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Abstract. In this paper, we give some strengthened results on Gerretsen’s inequalities, and es-
tablish a parameter form for Gerretsen’s inequalities by using power series.

1. Introduction and Notations

In practice we assume that s denotes the semi-perimeter of triangle ABC, R the circumradius,
r the inradius, and (2n− 3) !! = 1 · 3 · 5 · · · (2n− 3). In addition we have (−1) !! = 1.

In 1953, J.C.Gerretsen [1] obtained the following important double inequalities:

Theorem 1.1. In every triangle we have the double-sided inequality

(1.1) 16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2.

Gerretsen’s inequality (1.1) has broad applications in geometric inequalities, and is a powerul
tool of research in geometric inequalities. It is as important to geometric inequality theory as
Hölder’s inequality is to analytic inequality theory.

The purpose of this note is to present a simple but powerful form of strengthening Gerretsen’s
inequalities for triangles. The parameter form for Gerretsen’s inequalities are established by using
power series.

2. The Strengthened Form of Gerretsen’s Inequalities

In this paper, the following three lemmas are necessary:

Lemma 2.1. (Basic inequalities for the triangle [2]) In every triangle we have

(2.1) 2R2 + 10Rr − r2 − 2(R− 2r)
√

R2 − 2Rr ≤ s2 ≤ 2R2 + 10Rr − r2 + 2(R− 2r)
√

R2 − 2Rr.

Lemma 2.2. Assume −1 ≤ x ≤ 1 and 0 < α < 1, we have the following power series expansion

(2.2) (1 + x)α = 1 +
∞∑

n=1

α(α− 1)(α− 2) · · · (α− n + 1)
n!

xn

and the following Bernoulli’s inequality [3]

(2.3) (1 + x)α ≤ 1 + αx

Lemma 2.3. Assume −1 < x < 1, the following power series expansion is well-known

(2.4)
1

1− x
=

∞∑
n=0

xn.
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Theorem 2.1. In every triangle the following inequalities hold

(2.5) 16Rr − 5r2 +
r2(R− 2r)

R− r
≤ s2 ≤ 4R2 + 4Rr + 3r2 − r2(R− 2r)

R− r
.

Proof. Since basic inequalities (2.1) for the triangle are equivalent to the following inequalities:

(2.6) 16Rr − 5r2 + 2(R− 2r)(R− r −
√

R2 − 2Rr) ≤ s2

≤ 4R2 + 4Rr + 3r2 − 2(R− 2r)(R− r −
√

R2 − 2Rr).
From Euler’s inequality R ≥ 2r and Bernoulli’s inequality (2.3), we have

R− r > 0, 0 <
r

R− r
≤ 1,

and

R− r −
√

R2 − 2Rr = (R− r)

[
1−

√
R2 − 2Rr

(R− r)2

]

= (R− r)

[
1−

√
1− r2

(R− r)2

]
≥ 1

2
(R− r)

(
r

R− r

)2

=
r2

2(R− r)
.

According to (2.6), it is easy to obtain (2.5). The proof of Theorem 2.1 is completed. �

The inequalities (2.5) were also proved by Xue-zhi Yang in [4], by the use of appropriate trigono-
metric inequalities.

Now, we will give a generalized result:

Theorem 2.2. In every triangle we have the following inequalities

(2.7) 16Rr − 5r2 + r(R− 2 r)
∞∑

n=1

(2n− 3) !!
2n−1n !

(
r

R− r

)2n−1

≤ s2

≤ 4R2 + 4Rr + 3r2 − r(R− 2 r)
∞∑

n=1

(2n− 3) !!
2n − 1n !

(
r

R− r

)2n−1

.

Proof. In (2.6), we have obtained the following equality:

R− r −
√

R2 − 2Rr = (R− r)

[
1−

√
1− r2

(R− r)2

]
.

Let
r

R− r
= x (0 < x ≤ 1),

then
R− r −

√
R2 − 2Rr = (R− r)(1−

√
1− x2).

