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Abstract. By using some properties of gamma function and psi function and

the convolution theorem, a new proof of the following double inequality is
given: For all natural number n, we have

1√
π
(
n + 4

π
− 1

) ≤ (2n− 1)!!

(2n)!!
<

1√
π
(
n + 1

4

) ,

and the constants 4
π
− 1 and 1

4
are the best possible.

1. Introduction

Define (2m)!! =
∏m

i=1(2i) and (2m − 1)!! =
∏m

i=1(2i − 1) for any given positive
integer m. Then we have

1√
π
(
n+ 1

2

) < (2n− 1)!!
(2n)!!

<
1√

π
(
n+ 1

4

) . (1)

The inequality (1) is called Wallis’ inequality in [7, p. 103] and can be improved
to the following

Theorem 1. For all natural number n, we have

1√
π
(
n+ 4

π − 1
) ≤ (2n− 1)!!

(2n)!!
<

1√
π
(
n+ 1

4

) . (2)

The constants 4
π − 1 and 1

4 are the best possible.

In [2, pp. 358–359] and [9], it was twice proved that the function
[

Γ(x+1)

Γ(x+ 1
2 )

]2

− x

is decreasing for x > 0. This implies that the constants 4
π − 1 and 1

4 in the lower
and upper bounds of inequality (2) are the best possible.

Recently, inequality (2) in Theorem 1 was obtained using different approaches
by the authors in [3, 4, 5].

In this short note, we will give a new proof of Theorem 1 by using some properties
of gamma and psi functions and the convolution theorem.
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2. Lemmas

The following lemmas regarding to gamma function Γ(x) and psi function ψ = Γ′

Γ
are necessary.
Lemma 1 ([6]). For x > 0, we have

xb−a Γ(x+ a)
Γ(x+ b)

= 1 +
(a− b)(a+ b− 1)

2x
+O

(
x−2

)
. (3)

Lemma 2 ([1, 8]). For x > 0, we have

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt, (4)

ψ(x) = lnx− 1
2x

−
n∑

r=1

(−1)r−1Br

2r
x−2r +O

(
x−2n−2

)
, (5)

where γ = 0.57721566490153286060651 · · · is the Euler’s constant. In particular,

ψ(x) = lnx− 1
2x

+O
(
x−2

)
. (6)

Lemma 3. Let f1(t) and f2(t) be piecewise continuous for t ≥ 0 on any given finite
interval and there exist two constants M > 0 and c ≥ 0 such that |f(t)| ≤ Mect,
then we have∫ ∞

0

[∫ s

0

f1(u)f2(t− u) du
]
e−st dt =

∫ ∞

0

f1(u)e−su du
∫ ∞

0

f2(v)e−sv dv. (7)

Remark 1. Lemma 3 is a convolution theorem of Laplace transform, which can be
found in standard textbooks, for example, [1, 10].

3. A new proof of Theorem 1

Since

Γ(n+ 1) = n!, Γ
(
n+

1
2

)
=

(2n− 1)!!
2n

√
π , 2nn! = (2n)!!, (8)

the double inequality (2) can be rewritten as

1
4
<

[
Γ(n+ 1)
Γ
(
n+ 1

2

)]2

− n ≤ 4
π
− 1. (9)

Let

f(x) =
[

Γ(x+ 1)
Γ
(
x+ 1

2

)]2

− x, x > 0. (10)

Direct computation gives

f ′(x) = 2
[

Γ(x+ 1)
Γ
(
x+ 1

2

)]2[
ψ(x+ 1)− ψ

(
x+

1
2

)]
− 1 (11)

and
ψ(x+ 1)− ψ

(
x+ 1

2

)
1 + f ′(x)

f ′′(x)

= ψ′(x+ 1)− ψ′
(
x+

1
2

)
+ 2

[
ψ(x+ 1)− ψ

(
x+

1
2

)]2

, g(x).

(12)
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Differentiating (4) yields

ψ′(x) =
∫ ∞

0

te−xt

1− e−t
dt. (13)

From (4) and (13), it follows that

g(x) = −
∫ ∞

0

te−xth(t) dt+ 2
(∫ ∞

0

e−xth(t) dt
)2

, (14)

where
h(x) =

(
et/2 + 1

)−1
. (15)

By using the convolution theorem, Lemma 3, we have

g(x) = −
∫ ∞

0

te−xth(t) dt+ 2
∫ ∞

0

[∫ t

0

h(s)h(t− s) ds
]

dt

=
∫ ∞

0

e−xtI(t) dt,
(16)

where

I(t) =
∫ ∞

0

[
2h(s)h(t− s)− h(t)

]
ds. (17)

We claim that for 0 < s < t the following inequality holds:

2h(s)h(t− s)− h(t) > 0, (18)

which is equivalent to (
1 + es/2

)(
1 + e(t−s)/2

)
< 2

(
1 + et/2

)
. (19)

Let

J(t) = ln
(
1 + es/2

)
+ ln

(
1 + e(t−s)/2

)
− ln

[
2
(
1 + et/2

)]
, 0 < s < t.

Calculating straightforwardly yields

J ′(t) =
et/2

[
1− es/2

]
2es/2

(
1 + et/2

)(
1 + e(t−s)/2

) < 0.

Therefore we have J(t) < J(s) = 0, which means that inequality (18) is valid.
Combining (16), (17) and (18) leads to g(x) > 0. From (13), it follows that

ψ′(x) > 0, and ψ(x) is increasing in (0,∞). Since 1 + f ′(x) ≥ 0 by (11), f ′′(x) and
g(x) have the same sign by (12), thus f ′′(x) > 0 and f ′(x) is increasing in (0,∞).

From (3), we have

lim
x→∞

x−
1
2

Γ(x+ 1)
Γ
(
x+ 1

2

) = 1, (20)

From (6), it follows that

lim
x→∞

x

[
ψ(x+ 1)− ψ

(
x+

1
2

)]
=

1
2
. (21)

Combination of (11), (20) and (21) yields

f ′(x) < lim
x→∞

f ′(x) = 0,

which implies that f(x) is decreasing in (0,∞). Hence

lim
n→∞

{[
Γ(n+ 1)
Γ(n+ 1

2 )

]2

− n

}
<

[
Γ(n+ 1)
Γ(n+ 1

2 )

]2

− n ≤
[

Γ(1 + 1)
Γ(1 + 1

2 )

]2

− 1 =
4
π
− 1. (22)
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We can rewrite f(x) as

f(x) = x

[
x−1/2 Γ(x+ 1)

Γ
(
x+ 1

2

) − 1
][
x−1/2 Γ(x+ 1)

Γ
(
x+ 1

2

) + 1
]
. (23)

Using (3) yields

lim
n→∞

{[
Γ(n+ 1)
Γ(n+ 1

2 )

]2

− n

}
= lim

x→∞
f(x) =

1
4
. (24)

The double inequality (2) follows from (22) and (24), and the constants 4
π − 1 and

1
4 are the best possible. The proof is complete.
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