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Abstract

The main task of this paper is to study the links between solutions of Variational In-
equalities and monotonicity of the trajectories of a special kind of Differential Inclusions
(namely “projected differential inclusions”). The case in which the involved operators are
single-valued has been considered in[18], where the connections between solutions of varia-
tional inequalities and stability of the solutions of a “projected differential equation” have
been investigated.
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1 Introduction

The relations of Minty and Stampacchia Variational Inequalities with differentiable optimization
problems have been widely studied. Basically it has been proved that Stampacchia Variational
Inequality (for short, SVI) is a necessary condition for optimality (see e.g. [13]), while Minty
Variational Inequality (for short, MVI) is a sufficient one (see e.g. [7],[14]). Generaliza-
tions of SVI and MVI to point to set maps have been introduced (see e.g. [4], [9]) and the
previous results have been proved also for non differentiable optimization problems (see e.g. [5]).

On the other hand Dynamical Systems (for short, DS) are a classical tool for dealing with a
wide range both of real and mathematical problems. Recently the existence and stability of
equilibria of a (projected) DS have been characterized by means of variational inequalities. In
this context it has been proved that existence of a solution of SVI is equivalent to existence of
an equilibrium, while MVI ensures the stability of equilibria (see for instance [18]).
Therefore, we prove that variational inequalities for point to set maps can be related to differ-
ential inclusions. The main task of this paper is to study the links between solutions of MVI
and monotonicity of the trajectories of a special kind of Differential Inclusions (namely “pro-
jected differential inclusions”). The case in which the involved operators are single-valued has
been considered in [18], where the connections between solutions of variational inequalities and
stability of the solutions of a “projected differential equation” have been investigated.
The paper is organized as follows. In Section 2 we recall the main concepts and results about
Differential Inclusions and Variational Inequalities. Section 3 states the links between existence
of solutions of a Variational Inequality of Minty type and monotonicity of trajectories of a Dif-
ferential Inclusion. Section 4 presents some necessary and sufficient conditions for the existence
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of monotone trajectories of a classical differential equation, when the involved operator is lo-
cally Lipschitz. These results generalize analogous results given in [18], in the case in which
the operator is of class C1. Finally, Section 5 presents an application of the previous results to
generalized gradient inclusions.

2 Preliminaries

2.1 Differential Inclusions

Let K be a closed convex subset of Rn.

Theorem 1. [1] We can associate to every x ∈ Rn a unique element πK(x) ∈ K, satisfying:

‖x− πK(x)‖ = min
y∈K

‖x− y‖.

It is characterized by the following inequality:

〈πK(x)− x, πK(x)− y〉 ≤ 0, ∀y ∈ K,

and it is non esxpansive, i.e.:

‖πK(x)− πK(y)‖ ≤ ‖x− y‖.

The map πK is said the projector (of best approximation) onto K. When K is a linear subspace,
then πK is linear (see [1]). We set πK(0) = m(K) (i.e. m(K) denotes the element of K with
minimal norm).
We denote by:

C− = {v ∈ Rn : 〈v, a〉 ≤ 0,∀a ∈ C}

the (negative) polar cone of the set C ⊆ Rn, while:

T (C, x) = {v ∈ Rn : ∃vn → v, αn > 0, αn → 0, x + αnvn ∈ C}

is Bouligand tangent cone to the set C at x ∈ clC and N(C, x) = [T (C, x)]− stands for the
normal cone to C at x ∈ clC.
It is known that T (C, x) and N(C, x) are closed sets. Furthermore, when we consider a closed
convex set K ⊆ Rn, then T (K, x) = cl cone (K − x) (cone A denotes the cone generated by the
set A), so that both the tangent cone and the normal cone are also convex.

Proposition 1. Let A be a compact convex subset of Rn, T be a closed convex cone and N = T−

be its polar cone. Then:
πT (A) ⊆ A−N. (1)

The elements of minimal norm are equal:

m(πT (A)) = m(A−N)

and satisfy:
sup

z∈−A
〈z,m(πT (A))〉+ ‖m(πT (A)‖2 ≤ 0.
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We recall that, given a map G : K ⊆ Rn → 2Rn
, a differential inclusion is the problem of finding

an absolutely continuous function x(·), defined on an interval [0, T ], such that:{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a. t ∈ [0, T ], x′(t) ∈ G(x(t)).

The solutions of the previous problem are called also ”trajectories” of the differential inclusion.
If x(·) is such that: {

∀t ∈ [0, T ], x(t) ∈ K,
for a.a. t ∈ [0, T ], x′(t) = m(G(x(t)))

then it is called a slow solution of the differential inclusion.

Definition 1. A map F from Rn to 2Rn
is said to be upper semicontinuous (u.s.c.) at x0 ∈

Rn, when for every open set N containing x0, there exists a neighborhood M of x0 such that
F (M) ⊆ N .
F is said to be u.s.c. when it is so at every x0 ∈ Rn.

From now on, if not othewise specified we will do the following:

Standing Assumptions

i) K will denote a convex and closed subset of Rn;

ii) F will denote an u.s.c. map from Rn to 2Rn
, with nonempty convex and compact values.