From the power series expansion (2.2), we have√
1− x2 = 1− 1

2
x2 −

∞∑
n=2

(2n− 3) !!
2nn !

x2n (0 < x ≤ 1),

or

1 −
√

1− x2 =
1
2
x [ x +

∞∑
n=2

( 2n− 3 ) !!
2n − 1n !

x2n − 1 ] =
r

2(R− r)

∞∑
n=1

(2n− 3) !!
2n − 1n !

(
r

R− r

)2n − 1

.

Therefore the following equality holds

(2.8) R− r −
√

R2 − 2Rr =
1
2
r

∞∑
n=1

(2n− 3) !!
2n − 1n !

(
r

R− r

)2n − 1

.
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Combining expressions (2.6) and (2.8) we obtain (2.7). Theorem 2.2 is proved. �

Theorem 2.3. In every triangle we have the following inequalities

(2.9) 16Rr − 5r2 + r(R− 2r)ς ≤ s2 ≤ 4R2 + 4Rr + 3r2 − r(R− 2r)ς,

where

ς =
∞∑

n=1

(2n− 3 ) !!
2n − 1n !

[ ∞∑
m=1

2m−1

(
r

R + r

)m
]2n−1

.

Proof. From the power series expansion (2.4), we have

(2.10)
r

R− r
=

r

R + r

(
1− 2r

R + r

)−1

=
r

R + r

∞∑
m=0

(
2r

R + r

)m

=
∞∑

m=1

2m − 1

(
r

R + r

)m

.

Combining expression (2.7) and (2.10) we immediately get (2.9). Theorem 2.3 is proved. �

3. The Parameter Form of Gerretsen’s Inequalities

In this section, we will establish a parameterised form of Gerretsen’s inequalities.

Theorem 3.1. Let λ be a nonzero real number, in every triangle we have the following inequalities

(3.1) −(λ− 1)2R2 + 2(λ2 + 5λ + 2)Rr − (4 + λ)r2 +
1
2
(R− 2r)

∣∣ (1− λ2)R− 2r
∣∣ ε ≤ λs2 ≤

(λ + 1)2R2 − 2(λ2 − 5λ + 2)Rr + (4− λ)r2 − 1
2
(R− 2r)

∣∣ (1− λ2)R− 2r
∣∣ ε,

where

ε =
∞∑

n=1

( 2n− 3 ) !!
2n − 1n !

∣∣∣∣(1− λ2)R− 2r

(1 + λ2)R− 2r

∣∣∣∣2n−1

.

Proof. When λ > 0, from inequality (2.1), we have

2λR2 + 10λRr − λr2 − 2λ(R− 2r)
√

R2 − 2Rr ≤ λs2 ≤

2λR2 + 10λRr − λr2 + 2λ(R− 2r)
√

R2 − 2Rr,

or

(3.2) −(λ− 1)2R2 + 2(λ2 + 5λ + 2)Rr − (4 + λ)r2

+(R− 2r)[(λ2 + 1)R− 2r − 2λ
√

R2 − 2Rr] ≤ λs2 ≤
(λ + 1)2R2 − 2(λ2 − 5λ + 2)Rr + (4− λ)r2 − (R− 2r)[(λ2 + 1)R− 2r − 2λ

√
R2 − 2Rr],

From Euler’s inequality R ≥ 2r, we obtain (λ2 + 1)R− 2r > 0, and

(λ2 + 1)R− 2r − 2λ
√

R2 − 2Rr = [(λ2 + 1)R− 2r]

[
1 −

√
4λ2(R2 − 2Rr)

[(1 + λ2)R− 2r]2

]

= [(λ2 + 1)R− 2r]

1 −

√
1 −

[
(1− λ2)R− 2r

(1 + λ2)R− 2r

]2
 .

Let ∣∣∣∣ (1− λ2)R− 2r

(1 + λ2)R− 2r

∣∣∣∣ = x(0 < x ≤ 1),

then
(λ2 + 1)R− 2r − 2λ

√
R2 − 2Rr = [(λ2 + 1)R− 2r](1−

√
1− x2).



4 SH.-H. WU AND ZH.-H. ZHANG

From the power series expansion (2.2), we have

1 −
√

1− x2 =
1
2
x

∞∑
n=1

(2n− 3) !!
2n − 1n !

x2n − 1,

and

(3.3) (λ2 +1)R−2r−2λ
√

R2 − 2Rr =
1
2

∣∣ (1− λ2)R− 2r
∣∣ ∞∑

n=1

(2n− 3) !!
2n − 1n !

