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Abstract. In this paper, a new proof of the equivalence for Weitzenboeck’s inequality and Finsler-
Hadwiger’s inequality is given, and some generalizations of Weitzenboeck’s inequality for only one
triangle is proved.

1. Introduction

Throughout the paper we assume a, b, c denote the opposite sides of triangle ABC, A,B, C the
angles, s the semi-perimeter, ∆ the area and R the circumradius. Moreover, we will customarily
use the cyclic sum symbol and cyclic product symbol, that is:

∑
f(a) = f(a) + f(b) + f(c),∑

f(a, b) = f(a, b) + f(b, c) + f(c, a) and
∏

f(a) = f(a)f(b)f(c), similarly, one defines others.
In 1919, Weitzenboeck [1] obtained the following interesting inequality for sides and area of the

triangle

(1.1)
∑

a2 > 4
√

3∆

with equality holding if and only if the triangle ABC is the equilateral one.
Inequality (1.1) is called Weitzenboeck’s inequality. In the theory of geometric inequality,

Weitzenboeck’s inequality and its generalizations often play fundamental role, these results are
interesting and useful. For example:

In 1937, P.Finsler and H.Hadwiger [2] first studied the generalization of Weitzenboeck’s inequal-
ity, their got:

(1.2)
∑

a2 > 4
√

3∆ +
∑

(a− b)2

with equality holding if only and if the triangle ABC is equilateral.
A weighted representation for Weitzenboeck’s inequality is given in [3], A.George verified that

(1.3)
∑(

α1

α2 + α3
a2

)
> 2

√
3∆

where α1, α2, α3 > 0.
A.Oppenheim [4] published the following useful weighted formula:

(1.4) (
∑

λ1a
2)2 > 16∆2(

∑
λ1λ2)

with equality holding if and only if λ1 : λ2 : λ3 = (b2 + c2 − a2) : (c2 + a2 − b2) : (a2 + b2 − c2),
where λ1, λ2, λ3 are the real numbers.

For two triangles, the generalization of Weitzenboeck’s inequality (1.1) is the well-known Neuberg-
Pedoe inequality:

(1.5)
∑

a2
1(b

2
2 + c2

2 − a2
2) > 16∆1∆2

with equality holding if and only if ∆A1B1C1 v ∆A2B2C2.
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In this paper, a new proof of the equivalence for Weitzenboeck’s inequality (1.1) and Finsler-
Hadwiger’s inequality (1.2) is given, and some generalizations of Weitzenboeck’s inequality for only
one triangle is proved.

2. A New Proof of the Equivalence for Weitzenboeck’s
Inequality (1.1) and Finsler-Hadwiger’s Inequality (1.2)

To prove the equivalence for Weitzenboeck’s inequality (1.1) and Finsler-Hadwiger’s inequality
(1.2), the following Lemma2.1 will be used.

Lemma 2.1. In every triangle ABC, if

(2.1) a1 =
√

a(b + c− a), b1 =
√

b(c + a− b), c1 =
√

c(a + b− c)

and

(2.2) A1 = (π −A)/2, B1 = (π −B)/2, C1 = (π − C)/2,

then the triangle A′B′C ′ for sides a1, b1, c1 is a triangle for angles A1, B1, C1, and the area 41 = 4.

Proof. Because a + b− c > 0, b + c > a, c + a− b > 0, and from the expansion (2.1), we have

(a1 + b1)2 = a(b + c− a) + b(c + a− b) + 2
√

a(b + c− a)b(c + a− b)

> a(b + c− a) + b(c + a− b) = c(a + b)− (a− b)2

> c(a + b)− c2 = c(a + b− c) = c2
1

that is
a1 + b1 > c1

similarly, we can obtain b1 + c1 > a1, c1 + a1 > b1. Therefore, a1, b1, c1 are three sides of a triangle.
According to the expansion (2.2) and A1 + B1 + C1 = (π −A)/2 + (π −B)/2 + (π − C)/2 = π,

we get that A1, B1, C1 are three angles of a triangle.
Also, assume a triangle for the sides a1, b1, c1 is ∆A′B′C ′, then utilizing the fact that

cos A′ =
b2
1 + c2

1 − c2
1

2b1c1
=

b(c + a− b) + c(a + b− c)− a(b + c− a)
2
√

b(c + a− b)
√

c(a + b− c)
= sin

A

2
= cos

π −A

2
= cos A1,

we immediately get A′ = A1. Similarly, we can obtain B′ = B1, C
′ = C1. That is the triangle

A′B′C ′ for sides a1, b1, c1 is a triangle for angles A1, B1, C1.
Finally, we have

16∆2
1 = 2

∑
a2

1b
2
1 −

∑
a4

1 = 2
∑

a2b2 −
∑

a4 = 16∆2,

i.e., ∆1 = ∆. The proof of Lemma2.1 is completed.