We are concerned with the following problem, which is a special case of differential inclusion.

Problem 1. Find an absolutely continuous function x(·) from [0, T ] into Rn, satisfying:

DV I(F,K)
{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a. t ∈ [0, T ], x′(t) ∈ −F (x(t))−N(K, x(t))

The previous problem is called a “differential variational inequality” (for short, DV I) [1]. The
following result states the equivalence of DV I(F,K) and a “projected differential inclusion” (for
short, PDI) [1].

Theorem 2. The solutions of Problem 1 are the solutions of:

PDI(F,K)
{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a. t ∈ [0, T ], x′(t) ∈ πT (K,x(t)) (−F (x(t)) ,

and conversely.

Remark 1. We recall that when F is a single-valued operator, then the corresponding “projected
differential equation” and its applications have been studied for instance in [8], [17], [18].

Theorem 3. [1] The slow solutions of DV I(F,K) and PDI(F,K) coincide.

Definition 2. A point x∗ ∈ K is an equilibrium point for DV I(F,K), when:

0 ∈ −F (x∗)−N(K, x∗).

We recall the following existence result.
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Theorem 4. a) If K is compact, then there exists an equlibrium point for DV I(F,K).

b) If m(F (·)) is bounded, then, for any x0 ∈ K there exists an absolutely continuous function
x(t) defined on an interval [0, T ], such that:{

x(0) = x0, x′(t) ∈ −F (x(t))−NK(x(t)) for a.a. t ∈ [0, T ]
∀t ∈ [0, T ], x(t) ∈ K

We close this section, recalling the notion of monotonicity of a trajectory of DV I(F,K) [1].

Definition 3. Let V be a function from K to R+. A trajectory x(t) of DV I(F,K) is monotone
(with respect to V ) when:

∀t ≥ s, V (x(t))− V (x(s)) ≤ 0.

If the previous inequality holds strictly ∀t > s, then we say that x(t) is strictly monotone w.r.t.
V .

In the following we will be interested in the trajectories of DV I(F,K) which are monotone w.r.t.
the function:

Ṽx∗(x) =
‖x− x∗‖2

2
,

where x∗ is an equlibrium point of DV I(F,K).

2.2 Variational Inequalities

We consider the following formulations of a variational inequality (see for instance [4], [9], [11]):

Definition 4. A point x∗ ∈ K is a solution of a Stampacchia Variational Inequality (for short,
SVI) when ∃ξ∗ ∈ F (x∗) such that:

SV I(F,K) 〈ξ∗, y − x∗〉 ≥ 0 , ∀y ∈ K.

Definition 5. A point x∗ ∈ K is a solution of a Strong Minty Variational Inequality (for short,
SMV I), when:

SMV I(F,K) 〈ξ, y − x∗〉 ≥ 0 ,∀y ∈ K, ∀ξ ∈ F (y).

Definition 6. A point x∗ ∈ K is a solution of a Weak Minty Variational Inequality (for short,
WMV I), when ∀y ∈ K, ∃ξ ∈ F (y) such that:

〈ξ, y − x∗〉 ≥ 0.

Definition 7. If in Definition 5 (resp. 6), strict inequality holds ∀y ∈ K, y 6= x∗, then we say
that x∗ is a “strict ” solution of SMVI(F, K) (resp. of WMVI(F, K)).

Remark 2. When F is single valued, Definitions 5 and 6 reduce to the classical notion of MV I.

The classical Minty Lemma (see for instance [16]) relates Minty Variational Inequalities and
Stampacchia Variational Inequalities, when F is a single valued operator. The following result
gives an extension to the case in which F is a point-to-set map. We recall first the following
definition (see e.g. [11]).

Definition 8. F is said:
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i) monotone, if for all x, y ∈ K, we have:

∀u ∈ F (x),∀v ∈ F (y) : 〈v − u, y − x〉 ≥ 0;

ii) pseudo-monotone (resp. strictly pseudomonotone), if for all x, y ∈ K (resp. for all x, y ∈
K with y 6= x) the following implication holds:

∃u ∈ F (x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ F (y) : 〈v, y − x〉 ≥ 0;

(∃u ∈ F (x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ F (y) : 〈v, y − x〉 > 0)

ii) quasi-monotone, if for all x, y ∈ K , we have:

∃u ∈ F (x) : 〈u, y − x〉 > 0 ⇒ ∀v ∈ F (y) : 〈v, y − x〉 ≥ 0.

Remark 3. The following implications are classical:

monotone ⇒ pseudomonotone ⇒ quasimonotone

⇑

strictly pseudomonotone.

Lemma 1. i) Let F be u.s.c. and K be nonempty closed and convex. Any x∗ ∈ K, which
solves WMV I(F,K), it is a solution of SV I(F,K) as well.

ii) If F is a pseudo-monotone map, any solution of SV I(F,K) also solves SMV I(F,K).

iii) If F is a strictly pseudo-monotone map, any solution of SV I(F,K) is a strict solution of
SMV I(F,K).