∣∣∣∣(1− λ2)R− 2r

(1 + λ2)R− 2r

∣∣∣∣2n−1

.

Combining expression (3.2) and (3.3), the inequality (3.1) is proved.
If λ < 0, then −λ > 0, applying the above result, we have

−(−λ− 1)2R2 + 2(λ2 − 5λ + 2)Rr − (4− λ)r2 +
1
2
(R− 2r)

∣∣ (1− λ2)R− 2r
∣∣ ε ≤ λs2 ≤

(−λ + 1)2R2 − 2(λ2 + 5λ + 2)Rr + (4 + λ)r2 − 1
2
(R− 2r)

∣∣ (1− λ2)R− 2r
∣∣ ε.

It is easy to see that above inequalities are equivalent to inequalities (3.1). The proof of Theorem
3.1 is completed. �

Theorem 3.2. Let λ, t be real number, and λ 6= 2t, in every triangle we have the following inequal-
ities

(3.4) −(t− 1)2R3 + 2 [t2 + (λ + 5)t− λ + 2]R2r − [(4λ + 1)t + λ2 + 10λ + 4]Rr2 + (2λ2 + λ)r3

+
1
2
(R− 2r) |( tR− λr)2 −R(R− 2r )| ε ≤ (tR− λr)s2 ≤

(t + 1)2R3 − 2[t2 + (λ− 5)t + λ + 2]R2r + [(4λ− 1)t + λ2 − 10λ + 4]Rr2 − (2λ2 − λ)r3

−1
2
(R− 2r) |( tR− λr)2 −R(R− 2r )| ε,

where

ε =
∞∑

n=1

(2n− 3) !!
2n− 1n !

∣∣∣∣ (tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R− 2r)

∣∣∣∣2n− 1

.

Proof. From inequality (2.1), we have

(3.5) | tR− λr | [
∣∣ s2 − 2R2 − 10Rr + r2

∣∣− 2(R− 2r)
√

R2 − 2Rr ] ≤ 0.

Since (3.5)⇔
∣∣ (tR− λr)(s2 − 2R2 − 10Rr + r2)

∣∣ ≤ 2 | tR− λr | (R− 2r)
√

R2 − 2Rr

⇔ (tR− λr)(2R2 + 10Rr − r2)− 2 | tR− λr | (R− 2r)
√

R2 − 2Rr ≤ (tR− λr)s2 ≤

(tR− λr)(2R2 + 10Rr − r2) + 2 | tR− λr | (R− 2r)
√

R2 − 2Rr,

that is

(3.6) −(t− 1)2R3 + 2[t2 + (λ + 5)t− λ + 2]R2r − [(4λ + 1)t + λ2 + 10λ + 4]Rr2 + (2λ2 + λ)r3

+(R− 2r)[ (tR− λr)2 + R(R− 2r)− 2 |tR− λr|
√

R2 − 2Rr ] ≤ (tR− λr)s2 ≤
(t + 1)2R3 − 2[t2 + (λ− 5)t + λ + 2]R2r + [(4λ− 1)t + λ2 − 10λ + 4]Rr2 − (2λ2 − λ)r3

−(R− 2r)[(tR− λr)2 + R(R− 2r)− 2 |tR− λr|
√

R2 − 2Rr].
According to λ 6= 2t and Euler’s inequality R ≥ 2r, we obtain (tR− λr)2 + R(R− 2r) > 0, and

(tR− λr)2 + R(R− 2r)− 2 |tR− λr|
√

R2 − 2Rr

= [(tR− λr)2 + R(R− 2r)]

[
1 −

√
4(tR− λr)2(R2 − 2Rr)

[(tR− λr)2 + R(R− 2r)]2

]
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= [(tR− λr)2 + R(R− 2r)]

1−

√
1−

[
(tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R− 2r)

]2
 .

