Bnλ

m
λ−p−ε

p n
λ−q−ε

q

> A−
1
p−

ε
qλ B− 1

q + ε
qλ

1
λ

[1
ε

∫ ∞

0

1
1 + u

u−
1
p−

ε
qλ du−

(B

A

)λ−ε
qλ λ

( q

λ− ε

)2]
. (2.3)

Proof. We have

λ− r − ε

r
< 0 (r = p, q), and λ− ε > 0.

Hence we find
I >

∫ ∞

1

x
λ−p−ε

p
( ∫ ∞

1

1
Axλ + Byλ

y
λ−q−ε

q dy
)
dx.

Setting u = (Byλ)/(Axλ) in the above integral, we obtain

I > A−
1
p−

ε
qλ B− 1

q + ε
qλ

1
λ

∫ ∞

1

x−1−ε
[ ∫ ∞

B/(Axλ)

1
1 + u

u−
1
p−

ε
qλ du

]
dx

= A−
1
p−

ε
qλ B− 1

q + ε
qλ

1
λ

{ ∫ ∞

1

x−1−ε
[ ∫ ∞

0

1
1 + u

u−
1
p−

ε
qλ du

]
dx

−
∫ ∞

1

x−1−ε
[ ∫ B/(Axλ)

0

1
1 + u

u−
1
p−

ε
qλ du

]
dx

}
> A−

1
p−

ε
qλ B− 1

q + ε
qλ

1
λ

{1
ε

∫ ∞

0

1
1 + u

u−
1
p−

ε
qλ du

−
∫ ∞

1

x−1
[ ∫ B/(Axλ)

0

u−
1
p−

ε
qλ du

]
dx

}
.

By calculating the last integral, we have (2.3). The lemma is proved.

3. MAIN RESULTS AND APPLICATIONS

Theorem 3.1. If an, bn ≥ 0, p > 1, 1
p + 1

q = 1, and 0 < λ ≤ min{p, q}, such that
0 <

∑∞
n=1 np−1−λap

n < ∞ and 0 <
∑∞

n=1 nq−1−λbq
n < ∞, then for A,B > 0, we have

∞∑
n=1

∞∑
m=1

ambn

Amλ + Bnλ
<

π

A
1
p B

1
q λsin(π

p )

{ ∞∑
n=1

np−1−λap
n

} 1
p
{ ∞∑

n=1

nq−1−λbq
n

} 1
q , (3.1)

where the constant factor π/[A1/pB1/qλsin(π/p)] is the best possible. In particular, for
A=B=1, we have

∞∑
n=1

∞∑
m=1

ambn

mλ + nλ
<

π

λsin(π/p)
{ ∞∑

n=1

np−1−λap
n

}1/p{ ∞∑
n=1

nq−1−λbq
n

}1/q
. (3.2)

Proof. By Holder’s inequality, in view of (1.9) and (2.2), we have
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∞∑
n=1

∞∑
m=1

ambn

Amλ + Bnλ
=

∞∑
n=1

∞∑
m=1

[ am

(Amλ + Bnλ)1/p

(m(1−λ)/q+(λ/q2)

n(1−λ)/p+(λ/p2)

)]
×

[ bn

(Amλ + Bnλ)1/q

( n(1−λ)/p+(λ/p2)

m(1−λ)/q+(λ/q2)

)]
≤

{ ∞∑
m=1

∞∑
n=1

ap
m

Amλ + Bnλ

(m(p−1)(1−λ)+(λp)/q2

n1−λ/q

)}1/p

×
{ ∞∑

n=1

∞∑
m=1

bq
n

Amλ + Bnλ

(n(q−1)(1−λ)+(λq)/p2

m1−λ/p

)}1/q

=
{ ∞∑

m=1

ωλ(A,B, q,m)mp−1−λap
m

} 1
p
{ ∞∑

n=1

ωλ(B,A, p, n)nq−1−λbq
n

} 1
q . (3.3)

Hence by (2.1) and (2.2), we have (3.1).

For 0 < ε < λ, setting amand b′n as:

am = m
λ−p−ε

p , bn = n
λ−q−ε

q (m,n ∈ N),

then we have { ∞∑
n=1

np−1−λap
n

}1/p{ ∞∑
n=1

nq−1−λb
q

n

}1/q =
∞∑

n=1

1
n1+ε

= 1 +
∞∑

n=2

1
n1+ε

< 1 +
∫ ∞

2

1
t1+ε

dt = 1 +
1
ε
. (3.4)

If there exists A,B > 0 and 0 < λ ≤ min{p, q}, such that the constant factor π/[A1/pB1/qλsin(π/p)]
in (3.1) is not the best possible, then, there exists a positive number K < π/[A1/pB1/qλsin(π/p)],
such that (3.1) is valid if we replace π/[A1/pB1/qλsin(π/p)] by K. In particular, we have

εI = ε
∞∑

n=1

∞∑
m=1

ambn

Amλ + Bnλ
< εK

{ ∞∑
n=1

np−1−λap
n

} 1
p
{ ∞∑

n=1

nq−1−λb
q

n

} 1
q ,

and by (2.3) and (3.4), we find

A−
1
p−

ε
qλ B− 1

q + ε
qλ

1
λ

[ ∫ ∞

0

1
1 + u

u−
1
p−

ε
qλ du− ε

(B

A

)λ−ε
qλ λ

( q

λ− ε

)2]
< K(ε + 1).

Setting ε → 0+ in the above inequality, we conclude that π/[A1/pB1/qλsin(π/p)] ≤ K. This
contradicts the fact that K < π/[A1/pB1/qλsin(π/p)].Thus, the constant factor π/[A1/pB1/qλsin(π/p)]
in (3.1) is the best possible. The theorem is proved.