Proof:

i) Let z be an arbitrary point in K and consider y = x∗ + t(z − x∗) ∈ K, where t ∈ (0, 1).
Since x∗ solves WMV I(F,K), we have that ∀t ∈ (0, 1), ∃ξ = ξ(t) ∈ F (x∗ + t(z − x∗)),
such that:

〈ξ(t), t(z − x∗)〉 ≥ 0,

that is:
〈ξ(t), z − x∗〉 ≥ 0.

Since F is u.s.c., we get that for any integer n > 0, there exists a number δn > 0 such
that, for t ∈ (0, δn] it holds:

F
(
x∗ + t(z − x∗)

)
⊆ F (x∗) +

1
n

B.

Hence, for t ∈ (0, δn], ξ(t) = f(t) + γ(t), where f(t) ∈ F (x∗) and γ(t) ∈ 1
nB. Without loss

of generality we can assume δn < 1 ∀n and we have:

0 ≤ 〈ξ(t), z − x∗〉 = 〈f(t), z − x∗〉+ 〈γ(t), z − x∗〉.

Furthermore, by Cauchy-Schwarz inequality, we get:

|〈γ(t), z − x∗〉| ≤ ‖γ(t)‖ ‖z − x∗‖ ≤ 1
n
‖z − x∗‖,
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so that, choosing in particular, t = δn, we obtain:

〈f(δn), z − x∗〉 ≥ − 1
n
‖z − x∗‖.

Recalling that F (x∗) is a compact set, when n → +∞ we can assume that f(δn) → f̄ ∈
F (x∗) and we get:

〈f̄ , z − x∗〉 ≥ 0. (2)

By the former construction, we have that ∀z ∈ K, there exists f̄ = f̄(z) ∈ F (x∗) such that
(2) holds.
Since F is convex and compact-valued, then, from Lemma 1 in Blum and Oettli [3], we
get the thesis.

The proof of ii) and iii) is trivial. �

Remark 4. Since every solution of SMV I(F,K) is also a solution of WMV I(F,K), then, from
the previous theorem we obtain that, if F is pseudo-monotone, the solution sets of WMV I(F,K),
SMV I(F,K) and SV I(F,K) coincide.

Theorem 5. If SMV I(F,K) admits a strict solution, then, this is the unique solution of
SV I(F,K).

Proof: Let x∗ ∈ K be a strict solution of SMV I(F,K), that is:

〈ξ, y − x∗〉 > 0, ∀y ∈ K, y 6= x∗, ∀ξ ∈ F (y),

and assume, by contradiction, that there exists x1 ∈ K, x1 6= x∗ such that x1 solves SV I(F,K).
Hence we have:

〈ξ, x1 − x∗〉 ≤ 0, for some ξ ∈ F (x1),

which contradicts the fact that x∗ solves SMV I(F,K). �

A first link between variational inequalities and differential inclusions is given in the following
proposition which has an immediate proof.

Proposition 2. A point x∗ ∈ K is an equilibrium point for DV I(F,K) if and only if it is a
solution of SV I(F,K).

3 Variational Inequalities and Monotonicity of Trajectories

In this section we explore the links between variational inequalities and the stability of the
trajectories of DV I(F,K), w.r.t. function Ṽx∗ .

Theorem 6. If x∗ ∈ K is a solution of SMV I(F,K), then every trajectory x(t) of DV I(F,K)
is monotone w.r.t. function Ṽx∗.

Proof: We observe that, under the hypotheses of the theorem, x∗ is an equilibrium point of
DV I(F,K) (recall Lemma 1 and Proposition 2). Since x(t) is differentiable a.e., so is v(t) =
Ṽx∗(x(t)) and we have (at least a.e.):

v′(t) = 〈Ṽ ′
x∗(x(t)), x′(t)〉 = 〈x′(t), x(t)− x∗〉 =

= 〈−ξ(x(t))− nK(x(t)), x(t)− x∗〉,
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where ξ(x(t)) ∈ F (x(t)) and nK(x(t)) ∈ N(K, x(t))). Hence v′(t) ≤ 0 for a.a. t ≥ 0 and hence,
for t2 > t1:

v(t2)− v(t1) =
∫ t2

t1

v′(τ)dτ ≤ 0.

�

Corollary 1. Let x∗ be an equlibrium point of DV I(F,K) and assume that F is pseudomono-
tone. Then every trajectory of DV I(F,K) is monotone w.r.t. function Ṽx∗.

Proof: It is immediate combining Lemma 1 and Theorem 6 �

To get a sort of converse of the previous Theorem, we need the following result.

Theorem 7 ([1]). Let K be a subset of Rn and let V : K → R+ be a differentiable function.
Assume that for all x0 ∈ K, there exists T > 0 and a trajectory x(·) on [0, T ) of the differential
inclusion x′(t) = F (x(t)), x(0) = x0, satisfying:

∀s ≥ t, V (x(s))− V (x(t)) ≤ 0.

Then V is a Liapunov function for F , that is ∀x ∈ K, ∃ξ ∈ F (x), such that 〈V ′(x), ξ〉 ≤ 0.