Let ∣∣∣∣ (tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R− 2r)

∣∣∣∣ = x(0 < x ≤ 1),

then

(tR− λr)2 + R(R− 2r)− 2 |tR− λr|
√

R2 − 2Rr = [(tR− λr)2 + R(R− 2r)](1−
√

1− x2),

From the power series expansion (2.2), we have

1−
√

1− x2 =
1
2
x

∞∑
n=1

(2n− 3) !!
2n − 1n !

x2n − 1,

therefore

(3.7) (tR− λr)2 + R(R− 2r)− 2 |tR− λr|
√

R2 − 2Rr

=
1
2
[(tR− λr)2 −R(R− 2r)]

∞∑
n=1

(2n− 3) !!
2n− 1n !

∣∣∣∣ (tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R− 2r)

∣∣∣∣2n− 1

.

Combining expression (3.6) and (3.7) we can get the inequalities (3.4). Theorem 3.2 is proved. �

Now, we give some corollaries from Theorem 3.1 and Theorem 3.2.

Corollary 3.1. Let λ, t be real numbers, respectively, and λ 6= 2t, in every triangle we have the
following inequalities

(3.8) −(t−1)2R3+2 [t2+(λ+5)t−λ+2]R2r−[(4λ+1)t+λ2+10λ+4]Rr2+(2λ2+λ)r3 ≤ (tR−λr)s2

≤ (t + 1)2R3 − 2[t2 + (λ− 5)t + λ + 2]R2r + [(4λ− 1)t + λ2 − 10λ + 4]Rr2 − (2λ2 − λ)r3.

Corollary 3.2. Let λ be a nonzero real numbers, in every triangle we have the following double
inequality

(3.9) −(λ− 1)2R2 + 2(λ2 + 5λ + 2)Rr − (4 + λ)r2 ≤ λs2 ≤

(λ + 1)2R2 − 2(λ2 − 5λ + 2)Rr + (4− λ)r2.

Inequalities (3.8) ,(3.9) include Gerretsen’s inequalities and a lot of new geometric inequalities.

Corollary 3.3. Let λ, t be real numbers, respectively, and λ 6= 2t, in every triangle we have the
following double inequality

(3.10) −(t− 1)2R3 + 2 [t2 + (λ + 5)t− λ + 2]R2r − [(4λ + 1)t + λ2 + 10λ + 4]Rr2 + (2λ2 + λ)r3

+
1
2
(R− 2r) |( tR− λr)2 −R(R− 2r )| ς ≤ (tR− λr)s2 ≤

(t + 1)2R3 − 2[t2 + (λ− 5)t + λ + 2]R2r + [(4λ− 1)t + λ2 − 10λ + 4]Rr2 − (2λ2 − λ)r3

−1
2
(R− 2r) |( tR− λr)2 −R(R− 2r )| ς,

where

ς =
∞∑

m=1

( 2m− 3 ) !!
2m − 1m !

[
1

2Rr

∣∣(tR− λr)2 −R(R− 2r)
∣∣ ∞∑

n=1

2n−1 (
2Rr

(tR− λr)2 + R(R + 2r)
)n ]2m−1 .
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Proof. From Euler’s inequality R ≥ 2r, we obtain

0 <
4Rr

(tR− λr)2 + R(R + 2r)
≤ 4Rr

(tR− λr)2 + 4Rr
< 1.

Using the power series expansion (2.4), we have

(3.11)
∣∣∣∣ (tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R− 2r)

∣∣∣∣ =
∣∣∣∣ (tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R + 2r)

∣∣∣∣ ∣∣∣∣ (tR− λr)2 + R(R + 2r)
(tR− λr)2 + R(R− 2r)

∣∣∣∣
=

∣∣∣∣ (tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R + 2r)

∣∣∣∣ 1

1− 4Rr

(tR− λr)2 + R(R + 2r)

=
∣∣∣∣ (tR− λr)2 −R(R− 2r)
(tR− λr)2 + R(R + 2r)

∣∣∣∣ ∞∑
n=0

[
4Rr

(tR− λr)2 + R(R + 2r)

]n

=
1

2Rr

∣∣(tR− λr)2 −R(R− 2r)
∣∣ ∞∑

n=1

2n−1

[
2Rr

(tR− λr)2 + R(R + 2r)

]n

.

Combining expression (3.4) and (3.11) we immediately get the inequalities (3.10), and the proof of
Corollary 3.3 is completed. �
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