Theorem 2.1. Weitzenboeck’s inequality (1.1) and Finsler-Hadwiger’s inequality (1.2) are equiv-
alence.

Proof. Firstly, Finsler-Hadwiger’s inequality (1.2) =⇒ Weitzenboeck’s inequality (1.1) is obvious.
Secondly, to prove Weitzenboeck’s inequality (1.1) =⇒ Finsler-Hadwiger’s inequality (1.2).
From Weitzenboeck’s inequality (1.1) and Lemma2.1, we obtain∑

a2
1 > 4

√
3∆1,

and ∑
a(b + c− a) > 4

√
3∆

that is Finsler-Hadwiger’s inequality (1.2). Theorem2.1 is proved.
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Remark 2.1. By the same way, we can prove that the Neuberg-Pedoe inequality (1.5) and the
following Zh.-P An’s inequality (2.3)(see also [14]) are equivalence:

(2.3)
∑

a1(b1 + c1 − a1)(c2 + a2 − b2)(a2 + b2 − c2) > 16∆1∆2

with equality holding if and only if ∆A1B1C1 v ∆A2B2C2.

By using Lemma2.1 and Finsler-Hadwiger’s inequality (1.2),we easily prove the following corol-
lary:

Corollary 2.1. In every triangleABC, we have

(2.4)
∑

a2 > 4
√

3∆ +
∑

(a− b)2 +
∑

(
√

a(b + c− a)−
√

b(c + a− b))2

with equality holding if only and if the triangle ABC is the equilateral triangle.

Theorem 2.2. Assume µ is a real number, then in every triangle ABC, the inequality

(2.5)
∑

a2 > 4
√

3∆ + µ
∑

(a− b)2

holds that the best possible is the coefficient µ = 1.

Proof. In (2.5), let a = b = 1, c = t, then we have

2 + t2 >
√

3t
√

4− t2 + 2µ(1− t2)

Set t → 0, we obtain µ 6 1, therefore the coefficient µ = 1 is the best possible.

3. Some Generalized Results for Triangle

In this section, we will list another generalizations of Weitzenboeck’s inequality for triangle.

Theorem 3.1. If one of λ1 + λ2, λ2 + λ3 and λ3 + λ1 greater then zero, and
∑

λ1λ2 > 0, in every
triangle ABC we have

(3.1)
∑

λ1a
2 > 4

√∑
λ1λ2 ∆ + (

√
λ3 + λ1 a−

√
λ2 + λ3 b)2

with equality holding if and only if ∠C = arccos(λ3/
√

(λ2 + λ3)(λ3 + λ1)).

Proof. From one of λ1 + λ2, λ2 + λ3 and λ3 + λ1 greater then zero, and λ1λ2 + λ2λ3 + λ3λ1 > 0, we
have another two of λ1 + λ2, λ2 + λ3 and λ3 + λ1 greater then zero, and∣∣∣∣∣ λ3√

(λ2 + λ3)(λ3 + λ1)

∣∣∣∣∣ < 1.

Let

θ = arccos
λ3√

(λ2 + λ3)(λ3 + λ1)
,

then

sin θ =

√∑
λ1λ2√

(λ2 + λ3)(λ3 + λ1)
, cos θ =

λ3√
(λ2 + λ3)(λ3 + λ1)

.

From 1 > cos(C − θ), and 2ab cos C = a2 + b2 − c2, 2ab sinC = 4∆, we obtain

1 >
λ3√

(λ2 + λ3)(λ3 + λ1)
cos C +

√∑
λ1λ2√

(λ2 + λ3)(λ3 + λ1)
sinC

or
2
√

(λ2 + λ3)(λ3 + λ1)ab > λ3(a2 + b2 − c2) + 4
√∑

λ1λ2∆
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that is inequality (3.1), with the equality holding if and only if 1 = cos(C − θ), i.e.

∠C = arccos
λ3√

(λ2 + λ3)(λ3 + λ1)
.

The proof is completed.

Theorem3.1 is obtained by K.-Ch. Yang in [5]. We can give some results for Theorem3.1, its not
only among inequality (1.4), but also get some another corollaries:

Corollary 3.1. In every triangle, we have

(3.2)
∑

a2 > 4
√

3∆ + 2(a− b)2

with equality holding if and only if ∠C = π/3.