Theorem 8. Let x∗ be an equilibrium point of DV I(F,K). If for any point x ∈ K there
exists a trajectory of DV I(F,K) starting at x and monotone w.r.t. function Ṽx∗, then x∗ solves
WMV I(F,K).

Proof: Let x̄ ∈ riK (the relative interior of K) be the initial condition for a trajectory x(t) of
DV I(F,K) and assume that x(t) is monotone w.r.t. Ṽx∗ . If we denote by L the smallest affine
subspace generated by K and set S = L− x̄, for x ∈ K ∩U , where U is a suitable neighborhood
of x̄, we have T (K, x) = S and N(K, x) = S⊥ (the subspace orthogonal to S). So, if x(t) is a
trajectory of DV I(F,K) that starts at x̄, then, for t ”small enough”, it remains in riK ∩U and
satisfies (recall Theorem 2):{

for all t ∈ [0, T ], x(t) ∈ K
for a.a. t ∈ [0, T ], x′(t) ∈ πS(−F (x(t))

Since S is a subspace, πS is a linear operator; hence πS(−F (x(t)) is compact and convex ∀t ∈
[0, T ] and furthermore πS(−F (·)) is u.s.c. .
Applying Theorem 7 we obtain the existence of a vector µ ∈ πS(−F (x̄)), such that 〈Ṽ ′

x∗(x̄), µ〉 ≤
0. Taking into account inclusion (1), we have µ = −ξ(x̄) − n(x̄), where ξ(x̄) ∈ F (x̄) and
n(x̄) ∈ S⊥. Hence:

〈Ṽ ′
x∗(x̄), µ〉 = 〈−ξ(x̄)− n(x̄), x̄− x∗〉 =

= 〈−ξ(x̄), x̄− x∗〉+ 〈n(x̄), x∗ − x̄〉 ≤ 0,

from which it follows, since 〈n(x̄), x∗ − x̄〉 = 0:

〈ξ(x̄), x̄− x∗〉 ≥ 0.

Since x̄ is arbitrary in ri K, we have:

〈ξ(x), x− x∗〉 ≥ 0, ∀x ∈ riK.

Now, let x̃ ∈ cl K\riK. Since clK = cl ri K, then x̃ = lim xk, for some sequence {xk} ∈ riK
and:

〈ξ(xk), xk − x∗〉 ≥ 0,∀k.
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There exists a closed ball B̄(x̃, δ), with center in x̃ and radius δ, such that xk is contained in
the compact set B̄(x̃, δ) ∩K and since F is u.s.c., with compact images, the set:⋃

y∈B̄(x̃,δ)∩K

F (y)

is compact (see Proposition 3, p. 42 in [1]) and we can assume that ξ(xk) → ξ̃ ∈⋃
y∈B̄(x̃,δ)∩K F (y). From the upper semicontinuity of F , it follows also ξ̃ ∈ F (x̃) and so:

〈ξ̃, x̃− x∗〉 ≥ 0.

This completes the proof. �

Therorem 6 can be strenghtened with the following:

Theorem 9. Let x∗ be a strict solution of SMV I(F,K), then:

i) x∗ is the unique equilibrium point of DV I(F,K);

ii) every trajectory of DV I(F,K), starting at a point x0 ∈ K and defined on [0,+∞) is
strictly monotone w.r.t. Ṽx∗ and converges to x∗.

Proof: The uniqueness of the equilibrium point follows from Theorem 5. The strict monotonicity
of any trajectory x(t) w.r.t. Ṽx∗ follows along the lines of the proof of Theorem 6. Now the
proof of the convergence is an application of Liapunov function’s technique.
Let x(t) ∈ K be a solution of DV I(F,K), starting at some point x0 ∈ K, i.e. with x(0) = x0.
Assume, ab absurdo, that α = limt→+∞ v(t) > 0 = miny∈K Ṽx∗(·), where v(t) = Ṽx∗(x(t)). We
observe that the limit defining α exists, because of the monotonicity of v(·) and to assume it
differs from 0, it is equivalent to say that x(t) 6→ x∗. Thus, since x(t) is monotone w.r.t. Ṽx∗ ,
we have ∀t ≥ 0:

α ≤ v(t) ≤ δ =
‖x0 − x∗‖2

2
.

Letting L :=
{
x ∈ K : α ≤ ‖x− x∗‖2

2
≤ δ

}
, we have that L is a compact set and x∗ 6∈ L, while

x(t) ∈ L, ∀t ≥ 0. Since x∗ is a strict solution of SMV I(F,K), we have:

〈ξ, y − x∗〉 < 0, ∀y ∈ K, y 6= x∗, ∀ξ ∈ −F (y)

and, in particular:
〈ξ, y − x∗〉 < 0, ∀y ∈ L, ∀ξ ∈ −F (y).

Now, we observe that there exists a number m > 0, such that:

maxξ∈−F (y)〈ξ, y − x∗〉 ≤ −m, ∀y ∈ L.

Infact, if such a number does not exists, we would obtain the existence of sequences yn ∈ L and
ξn ∈ F (yn), such that:

〈ξn, yn − x∗〉 ≥ − 1
n

.