Theorem 3.2. If an ≥ 0, p > 1, 1
p + 1

q = 1, and 0 < λ ≤ min{p, q}, such that
0 <

∑∞
n=1 np−1−λap

n < ∞ , then for A,B > 0, we have
∞∑

n=1

nλ(p−1)−1
( ∞∑

m=1

am

Amλ + Bnλ

)p
<

1
ABp−1

[ π

λsin(π
p )

]p
∞∑

n=1

np−1−λap
n, (3.5)

where the constant factor 1
ABp−1

[
π

λsin(π/p)

]p is the best possible; Inequality (3.5) is equiva-
lent to (3.1). In particular, for A=B=1, we have the equivalent form of (3.2) as:

∞∑
n=1

nλ(p−1)−1
( ∞∑

m=1

am

mλ + nλ

)p
<

[ π

λsin(π/p)
]p

∞∑
n=1

np−1−λap
n. (3.6)
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Proof. Since 0 <
∑∞

n=1 np−1−λap
n < ∞, there exists k0 ≥ 1, such for any k ≥ k0, that

0 <
∑k

n=1 np−1−λap
n < ∞. We set bn(k) = nλ(p−1)−1

( ∑k
m=1

am

Amλ+Bnλ

)p−1 (k ≥ k0), and
use (3.1) to obtain

0 <
k∑

n=1

nq−1−λbq
n(k) =

k∑
n=1

nλ(p−1)−1
( k∑

m=1

am

Amλ + Bnλ

)p

=
k∑

n=1

k∑
m=1

ambn(k)
Amλ + Bnλ

<
π

A1/pB1/qλsin(π/p)

×
{ k∑

n=1

np−1−λap
n

}1/p{ k∑
n=1

nq−1−λbq
n(k)

}1/q
. (3.7)

Thus we find

{ k∑
n=1

nq−1−λbq
n(k)

}1/p
<

π

A1/pB1/qλsin(π/p)
{ k∑

n=1

np−1−λap
n

}1/p
. (3.8)

It follows that 0 <
∑∞

n=1 nq−1−λbq
n(∞) < ∞. Hence (3.7) is valid as k →∞ by (3.1). So is

(3.8). Thus, inequality (3.5) holds.
For the equivalence, we need show that (3.5) implies (3.1). By Holder’s inequality, we

have
∞∑

n=1

∞∑
m=1

ambn

Amλ + Bnλ
=

∞∑
n=1

[
n(λ+1−q)/q

∞∑
m=1

am

Amλ + Bnλ

][
n(q−1−λ)/qbn

]
≤

{ ∞∑
n=1

nλ(p−1)−1
( ∞∑

m=1

am

Amλ + Bnλ

)p}1/p{ ∞∑
n=1

nq−1−λbq
n

}1/q
. (3.9)

Hence by (3.5), we have (3.1). It follows that inequality (3.5) is equivalent to (3.1) .
If the constant factor in (3.5) is not the best possible, we may get a contradiction that

the constant factor in (3.1) is not the best possible by using (3.9). The theorem is proved.
For λ = 1, reducing (3.2) and (3.6), we have

Corollary 3.3. If an, bn ≥ 0, p > 1, 1
p + 1

q = 1, such that 0 <
∑∞

n=1 np−2ap
n < ∞ and

0 <
∑∞

n=1 nq−2bq
n < ∞ ,then we have the following two equivalent inequalities:

∞∑
n=1

∞∑
m=1

ambn

m + n
<

π

sin(π/p)
{ ∞∑

n=1

np−2ap
n

}1/p{ ∞∑
n=1

nq−2bq
n

}1/q; (3.10)

∞∑
n=1

np−2
( ∞∑

m=1

am

m + n

)p
<

[ π

sin(π/p)
]p

∞∑
n=1

np−2ap
n, (3.11)

where both the constant factors in (3.10) and (3.11) are the best possible.
Since for A = B = λ = 1, ω1(1, 1, r, n) = $1(r, n), by (3.3) and (1.4), we have

Corollary 3.4. If an, bn ≥ 0, p > 1, 1
p + 1

q = 1, such that 0 <
∑∞

n=1 np−2ap
n < ∞ and

0 <
∑∞

n=1 nq−2bq
n < ∞ ,then we have a strengthened version of (3.10) as:
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∞∑
n=1

∞∑
m=1

ambn

m + n
<

{ ∞∑
n=1

[ π

sin(π/p)
− 1− γ

n1/q

]
np−2ap

n

}1/p

×
{ ∞∑

n=1

[ π

sin(π/p)
− 1− γ

n1/p

]
nq−2bq

n

}1/q
, (3.12)

where 1− γ = 0.42278433+(γ is Euler constant).

Remark 3.5. (a) For p=q=2, both (3.2) and (1.6) reduce to the same inequality as:

∞∑
n=1

∞∑
m=1

ambn

mλ + nλ
<

π

λ

{ ∞∑
n=1

n1−λa2
n

∞∑
n=1

n1−λb2
n

}1/2 (0 < λ ≤ 2), (3.13)

and inequality (3.10) reduces to (1.3). It follows that (3.2) and (1.6) are different generaliza-
tions of (3.13) and (1.3), and (3.10) is a new generalization of (1.3) with (p, q)-parameters
form, but other than (1.1).

(b) Inequality (3.1) is also a generalization of (1.3), (3.10) and (3.2), but not (1.1)
(c) Since all the given inequalities and equivalent form are with best constant factors,

we obtain some new results.
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