Corollary 3.2. In every triangle ABC, we have

(3.3)
∑

a2 > 4
√

3∆ +
∑

(a− b)2 + 2(
√

a(b + c− a)−
√

b(c + a− b) )2

with equality holding if only and if ∠C = π/3.

Corollary 3.3. (Pólya-Szegö[6]) In every triangle ABC, we have

(3.4)
√

3
4

(abc)
2
3 > ∆

with equality holding if and only if the triangle ABC is equilateral.

From Lemma2.1, we easily obtain

Lemma 3.1. In every triangle ABC, if the sequence of {∆AkBkCk}n
k=0 that the sides and angles

respectively as follow

ak =
√

ak−1(bk−1 + ck−1 − ak−1),(3.5)

bk =
√

bk−1(ck−1 + ak−1 − bk−1),

ck =
√

ck−1(ak−1 + bk−1 − ck−1)

and

(3.6) Ak = (π −Ak−1)/2, Bk = (π −Bk−1)/2, Ck = (π − Ck−1)/2,

where ∆A0B0C0 is the triangle ABC. Then the triangle for sides ak, bk, ck is a triangle for angles
Ak, Bk, Ck, and we have

(3.7) Ak = [(2k − (−1)k)(π/3) + (−1)kA]/2k

similarly, one defines Bk, Ck, k = 0, 1, 2, · · · ;

(3.8) lim
k−→∞

Ak = lim
k−→∞

Bk = lim
k−→∞

Ck = π/3;

and 41 = 42 = · · · = 4k = · · · = 4.

Theorem 3.2. In every triangle ABC, if the sequence of {∆AkBkCk}n
k=0 that the sides and angles

respectively define as (3.5) and (3.6), then we have

(3.9)
∑

a2 > 4
√

3∆ +
n∑

k=0

[∑
(ak − bk)2

]
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Proof. In ∆Ak−1Bk−1Ck−1, utilizing the fact that

a2
k−1 = 4∆k−1 tan

Ak−1

2
+ (bk−1 − ck−1)2,

we have

(3.10)
∑

a2
k−1 = 4∆k−1

∑
tan

Ak−1

2
+
∑

(bk−1 − ck−1)2.

From (3.6), then (3.10) become

(3.11)
∑

a2
k−1 = 4∆k−1

∑
cot Ak +

∑
(bk−1 − ck−1)2.

Also, by using the laws of cosines, we obtain

(3.12)
∑

a2
k−1 = 4∆k−1

∑
cot Ak−1.

Combining expansion (3.11) and (3.12), we have

(3.13) 4∆k−1

∑
cot Ak−1 = 4∆k−1

∑
cot Ak +

∑
(bk−1 − ck−1)2.

From 4 = 40 = 41 = 42 = · · · = 4n, we get

(3.14) 4∆
∑

cot Ak−1 = 4∆
∑

cot Ak +
∑

(bk−1 − ck−1)2.

In (3.14), summing from 1 to n + 1 for k, we obtain

(3.15) 4∆
∑

cot A = 4∆
∑

cot An+1 +
n+1∑
k=1

∑
(bk−1 − ck−1)2.

Utilizing the fact that ∑
cot An+1 >

√
3

and combining expansion (3.15), (3.12) and Lemma3.1, the proof of inequality (3.2) is completed.

4. The Index Generalizations for Weitzenboeck’s Type Inequality

Theorem 4.1. Let λ > 1, and n ∈ N , in every ∆ABC, we have

(4.1)
∑

a2λ > 4λ31−λ
2 ∆λ +

n∑
k=0

∑
|bk − ck|2λ

where ak, bk, ck define as Lemma3.1.

Proof. When λ > 1, using the fact that [7]

(4.2)
∑

a2λ > 31−λ(
∑

a2)λ

and

(4.3)

(
m∑

k=1

xk

)λ

>
m∑

k=1

xλ
k ,

where xi > 0(i = 1, 2, · · · , n) and combining Theorem3.2, we obtain inequality (4.1). The Theo-
rem4.1 is proved.