Sending n to +∞, we can assume that yn → ȳ ∈ L. Furthermore, since F is u.s.c. with compact
images, the set: ⋃

y∈L

F (y)
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is compact and we can also assume ξn → ξ̄ ∈
⋃

y∈L F (y). By the upper semicontinuity of F , it
follows also ξ̄ ∈ F (ȳ) and we get the absurdo:

〈ξ̄, ȳ − x∗〉 ≥ 0.

We have:
v′(t) = 〈x′(t), x(t)− x∗〉 = 〈a(t) + b(t), x(t)− x∗〉,

with a(t) ∈ −F (x(t)), b(t) ∈ −N(K, x(t)) and hence:

v′(t) = 〈a(t), x(t)− x∗〉+ 〈−b(t), x∗ − x(t)〉.

Since x(t) ∈ L, for t ≥ 0, we have 〈a(t), x(t)−x∗〉 ≤ −m, while 〈−b(t), x∗−x(t)〉 ≤ 0. Therefore
v′(t) ≤ −m, for t ≥ 0. Now, we obtain, for T > 0:

v(T )− v(0) =
∫ T

0
v′(τ)dτ ≤ −mT.

If T =
v(0)
m

, we get v(T ) ≤ 0 = min
y∈K

V (·). But we also have:

v(T ) ≥ α > min
y∈K

V (·) = 0.

Hence a contradiction follows and we must have α = 0, that is x(t) → x∗.
�

Corollary 2. Let x∗ be an equlibrium point of DV I(F,K) and assume that F is strictly pseu-
domonotone. Then properties i) and ii) of the previous Theorem hold.

Proof: It is immediate combining Lemma 1 and Theorem 9. �

Example 1. Let K = R2 and consider the system of autonomous differential equations:

x′(t) = −F (x(t)),

where F : R2 → R2 is a single-valued map defined as:

F (x, y) =
[
−y + x|1− x2 − y2|
x + y|1− x2 − y2|

]
Clearly (x∗, y∗) = (0, 0) is an equilibrium point and one has 〈F (x, y), (x, y)〉 ≥ 0 ∀(x, y) ∈ R2, so
that (0, 0) is a solution of SMV I(F,K) and hence, according to Theorem 6, every solution x(t)
of the considered system of differential equations is monotone w.r.t. Ṽx∗. Anyway, not all the
solution of the system converge to (0, 0). Infact, passing to polar coordinates, the system can be
written as: {

ρ′(t) = −ρ(t)|1− ρ2(t)|
θ′(t) = −1

and solving the system, one can easily see that the solutions that start at a point (ρ, θ), with ρ ≥ 1
do not converge to (0, 0), while the solutions that start at a point (ρ, θ) with ρ < 1 converge to
(0, 0). This last fact could be checked observing that for every c < 1, (0, 0) is a strict solution of
SMV I(F,Kc) where:

Kc := {(x, y) ∈ R2 : x2 + y2 < c}.
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4 The case in which F is single-valued and K is open

In this section we focus on the case in which F is a single valued operator from K to Rn and
K is open (and convex). In this case N(K, x) = {0}, ∀x ∈ K and DV I(F,K) reduces to the
classical autonomous system:

DS(F ) x′(t) = −F (x(t)).

Clearly, now x∗ ∈ K is an equilibrium point of DS(F ) when F (x∗) = 0. In [18] the authors give
some necessary and sufficient conditions for the existence of monotone trajectories of DS(F )
under the hypothesis that F is of class C1. Anyway, existence and uniqueness of the solutions of
Problem 1 hold under weaker hypotheses. In particular, we recall the following classical result
(see e.g. [12]).

Theorem 10. Let K be an open subset of Rn, x0 ∈ K and let F be Lipschitz with constant K
on a neighborhood U of x0 with radius δ, with maxx∈U |F (x)| ≤ M . If 0 < a < min{δ/M, 1/K},
then there is a unique (differentiable) function x : [0, a) → K , such that x(0) = x0 and
x′(t) = −F (x(t)), ∀t ∈ [0, a).

Here we generalize the results in [18] to the case in which F is locally Lipschitz. We will give
necessary and sufficient conditions for the existence of monotone trajectories of DS(F ) (w.r.t.
function Ṽx∗), expressed by means of Clarke’s generalized Jacobian. We remember the following
definition (see for instance [6]):

Definition 9. Let G be a locally Lipschitz function from K to Rm. Clarke’s generalized Jacobian
of G at x is the subset of the space Rn×m of n×m matrices, defined as:

JCG(x) = conv{lim JG(xk) : xk → x, G is differentiable at xk}

(here JG denotes the Jacobian of G and convA stands for the convex hull of the set A ⊆ Rn).

The following proposition summarizes the main properties of the generalized Jacobian.

Proposition 3.

i) JCF (x) is a nonempty, convex and compact subset of Rn×m;

ii) the map x → JCF (x) is u.s.c.;

iii) (Mean value Theorem) For all x, y ∈ K we have F (y)−F (x) ∈ conv{JCF (x+δ(y−x))(y−
x), δ ∈ [0, 1]}.

Definition 10. Let A(·) be a map from Rn into the subsets of the space Rn×n of n×n matrices.
We say that A(·) is positively defined at x (respectively weakly positively defined) when:

infA∈A(x) u>Au ≥ 0, ∀u ∈ Rn(
supA∈A(x) u>Au ≥ 0, ∀u ∈ Rn

)
.

If the inequality is strict (for u 6= 0), we say that A(x) is strictly positive defined (resp. strictly
weakly positive defined).

Theorem 11. Let F : K → Rn be locally Lipschitz and let x∗ be an equilibrium point of DS(F ).
If there exists a positive number δ such that for any x0 ∈ K with ‖x0 − x∗‖ < δ, there exists
a trajectory x(t) of DS(F ) starting at x0 and monotone w.r.t. Ṽx∗, then Clarke’s generalized
Jacobian of F at x∗ is weakly positively defined.
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Proof: Let B(x∗, δ) be the open ball with center in x∗ and radius δ. Fix z ∈ B(x∗, δ) and let
y(α) = x∗+α(z−x∗), for α ∈ [0, 1] (clearly y(α) ∈ B(x∗, δ)). Let x(t) be a trajectory of DS(F )
starting at y(α); for v(t) = Ṽx∗(x(t)), we have:

0 ≥ v′(0) = 〈x′(0), y(α)− x∗〉,

and:
x′(0) = −F (y(α)),

so that:
〈F (y(α), y(α)− x∗〉 ≥ 0.

Now we have, applying the mean value theorem:

F (y(α))− F (x∗) = F (y(α)) ∈ conv
{
αJCF (x∗ + δ(z − x∗))(z − x∗), δ ∈ [0, α]

}
= A(α).

Since JCF (·) is u.s.c., ∀ε > 0 and for δ “small enough”, let’s say δ ∈ [0, β(ε)] we have:

JCF (x∗ + δ(z − x∗)) ⊆ JCF (x∗) + εB := JεF (x∗)

(here B denotes the open unit ball in Rn×n). So, it follows, for α = β(ε):

A(β(ε)) ⊆ β(ε)JεF (x∗)(z − x∗),

and hence, for any ε > 0, F (y(β(ε))) ∈ β(ε)JεF (x∗)(z − x∗).
Now, let εn = 1/n and αn = β(εn). We have 〈F (y(αn)), y(αn)− x∗〉 ≥ 0, that is:

α2
n(z − x∗)>(d(αn) + γ(αn))(z − x∗) ≥ 0,

with γ(αn) ∈ 1
nB and d(αn) ∈ JCF (x∗). So we obtain:

(z − x∗)>d(αn)(z − x∗) ≥ −(z − x∗)>γ(αn)(z − x∗) = − 1
n

(z − x∗)bn(z − x∗),

with bn ∈ B. Sending n to +∞ we can can assume d(αn) → d ∈ JCF (x∗) and we get:

(z − x∗)>d (z − x∗) ≥ 0.

Since z is arbitary in B(x∗, δ), we obtain that JCF (x∗) is weakly positive defined.
�

Example 2. The condition of the previous Theorem is necessary but not sufficient for the
existence of monotone trajectories (w.r.t. Ṽ ). Consider the locally Lipschitz function F : R → R
defined as:

F (x) =
{

x2 sin 1
x , x 6= 0

0, x = 0

and the autonomous differential equation x′(t) = −F (x(t)). Clearly x∗ = 0 is an equilibrium
point and it is known that JCF (0) = [−1, 1]. Hence the necessary condition of Theorem 11
is satisfied, but it is easily seen that any trajectory x(t) of the considered differential equation
(apart from the trivial solution x(t) ≡ 0) is not monotone w.r.t. Ṽx∗.

Theorem 12. Assume that JCF (x∗) is strictly positively defined. Then, every trajectory x(t)
of DS(F ) starting “sufficiently near” x∗ and defined on [0,+∞) is strictly monotone w.r.t. Ṽx∗

and converges to x∗.
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Proof: By assumption:
inf

A∈JCF (x∗)
u>Au > 0, ∀u ∈ Rn\

{
0
}
,

and this condition is equivalent to the existence of a positive number m such that
infA∈JCF (x∗) v>Av > m, ∀v ∈ S1 (the unit sphere in Rn). Let ε > 0 and consider the set:

JεF (x∗) := JCF (x∗) + εB.

We claim:
inf

A∈JεF (x∗)
u>Au > 0, ∀u ∈ Rn\

{
0
}
,

for ε “small enough”. Indeed, A ∈ JεF (x∗) if and only if A = A′ + A′′, with A′ ∈ JCF (x∗) and
A′′ ∈ εB and hence, for u ∈ Rn\{0}:

inf
A∈JεF (x∗)

u>Au ≥ inf
A′∈JCF (x∗)

u>A′u + inf
A′′∈εB

u>A′′u.