To prove the next theorem, the following lemmas [8] are necessary:

Lemma 4.1. If k 6 (ln 9− ln 4)/(ln 4− ln 3), then in every ∆ABC we have

(4.4)
(

1
3

∑
ak

) 1
k

6
√

3R
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Theorem 4.2. Let 0 < λ < (ln 9− ln 4)/(ln 4− ln 3), and n ∈ N , in every ∆ABC, we have

(4.5)
∑ 1

a2λ
6

31+λ
2

(4∆)λ
+

1
2

∑(
1
aλ
− 1

bλ

)2

Proof. When 0 < λ < (ln 9− ln 4)/(ln 4− ln 3), from Lemma4.1, we get(
1
3

∑
aλ

) 1
λ

6
√

3R

i.e.,

(4.6)
∑

aλ 6 31+λ
2 Rλ.

Combining expansion R = abc/(2∆), inequality (4.6) becomes (4.5). The Theorem4.2 is proved.

Theorem4.2 is obtained by J. Chen in [13].

Corollary 4.1. In every ∆ABC, we have

(4.7)
∑ 1

a2
6

3
√

3
4∆

+
1
2

∑(
1
a
− 1

b

)2

and the coefficient 1/2 is the best possible.

Proof. Let λ = 1 for (4.5), we easily get inequality (4.7). Let a = b = 1, c = t, then inequality∑ 1
a2 6 3

√
3

4∆ + µ
∑(

1
a −

1
b

)2 becomes

1
t2

[
2t2 + 1− 2µ(1− t)2 − 3

√
3t√

4− t2

]
6 0

Set t → 0, we can obtain µ > 1
2 , therefore the coefficient µ = 1

2 is the best possible.

5. Weitzenboeck’s Type Inequalities of the Planar Convex Polygon

The next Lemma5.1 is a preliminary election problem of the 29th IMO.

Lemma 5.1. If αk > 0, βk are real numbers (k = 1, 2, · · · , n), and
∑n

k=1 αk =
∑n

k=1 βk = π, then
we have

(5.1)
n∑

k=1

cos βk

sinαk
6

n∑
k=1

cot αk

with equality holding if and only if αk = βk (k = 1, 2, · · · , n).

Theorem 5.1. Assume ak (k = 1, 2, · · · , n) denote the sides of a planar convex polygon A1A2 · · ·An

and F the area. If αk > 0 (k = 1, 2, · · · , n) for
∑n

k=1 αk = π, then in every planar convex polygon
the following inequality holds

(5.2)
n∑

k=1

a2
k cot αk > 4F

Proof. To prove planar convex polygon A1A2 · · ·An inscribed in a circle, because its area is maximal.
Set βk = 2γk − αk, where 2γk is the angle at the centre of the side ak, k = 1, 2, · · · , n. From

Lemma5.1, we have
n∑

k=1

cos(2γk − αk)
sinαk

6
n∑

k=1

cot αk
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that is

(5.3)
n∑

k=1

sin2 γk · cot αk >
n∑

k=1

sin 2γk

Utilizing the fact that ak = 2R sin γk (k = 1, 2, · · · , n), and F = 1
2R2

∑n
k=1 sin 2γk, inequalities

(5.3) becomes (5.2). Lemma5.1 is proved.

From Theorem5.1, the following Corollary5.1 is obvious.

Corollary 5.1. Assume ak (k = 1, 2, · · · , n) denote the sides of a planar convex polygon A1A2 · · ·An

and F the area, then in every convex polygon the following inequality holds

(5.4)
n∑

k=1

a2
k > 4F tan

π

n

Corollary 5.2. Assume ak (k = 1, 2, 3, 4) denote the sides of quadrilateral ABCD and F the area.
If λk (k = 1, 2, 3, 4) are the real numbers for

λ2λ3λ4 + λ3λ4λ1 + λ4λ1λ2 + λ1λ2λ3 > 0,

and
λ1 + λ2 + λ3 + λ4 > 0,

then in every quadrilateral we have

(5.5)
4∑

k=1

λka
2
k > 4F

√
λ2λ3λ4 + λ3λ4λ1 + λ4λ1λ2 + λ1λ2λ3

λ1 + λ2 + λ3 + λ4
.

Proof. Set tλk = cot αk (k = 1, 2, 3, 4), t is a real constant. From Theorem5.1 for n = 4, we have

α1 + α2 + α3 + α4 = π,

and
tan(α1 + α2 + α3 + α4) = 0.

Using the fact that

tan(α1 + α2 + α3 + α4) =

∑
16i<j<k64

cot αi cot αj cot αk −
4∑

k=1

cot αk

4∏
k=1

cot αk −
∑

16j<k64

cot αj cot αk + 1

,

we can obtain
t2 =

λ1 + λ2 + λ3 + λ4

λ2λ3λ4 + λ3λ4λ1 + λ4λ1λ2 + λ1λ2λ3
,

the proof of Corollary5.2 is completed.