Since A′′ ∈ εB, we have |u>A′′u| ≤ ‖A′′‖‖u‖ ≤ ε‖u‖2 and we get:

inf
A′∈JCF (x∗)

u>A′u + inf
A′′∈εB

u>A′′u ≥ inf
A′∈JCF (x∗)

u>A′u− ε‖u‖2.

Therefore:

inf
A∈JεF (x∗)

u>Au

‖u‖2
≥ inf

A′∈JCF (x∗)

u>A′u

‖u‖2
− ε

and for ε < m, the righthandside is positive.
If we fix ε in (0,m), for a suitable δ > 0 we have, for all x ∈ B̄(x∗, δ):

JCF (x∗ + α(x− x∗)) ⊆ JεF (x∗), ∀α ∈ (0, 1)

and from the mean value theorem, we obtain:

F (x) = F (x)− F (x∗) ∈ conv
{
JCF (x∗ + δ(x− x∗))(x− x∗), δ ∈ [0, 1]

}
⊆ JεF (x∗)(x− x∗).

Hence we conclude:

〈F (x), x− x∗〉 > 0, ∀x ∈ (Rn ∩ B̄(x∗, δ))\
{
x∗

}
.

and so x∗ is a strict solution of SMV I(F, Rn ∩ B̄(x∗, δ)). The proof now follows from Theorem
9.

�

Example 3. The condition of the previous Theorem is sufficient bur not necessary for the
monotonicity of trajectories. Consider the locally Lipschitz function F : R → R defined as:

F (x) =
{

x2 sin 1
x + ax, x 6= 0

0, x = 0

where 0 < a < 1, and the autonomous differential equation x′(t) = −F (x(t)), for which x∗ = 0 is
an equilibrium point. In a suitable closed neighborhood U of 0 we have F (x) > 0 if x > 0 , while
F (x) < 0, if x < 0 and hence x∗ is a strict solution of SMV I(F,U). It follows that every solution
of the considered differential equation, starting ”near” x∗, is strictly monotone w.r.t. Ṽx∗ and
converges to 0. If we calculate the generalized Jacobian of F at 0 we get JCF (0) = [−1+a, 1+a]
and the sufficient condition of the previous Theorem is not satisfied.
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5 An application: generalized gradient inclusions

Let f : Ω ⊆ Rn → R be a differentiable function on the open set Ω. Equations of the form:

x′(t) = −f ′(x(t)), x(0) = x0

are called “gradient equations” (see for instance [12]). In [1] an extesion of the classical gradient
equation to the case in which f is a lower semicontinuous convex function is considered, replacing
the above gradient equation, with the differential inclusion:

x′(t) = −∂f(x(t)), x(0) = x0,

where ∂f denotes the subgradient of f . In this section K will denote again a closed convex
subset of Rn

Here, we consider a locally Lipschitz function f : Ω ⊆ Rn → R, where Ω is an open set containing
the closed convex set K, and the DVI:

DV I(∂Cf,K)
{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a. t ∈ [0, T ], x′(t) ∈ −∂Cf(x(t))−N(K, x(t))

where ∂Cf(x) denotes Clarke’s generalized gardient of f at x, with the aim of studying the
behaviour of its trajectories. (The definition of Clarke’s generalized gradient can be recovered
from Definition 9, putting there m = 1).

Definition 11. [15] We say that ∂Cf is semistrictly pseudomonotone on K, when for every
x, y ∈ K, with f(x) 6= f(y), we have:

∃u ∈ ∂Cf(x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ ∂Cf(y) : 〈v, y − x〉 > 0.

Clearly, if ∂Cf is strictly pseudomonotone, then it is also semistrictly pseudomonotone.

Definition 12. i) f is said to be pseudoconvex on K when ∀x, y ∈ K, with f(y) > f(x),
there exixts a positive number a(x, y), depending on x and y and a number δ(x, y) ∈ (0, 1],
such that:

f(λx + (1− λ)y) ≤ f(y)− λa(x, y), ∀λ ∈ (0, δ(x, y)).

ii) f is said to be strictly pseudoconvex if the previous inequality holds whenever f(y) ≥
f(x), x 6= y.

We recall the following result, obtained by Luc [15].

Theorem 13. i) Assume that ∂Cf is semistrictly pseudomonotone on an open convex set
A ⊆ Rn. Then f is pseudoconvex on A.

ii) Assume that ∂Cf is strictly pseudomonotone on an open convex set A. Then f is strictly
pseudoconvex on A.

Remark 5. Strictly pseudomonotone and semistrictly pseudomonotone maps are called respec-
tively “strictly quasimonotone” and “semistrictly quasimonotone” in [15].

Definition 13. We say that a function f : Rn → R is inf-compact on the closed convex set K,
when ∀c ∈ R, the level sets:

lev≤cf := {x ∈ K : f(x) ≤ c}

are compact.
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Remark 6. Clearly, if f is inf-compact on K the set argmin(f,K) of minimizers of f over K is
compact. The converse does not hold.

Theorem 14. Let x(t) be a slow solution of DV I(∂Cf,K) defined on [0, T ]. Then, ∀s1, s2 ∈
[0, T ] with s2 ≥ s1, we have:

f(x(s2))− f(x(s1)) ≤ −
∫ s2

s1

‖m(−∂Cf(x(s))−N(K, x(s)))‖2ds.

Hence the function g(t) = f(x(t)) is nonincreasing and limt→+∞ f(x(t)) exists.

Proof: Since a locally Lipschitz function is differentiable a.e., the function g(t) = f(x(t)) is
differentiable a.e., with g′(t) = f ′(x(t))x′(t) and x′(t) ∈ m(−∂Cf(x(t))−N(K, x(t))) for a.a. t .
Recalling (Theorem 3) that the slow solutions of DV I(∂Cf,K) coincide with the slow solutions
of PDI(∂Cf,K) and that f ′(x(t)) ∈ ∂Cf(x(t)) [6], we have from Proposition 1:

sup
z∈∂Cf(x(t))

〈z,m(−∂Cf(x(t))−N(K, x(t)))〉+ ‖m(−∂Cf(x(t))−N(K, x(t)))‖2 ≤ 0

and for a.a. t, we get:

g′(t) = f ′(x(t))x′(t) ≤ −‖m(−∂Cf(x(t))−N(K, x(t)))‖2 ≤ 0,

from which we deduce:

f(x(s2))− f(x(s1)) ≤ −
∫ s2

s1

‖m(−∂Cf(x(s))−N(K, x(s)))‖2ds ≤ 0.

The second part of the theorem is now an immediate consequence. �

Theorem 15. Suppose that f achieves its minimum over K at some point. Assume that ∂Cf
is a semistrictly pseudomonotone map and that f is inf-compact. Then every slow solution x(t)
of DV I(∂Cf,K) defined on [0,+∞), is such that:

lim
t→+∞

f(x(t)) = min
x∈K

f(x).

Furthermore, every cluster point of x(t) is a minimum point for f over K.

Proof: Let x(t) be a slow solution starting at x0 = x(0) and ab absurdo, assume that
limt→+∞ f(x(t)) = α > minx∈K f(x). The set:

Z = {x ∈ K : α ≤ f(x) ≤ f(x0)}.

is compact, since f is inf-compact and argmin(f,K)∩Z = ∅. If we set A = {x(t), t ∈ [0,+∞)},
then we get cl A ⊆ Z, and hence argmin(F,K) ∩ cl A = ∅. If x∗ ∈ argmin(f,K), then it is an
equilibrium point of DV I(∂Cf,K) (see [6]), that is:

0 ∈ ∂Cf(x∗) + N(K, x∗),

and this is equivalent (see Proposition 2) to the fact that x∗ solves SV I(∂Cf,K), that is to the
existence of vector v ∈ ∂Cf(x∗) such that:

〈v, x− x∗〉 ≥ 0, ∀x ∈ K.
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It follows also: 〈v, a− x∗〉 ≥ 0, ∀a ∈ cl A and since ∂Cf is semistrictly quasimonotone, we have
(observe that f(a) 6= f(x∗) ∀a ∈ cl A):

〈w, a− x∗〉 < 0, ∀w ∈ −∂Cf(a), ∀a ∈ cl A.

Observing that cl A is a compact set, as in the proof of Theorem 9, it follows the existence of a
positive number m such that:

〈w, a− x∗〉 < −m, ∀w ∈ −∂Cf(a), ∀a ∈ cl A.

Hence, letting v(t) = ‖x(t)−x∗‖2
2 , as in the proof of Theorem 9, we obtain v′(t) ≤ −m for a.a. t

and hence, for T > 0:

v(T )− v(0) =
∫ T

0
v′(τ)dτ ≤ −mT.

For T = v(0)/m, we obtain v(T ) ≤ 0, that is v(T ) = 0 and hence x(T ) = x∗, but this is absurdo,
since the set A does not intersects argmin(f,K).
Now the last assertion of the theorem is obvious.

�

The previuos Theorem can be strenghtened using the results of section 3.

Proposition 4. Let f be a function that achieves its minimum over K at some point x∗ and
assume that x∗ is a strict solution of SMV I(∂Cf,K). Then every solution defined on [0,+∞)
of DV I(∂Cf,K) is strictly monotone w.r.t. Ṽx∗ and converges to x∗.

Proof: It is immediate recalling that if x∗ is a minimum point for f over K, then it is an
equilibrium point of DV I(∂Cf,K) and applying Theorem 9. �

Remark 7. If x∗ is a strict solution of SMV I(∂Cf,K), then it can be proved that f is strictly
increasing along rays starting at x∗. The proof is similar to that of Proposition 4 in [7].

Corollary 3. Let f be a function that achieves its minimum over K at some point x∗. If ∂Cf is
strictly pseudomonotone, then x∗ is the unique minimum point for f over K and every solution
of DV I(∂Cf,K) defined on [0,+∞) converges to x∗.

Proof: Recall that, under the hypotheses, f is strictly pseudoconvex (Theorem 13) and hence it
follows easily that x∗ is the unique minimum point of f over K. The proof is now an immediate
consequence of Corollary 2. �
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