Corollary 5.3. Assume ak (k = 1, 2, 3, 4) denote the sides of quadrilateralABCD and F the area,
in every quadrilateral we have

(5.6)
4∏

k=1

ak

4∑
k=1

ak

4∑
k=1

a−1
k > 16F 2

Proof. Let λ1a1 = λ2a2 = λ3a3 = λ4a4 in Corollary5.2, then inequality (5.5) become (5.6). Corol-
lary5.3 is proved.

Remark 5.1. The results of this section were obtained by X.-Zh. Yang in [9].
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6. The Reverse Weitzenboeck’s Inequality

Theorem 6.1. In every ∆ABC, we have

(6.1)
∑

a2 6 4
√

3∆ + 3
∑

(a− b)2

and the coefficient 3 is the best possible.

Proof. Utilizing the fact that

(6.2)
∏

sinA = sr
/
2R2,

(6.3)
∑

sin2 A = (s2 − 4Rr − r2)
/
2R2,

and

(6.4)
∑

sinB sinC = (s2 + 4Rr + r2)
/
4R2,

then (6.1)⇔ 2
√

3
∏

sinA + 5
∑

sin2 A− 6
∑

sinB sinC > 0 ⇔
√

3sr + s2 − 16Rr − 4r2 > 0 ⇔

(6.5)
√

3r(s− 3
√

3r) + s2 − 16Rr + 5r2 > 0

From Gerretsen’s inequalities [10]

(6.6) 27r2 6 16Rr − 5r2 6 s2 6 4R2 + 4Rr + 3r2

and Euler inequality R > 2r, inequality (6.5) or (6.1) is true.
Set a = b = 1, c = t, then inequality

∑
a2 6 4

√
3∆ + µ

∑
(b− c)2 becomes

2 + t2 6
√

3 t
√

4− t2 + 2µ(1− t)2,

Let t → 2, we obtain µ > 3, therefore the coefficient µ = 3 is the best possible. The proof of
Theorem6.1 is completed.

Theorem 6.2. In every ∆ABC, we have

(6.7)
∑

a2 6 4
√

3∆ +
3
2

∑
(a− b)2 + 2R2

∑
(cos B − cos C)2

Proof. Utilizing the fact that (6.2) ,(6.3), (6.4) and

(6.8)
∑

cos B cos C = (s2 − 4R2 + r2)
/
4R2,

then
(6.7) ⇔ 2

√
3
∏

sinA +
∑

sin2 A− 3
∑

sinB sinC −
∑

cos B cos C + 3 > 0

⇔ 2
√

3sr − s2 + 8R2 − 10Rr − 3r2 > 0 ⇔

(6.9) 2
√

3r(s− 3
√

3r) + 2(R− 2r)(2R− 3r) + 4R2 + 4Rr + 3r2 − s2 > 0

From Gerretsen’s inequalities (6.6) and Euler inequality R > 2r, inequality (6.9) or (6.7) is proved.

Above two results are obtained by B.-Q. Liu in [11].
The next Lemma6.10 is proved by A.Oppenheim in [12]:

Lemma 6.1. If 0 < θ 6 1, then in every ∆ABC we have

(6.10) (
∑

aθ)
∏

(bθ + cθ − aθ) > 31−θ(4∆)2θ

Theorem 6.3. If λ > 2, in every ∆ABC we have

(6.11)
∑

a2λ 6 4λ31−λ
2 ∆λ +

∑
(bλ − cλ)2
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Proof. Since (6.11) is equivalence with

(6.12) (
∑

a
λ
2 )
∏

(b
λ
2 + c

λ
2 − a

λ
2 ) 6 4λ31−λ

2 ∆λ

If a
λ
2
1 , a

λ
2
2 , a

λ
2
3 are not three sides of a triangle, then the expansion (6.12) or (6.11) is true, and if

a
λ
2
1 , a

λ
2
2 , a

λ
2
3 are three sides of a triangle, from Lemma6.1 and 0 < 2/λ 6 1, then we can obtain the

expansion (6.12) or (6.11). Theorem6.3 is proved.

Finally, we propose an open question:
Assume λ > (ln 9− ln 4)/(ln 4− ln 3). Solve that the best possible µ for the following inequality

holds

(6.13)
∑ 1

a2λ
6

31+λ
2

(4∆)λ
+ µ

∑(
1
aλ
− 1

bλ

)2

.
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